Add some text about H2/Hinf synthesis
This commit is contained in:
parent
73eef388f9
commit
b54cd0791f
@ -294,7 +294,9 @@ To define what by "small" we mean, we use a weighting filter $W_u(s)$ such that
|
||||
\left| W_1(j\omega)H_1(j\omega) \right| + \left| W_2(j\omega)H_2(j\omega) \right| < \frac{1}{\left| W_u(j\omega) \right|}, \quad \forall \omega
|
||||
\end{equation}
|
||||
|
||||
This is actually almost equivalent (to within a factor $\sqrt{2}$) equivalent as to have:
|
||||
# Comments on the choice of the weights => we cannot ask for less uncertainty than both sensors
|
||||
|
||||
This is actually almost equivalent as to have (within a factor $\sqrt{2}$):
|
||||
\begin{equation}
|
||||
\left\| \begin{matrix} W_u W_1 H_1 \\ W_u W_2 H_2 \end{matrix} \right\|_\infty < 1
|
||||
\end{equation}
|
||||
@ -330,28 +332,79 @@ The $\mathcal{H}_\infty$ norm of Eq. eqref:eq:Hinf_norm is equals to $\sigma_n$
|
||||
|
||||
** Example
|
||||
|
||||
# Comments on the choice of the weights => we cannot ask for less uncertainty than both sensors
|
||||
|
||||
* Optimal and Robust Sensor Fusion: Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
|
||||
<<sec:optimal_robust_fusion>>
|
||||
|
||||
** Sensor Fusion Architecture
|
||||
** Sensor with noise and model uncertainty
|
||||
We wish now to combine the two previous synthesis, that is to say
|
||||
|
||||
The sensors are now modelled by a white noise with unitary PSD $\tilde{n}_i$ shaped by a LTI transfer function $N_i(s)$.
|
||||
The dynamical uncertainty of the sensor is modelled using multiplicative uncertainty
|
||||
\begin{equation}
|
||||
v_i = \hat{G}_i (1 + W_i \Delta_i) x + \hat{G_i} (1 + W_i \Delta_i) N_i \tilde{n}_i
|
||||
\end{equation}
|
||||
|
||||
Multiplying by the inverse of the nominal model of the sensor dynamics gives an estimate $\hat{x}_i$ of $x$:
|
||||
\begin{equation}
|
||||
\hat{x} = (1 + W_i \Delta_i) x + (1 + W_i \Delta_i) N_i \tilde{n}_i
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:sensor_model_noise_uncertainty
|
||||
#+caption: Sensor Model including Noise and Dynamical Uncertainty
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/sensor_model_noise_uncertainty.pdf]]
|
||||
|
||||
** Sensor Fusion Architecture
|
||||
|
||||
For reason of space, the blocks $\hat{G}_i$ and $\hat{G}_i^{-1}$ are omitted.
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\hat{x} = &\Big( H_1 (1 + W_1 \Delta_1) + H_2 (1 + W_2 \Delta_2) \Big) x \\
|
||||
&+ \Big( H_1 (1 + W_1 \Delta_1) N_1 \Big) \tilde{n}_1 + \Big( H_2 (1 + W_2 \Delta_2) N_2 \Big) \tilde{n}_2
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\hat{x} = &\Big( 1 + H_1 W_1 \Delta_1 + H_2 W_2 \Delta_2 \Big) x \\
|
||||
&+ \Big( H_1 (1 + W_1 \Delta_1) N_1 \Big) \tilde{n}_1 + \Big( H_2 (1 + W_2 \Delta_2) N_2 \Big) \tilde{n}_2
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
The estimate $\hat{x}$ of $x$
|
||||
|
||||
#+name: fig:sensor_fusion_arch_full
|
||||
#+caption: Super Sensor Fusion with both sensor noise and sensor model uncertainty
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/sensor_fusion_arch_full.pdf]]
|
||||
|
||||
** Synthesis Objective
|
||||
|
||||
** Mixed $\mathcal{H}_2/\mathcal{H}_\infty$ Synthesis
|
||||
|
||||
The synthesis objective is to generate two complementary filters $H_1(s)$ and $H_2(s)$ such that the uncertainty associated with the super sensor is kept reasonably small and such that the RMS value of super sensors noise is minimized.
|
||||
|
||||
To specify how small we want the super sensor dynamic spread, we use a weighting filter $W_u(s)$ as was done in Section ref:sec:robust_fusion.
|
||||
|
||||
|
||||
This synthesis problem can be solved using the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis on the following generalized plant:
|
||||
\begin{equation}
|
||||
\begin{pmatrix}
|
||||
z_{\infty, 1} \\ z_{\infty, 2} \\ z_{2, 1} \\ z_{2, 2} \\ v
|
||||
\end{pmatrix} = \underbrace{\begin{bmatrix}
|
||||
W_u W_1 & W_u W_1 \\
|
||||
0 & W_u W_2 \\
|
||||
N_1 & N_1 \\
|
||||
0 & N_2 \\
|
||||
1 & 0
|
||||
\end{bmatrix}}_{P_{\mathcal{H}_2/\mathcal{H}_\infty}} \begin{pmatrix}
|
||||
w \\ u
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
|
||||
The synthesis objective is to:
|
||||
- Keep the $\mathcal{H}_\infty$ norm from $w$ to $(z_{\infty,1}, z_{\infty,2})$ below $1$
|
||||
- Minimize the $\mathcal{H}_2$ norm from $w$ to $(z_{2,1}, z_{2,2})$
|
||||
|
||||
#+name: fig:mixed_h2_hinf_synthesis
|
||||
#+caption: Generalized plant $P_{\mathcal{H}_2/\matlcal{H}_\infty}$ used for the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis of complementary filters
|
||||
#+attr_latex: :scale 1
|
||||
|
BIN
paper/paper.pdf
BIN
paper/paper.pdf
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
% Created 2020-09-22 mar. 21:58
|
||||
% Created 2020-09-23 mer. 14:15
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[conference]{IEEEtran}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -35,7 +35,7 @@
|
||||
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
\usepackage{showframe}
|
||||
\author{\IEEEauthorblockN{Dehaeze Thomas} \IEEEauthorblockA{\textit{European Synchrotron Radiation Facility} \\ Grenoble, France\\ \textit{Precision Mechatronics Laboratory} \\ \textit{University of Liege}, Belgium \\ thomas.dehaeze@esrf.fr }\and \IEEEauthorblockN{Collette Christophe} \IEEEauthorblockA{\textit{BEAMS Department}\\ \textit{Free University of Brussels}, Belgium\\ \textit{Precision Mechatronics Laboratory} \\ \textit{University of Liege}, Belgium \\ ccollett@ulb.ac.be }}
|
||||
\date{2020-09-22}
|
||||
\date{2020-09-23}
|
||||
\title{Optimal and Robust Sensor Fusion}
|
||||
\begin{document}
|
||||
|
||||
@ -50,7 +50,7 @@ Complementary Filters, Sensor Fusion, H-Infinity Synthesis
|
||||
\end{IEEEkeywords}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:orgc2fc7e2}
|
||||
\label{sec:org88afd51}
|
||||
\label{sec:introduction}
|
||||
|
||||
\begin{itemize}
|
||||
@ -61,11 +61,11 @@ Complementary Filters, Sensor Fusion, H-Infinity Synthesis
|
||||
\end{itemize}
|
||||
|
||||
\section{Optimal Super Sensor Noise: \(\mathcal{H}_2\) Synthesis}
|
||||
\label{sec:org2031a7c}
|
||||
\label{sec:org5853545}
|
||||
\label{sec:optimal_fusion}
|
||||
|
||||
\subsection{Sensor Model}
|
||||
\label{sec:org32da471}
|
||||
\label{sec:org565ea86}
|
||||
|
||||
Let's consider a sensor measuring a physical quantity \(x\) (Figure \ref{fig:sensor_model_noise}).
|
||||
The sensor has an internal dynamics which is here modelled with a Linear Time Invariant (LTI) system transfer function \(G_i(s)\).
|
||||
@ -102,7 +102,7 @@ In order to obtain an estimate \(\hat{x}_i\) of \(x\), a model \(\hat{G}_i\) of
|
||||
\end{figure}
|
||||
|
||||
\subsection{Sensor Fusion Architecture}
|
||||
\label{sec:orgf3af62a}
|
||||
\label{sec:org1ae73e8}
|
||||
|
||||
Let's now consider two sensors measuring the same physical quantity \(x\) but with different dynamics \((G_1, G_2)\) and noise characteristics \((N_1, N_2)\) (Figure \ref{fig:sensor_fusion_noise_arch}).
|
||||
|
||||
@ -140,7 +140,7 @@ In such case, the super sensor estimate \(\hat{x}\) is equal to \(x\) plus the n
|
||||
\end{equation}
|
||||
|
||||
\subsection{Super Sensor Noise}
|
||||
\label{sec:orga39f54c}
|
||||
\label{sec:orgb2e8dd6}
|
||||
Let's note \(n\) the super sensor noise.
|
||||
\begin{equation}
|
||||
n = \left( H_1 N_1 \right) \tilde{n}_1 + \left( H_2 N_2 \right) \tilde{n}_2
|
||||
@ -154,7 +154,7 @@ As the noise of both sensors are considered to be uncorrelated, the PSD of the s
|
||||
It is clear that the PSD of the super sensor depends on the norm of the complementary filters.
|
||||
|
||||
\subsection{\(\mathcal{H}_2\) Synthesis of Complementary Filters}
|
||||
\label{sec:org536193f}
|
||||
\label{sec:orga4cf5f1}
|
||||
The goal is to design \(H_1(s)\) and \(H_2(s)\) such that the effect of the noise sources \(\tilde{n}_1\) and \(\tilde{n}_2\) has the smallest possible effect on the noise \(n\) of the estimation \(\hat{x}\).
|
||||
|
||||
And the goal is the minimize the Root Mean Square (RMS) value of \(n\):
|
||||
@ -198,17 +198,17 @@ We then have that the \(\mathcal{H}_2\) synthesis applied on \(P_{\mathcal{H}_2}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Example}
|
||||
\label{sec:orgd689dc3}
|
||||
\label{sec:org74634c9}
|
||||
|
||||
\subsection{Robustness Problem}
|
||||
\label{sec:orgc57d2ad}
|
||||
\label{sec:org5fda5c1}
|
||||
|
||||
\section{Robust Sensor Fusion: \(\mathcal{H}_\infty\) Synthesis}
|
||||
\label{sec:orgeed5209}
|
||||
\label{sec:orgc88050f}
|
||||
\label{sec:robust_fusion}
|
||||
|
||||
\subsection{Representation of Sensor Dynamical Uncertainty}
|
||||
\label{sec:org7f4d435}
|
||||
\label{sec:orgb09aa5a}
|
||||
|
||||
In Section \ref{sec:optimal_fusion}, the model \(\hat{G}_i(s)\) of the sensor was considered to be perfect.
|
||||
In reality, there are always uncertainty (neglected dynamics) associated with the estimation of the sensor dynamics.
|
||||
@ -228,7 +228,7 @@ The sensor can then be represented as shown in Figure \ref{fig:sensor_model_unce
|
||||
\end{figure}
|
||||
|
||||
\subsection{Sensor Fusion Architecture}
|
||||
\label{sec:orgd4a5727}
|
||||
\label{sec:org1d92a74}
|
||||
Let's consider the sensor fusion architecture shown in Figure \ref{fig:sensor_fusion_arch_uncertainty} where the dynamical uncertainties of both sensors are included.
|
||||
|
||||
The super sensor estimate is then:
|
||||
@ -253,7 +253,7 @@ As \(H_1\) and \(H_2\) are complementary filters, we finally have:
|
||||
\end{figure}
|
||||
|
||||
\subsection{Super Sensor Dynamical Uncertainty}
|
||||
\label{sec:org7eede13}
|
||||
\label{sec:org81db1d8}
|
||||
|
||||
The uncertainty set of the transfer function from \(\hat{x}\) to \(x\) at frequency \(\omega\) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \(|W_1(j\omega) H_1(j\omega)| + |W_2(j\omega) H_2(j\omega)|\) as shown in Figure \ref{fig:uncertainty_set_super_sensor}.
|
||||
|
||||
@ -269,19 +269,29 @@ And we can see that the dynamical uncertainty of the super sensor is equal to th
|
||||
At frequencies where \(\left|W_i(j\omega)\right| > 1\) the uncertainty exceeds \(100\%\) and sensor fusion is impossible.
|
||||
|
||||
\subsection{\(\mathcal{H_\infty}\) Synthesis of Complementary Filters}
|
||||
\label{sec:org0b02610}
|
||||
\label{sec:org0e2a7a8}
|
||||
In order for the fusion to be ``robust'', meaning no phase drop will be induced in the super sensor dynamics,
|
||||
|
||||
The goal is to design two complementary filters \(H_1(s)\) and \(H_2(s)\) such that the super sensor noise uncertainty is kept reasonably small.
|
||||
|
||||
This problem can be dealt with an \(\mathcal{H}_\infty\) synthesis problem by considering the following generalized plant:
|
||||
To define what by ``small'' we mean, we use a weighting filter \(W_u(s)\) such that the synthesis objective is:
|
||||
\begin{equation}
|
||||
\left| W_1(j\omega)H_1(j\omega) \right| + \left| W_2(j\omega)H_2(j\omega) \right| < \frac{1}{\left| W_u(j\omega) \right|}, \quad \forall \omega
|
||||
\end{equation}
|
||||
|
||||
This is actually almost equivalent (to within a factor \(\sqrt{2}\)) equivalent as to have:
|
||||
\begin{equation}
|
||||
\left\| \begin{matrix} W_u W_1 H_1 \\ W_u W_2 H_2 \end{matrix} \right\|_\infty < 1
|
||||
\end{equation}
|
||||
|
||||
This problem can thus be dealt with an \(\mathcal{H}_\infty\) synthesis problem by considering the following generalized plant (Figure \ref{fig:h_infinity_robust_fusion}):
|
||||
\begin{equation}
|
||||
\begin{pmatrix}
|
||||
z_1 \\ z_2 \\ v
|
||||
\end{pmatrix} = \underbrace{\begin{bmatrix}
|
||||
W_1 & W_1 \\
|
||||
0 & W_2 \\
|
||||
1 & 0
|
||||
W_u W_1 & W_u W_1 \\
|
||||
0 & W_u W_2 \\
|
||||
1 & 0
|
||||
\end{bmatrix}}_{P_{\mathcal{H}_\infty}} \begin{pmatrix}
|
||||
w \\ u
|
||||
\end{pmatrix}
|
||||
@ -290,7 +300,7 @@ This problem can be dealt with an \(\mathcal{H}_\infty\) synthesis problem by co
|
||||
Applying the \(\mathcal{H}_\infty\) synthesis on \(P_{\mathcal{H}_\infty}\) will generate a filter \(H_2(s)\) such that the \(\mathcal{H}_\infty\) norm from \(w\) to \((z_1,z_2)\) is minimized:
|
||||
\begin{equation}
|
||||
\label{eq:Hinf_norm}
|
||||
\left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_\infty = \left\| \begin{matrix} W_1 (1 - H_2) \\ W_2 H_2 \end{matrix} \right\|_\infty
|
||||
\left\| \begin{matrix} z_1/w \\ z_2/w \end{matrix} \right\|_\infty = \left\| \begin{matrix} W_u W_1 (1 - H_2) \\ W_u W_2 H_2 \end{matrix} \right\|_\infty
|
||||
\end{equation}
|
||||
|
||||
The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigma_n\) by defining \(H_1(s)\) to be the complementary filter of \(H_2(s)\):
|
||||
@ -298,7 +308,6 @@ The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigm
|
||||
H_1(s) = 1 - H_2(s)
|
||||
\end{equation}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/h_infinity_robust_fusion.pdf}
|
||||
@ -306,15 +315,15 @@ The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigm
|
||||
\end{figure}
|
||||
|
||||
\subsection{Example}
|
||||
\label{sec:orgfe98b6f}
|
||||
\label{sec:org0122000}
|
||||
|
||||
|
||||
\section{Optimal and Robust Sensor Fusion: Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis}
|
||||
\label{sec:org9114fff}
|
||||
\label{sec:orgdf5a196}
|
||||
\label{sec:optimal_robust_fusion}
|
||||
|
||||
\subsection{Sensor Fusion Architecture}
|
||||
\label{sec:org7816cc1}
|
||||
\label{sec:orge16b510}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -330,10 +339,10 @@ The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigm
|
||||
\end{figure}
|
||||
|
||||
\subsection{Synthesis Objective}
|
||||
\label{sec:org39451fc}
|
||||
\label{sec:orgb4b43b3}
|
||||
|
||||
\subsection{Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis}
|
||||
\label{sec:orga8ff805}
|
||||
\label{sec:orgb9b52ad}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -342,30 +351,30 @@ The \(\mathcal{H}_\infty\) norm of Eq. \eqref{eq:Hinf_norm} is equals to \(\sigm
|
||||
\end{figure}
|
||||
|
||||
\subsection{Example}
|
||||
\label{sec:orga353d87}
|
||||
\label{sec:orgc881f20}
|
||||
|
||||
\section{Experimental Validation}
|
||||
\label{sec:orgb00dce4}
|
||||
\label{sec:org05b79a0}
|
||||
\label{sec:experimental_validation}
|
||||
|
||||
\subsection{Experimental Setup}
|
||||
\label{sec:orgc725d26}
|
||||
\label{sec:orgc3daf35}
|
||||
|
||||
\subsection{Sensor Noise and Dynamical Uncertainty}
|
||||
\label{sec:org0b05001}
|
||||
\label{sec:org26fedf6}
|
||||
|
||||
\subsection{Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis}
|
||||
\label{sec:org9c0559a}
|
||||
\label{sec:org72f2969}
|
||||
|
||||
\subsection{Super Sensor Noise and Dynamical Uncertainty}
|
||||
\label{sec:orgc629276}
|
||||
\label{sec:orgf66f78b}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orgdd3a6b6}
|
||||
\label{sec:orge0f0a43}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section{Acknowledgment}
|
||||
\label{sec:orge958f77}
|
||||
\label{sec:orgb16559e}
|
||||
|
||||
\bibliography{ref}
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user