dehaeze20_optim_robus_compl.../paper/paper.tex

269 lines
8.4 KiB
TeX
Raw Normal View History

2020-09-22 10:15:26 +02:00
% Created 2020-09-22 mar. 10:15
2019-08-14 12:08:30 +02:00
% Intended LaTeX compiler: pdflatex
2020-08-17 17:56:40 +02:00
\documentclass[conference]{IEEEtran}
2019-08-14 12:08:30 +02:00
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage[most]{tcolorbox}
2020-08-17 17:56:40 +02:00
\usepackage{bm}
\usepackage{booktabs}
\usepackage{tabularx}
\usepackage{array}
2019-08-14 12:08:30 +02:00
\usepackage{siunitx}
2020-08-17 17:56:40 +02:00
\IEEEoverridecommandlockouts
\usepackage{cite}
\usepackage{amsmath,amssymb,amsfonts}
\usepackage{algorithmic}
\usepackage{graphicx}
\usepackage{textcomp}
\usepackage{xcolor}
\usepackage{cases}
\usepackage{tabularx,siunitx,booktabs}
\usepackage{algorithmic}
\usepackage{import, hyperref}
\renewcommand{\citedash}{--}
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
2020-09-22 09:51:26 +02:00
\usepackage{showframe}
2020-08-17 17:56:40 +02:00
\author{\IEEEauthorblockN{Dehaeze Thomas} \IEEEauthorblockA{\textit{European Synchrotron Radiation Facility} \\ Grenoble, France\\ \textit{Precision Mechatronics Laboratory} \\ \textit{University of Liege}, Belgium \\ thomas.dehaeze@esrf.fr }\and \IEEEauthorblockN{Collette Christophe} \IEEEauthorblockA{\textit{BEAMS Department}\\ \textit{Free University of Brussels}, Belgium\\ \textit{Precision Mechatronics Laboratory} \\ \textit{University of Liege}, Belgium \\ ccollett@ulb.ac.be }}
2020-09-22 09:51:26 +02:00
\date{2020-09-22}
2020-08-17 17:56:40 +02:00
\title{Robust and Optimal Sensor Fusion}
2019-08-14 12:08:30 +02:00
\begin{document}
\maketitle
\begin{abstract}
Abstract text to be done
\end{abstract}
\begin{IEEEkeywords}
2020-08-17 17:56:40 +02:00
Complementary Filters, Sensor Fusion, H-Infinity Synthesis
2019-08-14 12:08:30 +02:00
\end{IEEEkeywords}
\section{Introduction}
2020-09-22 10:15:26 +02:00
\label{sec:org4ebc807}
2020-08-17 17:56:40 +02:00
\label{sec:introduction}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section{Optimal Super Sensor Noise: \(\mathcal{H}_2\) Synthesis}
2020-09-22 10:15:26 +02:00
\label{sec:org86da8fa}
2020-08-17 17:56:40 +02:00
\label{sec:optimal_fusion}
2019-08-14 12:08:30 +02:00
2020-09-22 09:51:26 +02:00
\subsection{Sensor Model}
2020-09-22 10:15:26 +02:00
\label{sec:org60743ab}
2020-09-22 09:51:26 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Sensor Fusion Architecture}
2020-09-22 10:15:26 +02:00
\label{sec:org49f3948}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/sensor_fusion_noise_arch.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:sensor_fusion_noise_arch}Sensor Fusion Architecture with sensor noise}
2020-08-17 17:56:40 +02:00
\end{figure}
2019-08-14 12:08:30 +02:00
2020-09-22 09:51:26 +02:00
Let note \(\Phi\) the PSD.
\(\tilde{n}_1\) and \(\tilde{n}_2\) are white noise with unitary power spectral density:
\begin{equation}
\Phi_{\tilde{n}_i}(\omega) = 1
\end{equation}
2020-09-22 10:15:26 +02:00
2020-09-22 09:51:26 +02:00
\begin{equation}
2020-09-22 10:15:26 +02:00
\begin{split}
\hat{x} = {}&\left( H_1 \hat{G}_1^{-1} G_1 + H_2 \hat{G}_2^{-1} G_2 \right) x \\
&+ \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2
\end{split}
2020-09-22 09:51:26 +02:00
\end{equation}
Suppose the sensor dynamical model \(\hat{G}_i\) is perfect:
\begin{equation}
\hat{G}_i = G_i
\end{equation}
Complementary Filters
\begin{equation}
H_1(s) + H_2(s) = 1
\end{equation}
\begin{equation}
\hat{x} = x + \left( H_1 \hat{G}_1^{-1} N_1 \right) \tilde{n}_1 + \left( H_2 \hat{G}_2^{-1} N_2 \right) \tilde{n}_2
\end{equation}
Perfect dynamics + filter noise
2020-08-17 17:56:40 +02:00
\subsection{Super Sensor Noise}
2020-09-22 10:15:26 +02:00
\label{sec:org06ff958}
2020-09-22 09:51:26 +02:00
Let's note \(n\) the super sensor noise.
Its PSD is determined by:
\begin{equation}
\Phi_n(\omega) = \left| H_1 \hat{G}_1^{-1} N_1 \right|^2 + \left| H_2 \hat{G}_2^{-1} N_2 \right|^2
\end{equation}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{\(\mathcal{H}_2\) Synthesis of Complementary Filters}
2020-09-22 10:15:26 +02:00
\label{sec:orgeaad969}
2020-09-22 09:51:26 +02:00
The goal is to design \(H_1(s)\) and \(H_2(s)\) such that the effect of the noise sources \(\tilde{n}_1\) and \(\tilde{n}_2\) has the smallest possible effect on the noise \(n\) of the estimation \(\hat{x}\).
And the goal is the minimize the Root Mean Square (RMS) value of \(n\):
\begin{equation}
\label{eq:rms_value_estimation}
\sigma_{n} = \sqrt{\int_0^\infty \Phi_{\hat{n}}(\omega) d\omega} = \left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2
\end{equation}
Thus, the goal is to design \(H_1(s)\) and \(H_2(s)\) such that \(H_1(s) + H_2(s) = 1\) and such that \(\left\| \begin{matrix} \hat{G}_1^{-1} N_1 H_1 \\ \hat{G}_2^{-1} N_2 H_2 \end{matrix} \right\|_2\) is minimized.
\begin{equation}
\begin{pmatrix}
z_1 \\ z_2 \\ v
\end{pmatrix} = \begin{bmatrix}
\hat{G}_1^{-1} N_1 & -\hat{G}_1^{-1} N_1 \\
0 & \hat{G}_2^{-1} N_2 \\
1 & 0
\end{bmatrix} \begin{pmatrix}
w \\ u
\end{pmatrix}
\end{equation}
The \(\mathcal{H}_2\) synthesis of the complementary filters thus minimized the RMS value of the super sensor noise.
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/h_two_optimal_fusion.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:h_two_optimal_fusion}Generalized plant \(P_{\mathcal{H}_2}\) used for the \(\mathcal{H}_2\) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end{figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Example}
2020-09-22 10:15:26 +02:00
\label{sec:org50664f6}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Robustness Problem}
2020-09-22 10:15:26 +02:00
\label{sec:orgaa5f7af}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section{Robust Sensor Fusion: \(\mathcal{H}_\infty\) Synthesis}
2020-09-22 10:15:26 +02:00
\label{sec:org88ac630}
2020-08-17 17:56:40 +02:00
\label{sec:robust_fusion}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Representation of Sensor Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label{sec:orgde90433}
Suppose that the sensor dynamics \(G_i(s)\) can be modelled by a nominal d
\begin{equation}
G_i(s) = \hat{G}_i(s) \left( 1 + w_i(s) \Delta_i(s) \right); \quad |\Delta_i(j\omega)| < 1 \forall \omega
\end{equation}
2020-09-22 09:51:26 +02:00
\subsection{Sensor Fusion Architecture}
2020-09-22 10:15:26 +02:00
\label{sec:orgda3fb09}
2020-09-22 09:51:26 +02:00
\begin{equation}
2020-09-22 10:15:26 +02:00
\begin{split}
\hat{x} = \Big( {} & H_1 \hat{G}_1^{-1} \hat{G}_1 (1 + w_1 \Delta_1) \\
+ & H_2 \hat{G}_2^{-1} \hat{G}_2 (1 + w_2 \Delta_2) \Big) x
\end{split}
2020-09-22 09:51:26 +02:00
\end{equation}
with \(\Delta_i\) is any transfer function satisfying \(\| \Delta_i \|_\infty < 1\).
Suppose the model inversion is equal to the nominal model:
\begin{equation}
\hat{G}_i = G_i
\end{equation}
\begin{equation}
\hat{x} = \left( 1 + H_1 w_1 \Delta_1 + H_2 w_2 \Delta_2 \right) x
\end{equation}
2019-08-14 12:08:30 +02:00
\begin{figure}[htbp]
\centering
2020-08-17 17:56:40 +02:00
\includegraphics[scale=1]{figs/sensor_fusion_arch_uncertainty.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:sensor_fusion_arch_uncertainty}Sensor Fusion Architecture with sensor model uncertainty}
2019-08-14 12:08:30 +02:00
\end{figure}
2020-08-17 17:56:40 +02:00
\subsection{Super Sensor Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label{sec:orgc9ca84c}
2020-09-22 09:51:26 +02:00
The uncertainty set of the transfer function from \(\hat{x}\) to \(x\) at frequency \(\omega\) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \(|w_1(j\omega) H_1(j\omega)| + |w_2(j\omega) H_2(j\omega)|\).
2019-08-14 12:08:30 +02:00
\begin{figure}[htbp]
\centering
2020-08-17 17:56:40 +02:00
\includegraphics[scale=1]{figs/uncertainty_set_super_sensor.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:uncertainty_set_super_sensor}Super Sensor model uncertainty displayed in the complex plane}
2019-08-14 12:08:30 +02:00
\end{figure}
2020-08-17 17:56:40 +02:00
\subsection{\(\mathcal{H_\infty}\) Synthesis of Complementary Filters}
2020-09-22 10:15:26 +02:00
\label{sec:orgbb494ca}
2020-09-22 09:51:26 +02:00
In order to minimize the super sensor dynamical uncertainty
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/h_infinity_robust_fusion.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:h_infinity_robust_fusion}Generalized plant \(P_{\mathcal{H}_\infty}\) used for the \(\mathcal{H}_\infty\) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end{figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Example}
2020-09-22 10:15:26 +02:00
\label{sec:orgad1fefd}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section{Optimal and Robust Sensor Fusion: Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis}
2020-09-22 10:15:26 +02:00
\label{sec:orgfb16ef1}
2020-08-17 17:56:40 +02:00
\label{sec:optimal_robust_fusion}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Sensor Fusion Architecture}
2020-09-22 10:15:26 +02:00
\label{sec:orgd611f0b}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/sensor_fusion_arch_full.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:sensor_fusion_arch_full}Super Sensor Fusion with both sensor noise and sensor model uncertainty}
2020-08-17 17:56:40 +02:00
\end{figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Synthesis Objective}
2020-09-22 10:15:26 +02:00
\label{sec:org567ad90}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis}
2020-09-22 10:15:26 +02:00
\label{sec:org42ee907}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/mixed_h2_hinf_synthesis.pdf}
2020-09-22 10:15:26 +02:00
\caption{\label{fig:mixed_h2_hinf_synthesis}Generalized plant \(P_{\mathcal{H}_2/\matlcal{H}_\infty}\) used for the mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end{figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Example}
2020-09-22 10:15:26 +02:00
\label{sec:org3967eb3}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section{Experimental Validation}
2020-09-22 10:15:26 +02:00
\label{sec:org06c0515}
2020-08-17 17:56:40 +02:00
\label{sec:experimental_validation}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Experimental Setup}
2020-09-22 10:15:26 +02:00
\label{sec:orgeaa87ec}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Sensor Noise and Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label{sec:orgad4e45c}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Mixed \(\mathcal{H}_2/\mathcal{H}_\infty\) Synthesis}
2020-09-22 10:15:26 +02:00
\label{sec:org1c2c752}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection{Super Sensor Noise and Dynamical Uncertainty}
2020-09-22 10:15:26 +02:00
\label{sec:org06f5947}
2019-08-14 12:08:30 +02:00
\section{Conclusion}
2020-09-22 10:15:26 +02:00
\label{sec:orgfb9928f}
2019-08-14 12:08:30 +02:00
\label{sec:conclusion}
\section{Acknowledgment}
2020-09-22 10:15:26 +02:00
\label{sec:org267a8aa}
2019-08-14 12:08:30 +02:00
\bibliography{ref}
2020-08-17 17:56:40 +02:00
\end{document}