2020-09-22 10:15:26 +02:00
% Created 2020-09-22 mar. 10:15
2019-08-14 12:08:30 +02:00
% Intended LaTeX compiler: pdflatex
2020-08-17 17:56:40 +02:00
\documentclass [conference] { IEEEtran}
2019-08-14 12:08:30 +02:00
\usepackage [utf8] { inputenc}
\usepackage [T1] { fontenc}
\usepackage { graphicx}
\usepackage { grffile}
\usepackage { longtable}
\usepackage { wrapfig}
\usepackage { rotating}
\usepackage [normalem] { ulem}
\usepackage { amsmath}
\usepackage { textcomp}
\usepackage { amssymb}
\usepackage { capt-of}
\usepackage { hyperref}
\usepackage [most] { tcolorbox}
2020-08-17 17:56:40 +02:00
\usepackage { bm}
\usepackage { booktabs}
\usepackage { tabularx}
\usepackage { array}
2019-08-14 12:08:30 +02:00
\usepackage { siunitx}
2020-08-17 17:56:40 +02:00
\IEEEoverridecommandlockouts
\usepackage { cite}
\usepackage { amsmath,amssymb,amsfonts}
\usepackage { algorithmic}
\usepackage { graphicx}
\usepackage { textcomp}
\usepackage { xcolor}
\usepackage { cases}
\usepackage { tabularx,siunitx,booktabs}
\usepackage { algorithmic}
\usepackage { import, hyperref}
\renewcommand { \citedash } { --}
\def \BibTeX { { \rm B\kern -.05em{ \sc i\kern -.025em b} \kern -.08em T\kern -.1667em\lower .7ex\hbox { E} \kern -.125emX} }
2020-09-22 09:51:26 +02:00
\usepackage { showframe}
2020-08-17 17:56:40 +02:00
\author { \IEEEauthorblockN { Dehaeze Thomas} \IEEEauthorblockA { \textit { European Synchrotron Radiation Facility} \\ Grenoble, France\\ \textit { Precision Mechatronics Laboratory} \\ \textit { University of Liege} , Belgium \\ thomas.dehaeze@esrf.fr } \and \IEEEauthorblockN { Collette Christophe} \IEEEauthorblockA { \textit { BEAMS Department} \\ \textit { Free University of Brussels} , Belgium\\ \textit { Precision Mechatronics Laboratory} \\ \textit { University of Liege} , Belgium \\ ccollett@ulb.ac.be } }
2020-09-22 09:51:26 +02:00
\date { 2020-09-22}
2020-08-17 17:56:40 +02:00
\title { Robust and Optimal Sensor Fusion}
2019-08-14 12:08:30 +02:00
\begin { document}
\maketitle
\begin { abstract}
Abstract text to be done
\end { abstract}
\begin { IEEEkeywords}
2020-08-17 17:56:40 +02:00
Complementary Filters, Sensor Fusion, H-Infinity Synthesis
2019-08-14 12:08:30 +02:00
\end { IEEEkeywords}
\section { Introduction}
2020-09-22 10:15:26 +02:00
\label { sec:org4ebc807}
2020-08-17 17:56:40 +02:00
\label { sec:introduction}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Optimal Super Sensor Noise: \( \mathcal { H } _ 2 \) Synthesis}
2020-09-22 10:15:26 +02:00
\label { sec:org86da8fa}
2020-08-17 17:56:40 +02:00
\label { sec:optimal_ fusion}
2019-08-14 12:08:30 +02:00
2020-09-22 09:51:26 +02:00
\subsection { Sensor Model}
2020-09-22 10:15:26 +02:00
\label { sec:org60743ab}
2020-09-22 09:51:26 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Sensor Fusion Architecture}
2020-09-22 10:15:26 +02:00
\label { sec:org49f3948}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/sensor_ fusion_ noise_ arch.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:sensor_ fusion_ noise_ arch} Sensor Fusion Architecture with sensor noise}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-09-22 09:51:26 +02:00
Let note \( \Phi \) the PSD.
\( \tilde { n } _ 1 \) and \( \tilde { n } _ 2 \) are white noise with unitary power spectral density:
\begin { equation}
\Phi _ { \tilde { n} _ i} (\omega ) = 1
\end { equation}
2020-09-22 10:15:26 +02:00
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 10:15:26 +02:00
\begin { split}
\hat { x} = { } & \left ( H_ 1 \hat { G} _ 1^ { -1} G_ 1 + H_ 2 \hat { G} _ 2^ { -1} G_ 2 \right ) x \\
& + \left ( H_ 1 \hat { G} _ 1^ { -1} N_ 1 \right ) \tilde { n} _ 1 + \left ( H_ 2 \hat { G} _ 2^ { -1} N_ 2 \right ) \tilde { n} _ 2
\end { split}
2020-09-22 09:51:26 +02:00
\end { equation}
Suppose the sensor dynamical model \( \hat { G } _ i \) is perfect:
\begin { equation}
\hat { G} _ i = G_ i
\end { equation}
Complementary Filters
\begin { equation}
H_ 1(s) + H_ 2(s) = 1
\end { equation}
\begin { equation}
\hat { x} = x + \left ( H_ 1 \hat { G} _ 1^ { -1} N_ 1 \right ) \tilde { n} _ 1 + \left ( H_ 2 \hat { G} _ 2^ { -1} N_ 2 \right ) \tilde { n} _ 2
\end { equation}
Perfect dynamics + filter noise
2020-08-17 17:56:40 +02:00
\subsection { Super Sensor Noise}
2020-09-22 10:15:26 +02:00
\label { sec:org06ff958}
2020-09-22 09:51:26 +02:00
Let's note \( n \) the super sensor noise.
Its PSD is determined by:
\begin { equation}
\Phi _ n(\omega ) = \left | H_ 1 \hat { G} _ 1^ { -1} N_ 1 \right |^ 2 + \left | H_ 2 \hat { G} _ 2^ { -1} N_ 2 \right |^ 2
\end { equation}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { \( \mathcal { H } _ 2 \) Synthesis of Complementary Filters}
2020-09-22 10:15:26 +02:00
\label { sec:orgeaad969}
2020-09-22 09:51:26 +02:00
The goal is to design \( H _ 1 ( s ) \) and \( H _ 2 ( s ) \) such that the effect of the noise sources \( \tilde { n } _ 1 \) and \( \tilde { n } _ 2 \) has the smallest possible effect on the noise \( n \) of the estimation \( \hat { x } \) .
And the goal is the minimize the Root Mean Square (RMS) value of \( n \) :
\begin { equation}
\label { eq:rms_ value_ estimation}
\sigma _ { n} = \sqrt { \int _ 0^ \infty \Phi _ { \hat { n} } (\omega ) d\omega } = \left \| \begin { matrix} \hat { G} _ 1^ { -1} N_ 1 H_ 1 \\ \hat { G} _ 2^ { -1} N_ 2 H_ 2 \end { matrix} \right \| _ 2
\end { equation}
Thus, the goal is to design \( H _ 1 ( s ) \) and \( H _ 2 ( s ) \) such that \( H _ 1 ( s ) + H _ 2 ( s ) = 1 \) and such that \( \left \| \begin { matrix } \hat { G } _ 1 ^ { - 1 } N _ 1 H _ 1 \\ \hat { G } _ 2 ^ { - 1 } N _ 2 H _ 2 \end { matrix } \right \| _ 2 \) is minimized.
\begin { equation}
\begin { pmatrix}
z_ 1 \\ z_ 2 \\ v
\end { pmatrix} = \begin { bmatrix}
\hat { G} _ 1^ { -1} N_ 1 & -\hat { G} _ 1^ { -1} N_ 1 \\
0 & \hat { G} _ 2^ { -1} N_ 2 \\
1 & 0
\end { bmatrix} \begin { pmatrix}
w \\ u
\end { pmatrix}
\end { equation}
The \( \mathcal { H } _ 2 \) synthesis of the complementary filters thus minimized the RMS value of the super sensor noise.
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/h_ two_ optimal_ fusion.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:h_ two_ optimal_ fusion} Generalized plant \( P _ { \mathcal { H } _ 2 } \) used for the \( \mathcal { H } _ 2 \) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Example}
2020-09-22 10:15:26 +02:00
\label { sec:org50664f6}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Robustness Problem}
2020-09-22 10:15:26 +02:00
\label { sec:orgaa5f7af}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Robust Sensor Fusion: \( \mathcal { H } _ \infty \) Synthesis}
2020-09-22 10:15:26 +02:00
\label { sec:org88ac630}
2020-08-17 17:56:40 +02:00
\label { sec:robust_ fusion}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Representation of Sensor Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label { sec:orgde90433}
Suppose that the sensor dynamics \( G _ i ( s ) \) can be modelled by a nominal d
\begin { equation}
G_ i(s) = \hat { G} _ i(s) \left ( 1 + w_ i(s) \Delta _ i(s) \right ); \quad |\Delta _ i(j\omega )| < 1 \forall \omega
\end { equation}
2020-09-22 09:51:26 +02:00
\subsection { Sensor Fusion Architecture}
2020-09-22 10:15:26 +02:00
\label { sec:orgda3fb09}
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 10:15:26 +02:00
\begin { split}
\hat { x} = \Big ( { } & H_ 1 \hat { G} _ 1^ { -1} \hat { G} _ 1 (1 + w_ 1 \Delta _ 1) \\
+ & H_ 2 \hat { G} _ 2^ { -1} \hat { G} _ 2 (1 + w_ 2 \Delta _ 2) \Big ) x
\end { split}
2020-09-22 09:51:26 +02:00
\end { equation}
with \( \Delta _ i \) is any transfer function satisfying \( \| \Delta _ i \| _ \infty < 1 \) .
Suppose the model inversion is equal to the nominal model:
\begin { equation}
\hat { G} _ i = G_ i
\end { equation}
\begin { equation}
\hat { x} = \left ( 1 + H_ 1 w_ 1 \Delta _ 1 + H_ 2 w_ 2 \Delta _ 2 \right ) x
\end { equation}
2019-08-14 12:08:30 +02:00
\begin { figure} [htbp]
\centering
2020-08-17 17:56:40 +02:00
\includegraphics [scale=1] { figs/sensor_ fusion_ arch_ uncertainty.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:sensor_ fusion_ arch_ uncertainty} Sensor Fusion Architecture with sensor model uncertainty}
2019-08-14 12:08:30 +02:00
\end { figure}
2020-08-17 17:56:40 +02:00
\subsection { Super Sensor Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label { sec:orgc9ca84c}
2020-09-22 09:51:26 +02:00
The uncertainty set of the transfer function from \( \hat { x } \) to \( x \) at frequency \( \omega \) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \( |w _ 1 ( j \omega ) H _ 1 ( j \omega ) | + |w _ 2 ( j \omega ) H _ 2 ( j \omega ) | \) .
2019-08-14 12:08:30 +02:00
\begin { figure} [htbp]
\centering
2020-08-17 17:56:40 +02:00
\includegraphics [scale=1] { figs/uncertainty_ set_ super_ sensor.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:uncertainty_ set_ super_ sensor} Super Sensor model uncertainty displayed in the complex plane}
2019-08-14 12:08:30 +02:00
\end { figure}
2020-08-17 17:56:40 +02:00
\subsection { \( \mathcal { H _ \infty } \) Synthesis of Complementary Filters}
2020-09-22 10:15:26 +02:00
\label { sec:orgbb494ca}
2020-09-22 09:51:26 +02:00
In order to minimize the super sensor dynamical uncertainty
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/h_ infinity_ robust_ fusion.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:h_ infinity_ robust_ fusion} Generalized plant \( P _ { \mathcal { H } _ \infty } \) used for the \( \mathcal { H } _ \infty \) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Example}
2020-09-22 10:15:26 +02:00
\label { sec:orgad1fefd}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Optimal and Robust Sensor Fusion: Mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) Synthesis}
2020-09-22 10:15:26 +02:00
\label { sec:orgfb16ef1}
2020-08-17 17:56:40 +02:00
\label { sec:optimal_ robust_ fusion}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Sensor Fusion Architecture}
2020-09-22 10:15:26 +02:00
\label { sec:orgd611f0b}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/sensor_ fusion_ arch_ full.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:sensor_ fusion_ arch_ full} Super Sensor Fusion with both sensor noise and sensor model uncertainty}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Synthesis Objective}
2020-09-22 10:15:26 +02:00
\label { sec:org567ad90}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) Synthesis}
2020-09-22 10:15:26 +02:00
\label { sec:org42ee907}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/mixed_ h2_ hinf_ synthesis.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:mixed_ h2_ hinf_ synthesis} Generalized plant \( P _ { \mathcal { H } _ 2 / \matlcal { H } _ \infty } \) used for the mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Example}
2020-09-22 10:15:26 +02:00
\label { sec:org3967eb3}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Experimental Validation}
2020-09-22 10:15:26 +02:00
\label { sec:org06c0515}
2020-08-17 17:56:40 +02:00
\label { sec:experimental_ validation}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Experimental Setup}
2020-09-22 10:15:26 +02:00
\label { sec:orgeaa87ec}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Sensor Noise and Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label { sec:orgad4e45c}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) Synthesis}
2020-09-22 10:15:26 +02:00
\label { sec:org1c2c752}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Super Sensor Noise and Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label { sec:org06f5947}
2019-08-14 12:08:30 +02:00
\section { Conclusion}
2020-09-22 10:15:26 +02:00
\label { sec:orgfb9928f}
2019-08-14 12:08:30 +02:00
\label { sec:conclusion}
\section { Acknowledgment}
2020-09-22 10:15:26 +02:00
\label { sec:org267a8aa}
2019-08-14 12:08:30 +02:00
\bibliography { ref}
2020-08-17 17:56:40 +02:00
\end { document}