11456 lines
372 KiB
Org Mode
11456 lines
372 KiB
Org Mode
#+TITLE: Nano-Hexapod - Test Bench
|
|
:DRAWER:
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+BIND: org-latex-image-default-option "scale=1"
|
|
#+BIND: org-latex-image-default-width ""
|
|
|
|
#+LaTeX_CLASS: scrreprt
|
|
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full]
|
|
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
|
|
#+LATEX_HEADER_EXTRA: \bibliography{ref}
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :tangle no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
#+begin_export html
|
|
<hr>
|
|
<p>This report is also available as a <a href="./test-bench-nano-hexapod.pdf">pdf</a>.</p>
|
|
<hr>
|
|
#+end_export
|
|
|
|
#+latex: \clearpage
|
|
|
|
* Introduction :ignore:
|
|
This document is dedicated to the experimental study of the nano-hexapod shown in Figure [[fig:picture_bench_granite_nano_hexapod]].
|
|
|
|
#+name: fig:picture_bench_granite_nano_hexapod
|
|
#+caption: Nano-Hexapod
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/IMG_20210608_152917.jpg]]
|
|
|
|
#+begin_note
|
|
Here are the documentation of the equipment used for this test bench (lots of them are shwon in Figure [[fig:picture_bench_granite_overview]]):
|
|
- Voltage Amplifier: PiezoDrive [[file:doc/PD200-V7-R1.pdf][PD200]]
|
|
- Amplified Piezoelectric Actuator: Cedrat [[file:doc/APA300ML.pdf][APA300ML]]
|
|
- DAC/ADC: Speedgoat [[file:doc/IO131-OEM-Datasheet.pdf][IO313]]
|
|
- Encoder: Renishaw [[file:doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf][Vionic]] and used [[file:doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf][Ruler]]
|
|
- Interferometers: Attocube
|
|
#+end_note
|
|
|
|
#+name: fig:picture_bench_granite_overview
|
|
#+caption: Nano-Hexapod and the control electronics
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/IMG_20210608_154722.jpg]]
|
|
|
|
In Figure [[fig:nano_hexapod_signals]] is shown a block diagram of the experimental setup.
|
|
When possible, the notations are consistent with this diagram and summarized in Table [[tab:list_signals]].
|
|
|
|
#+begin_src latex :file nano_hexapod_signals.pdf
|
|
\definecolor{instrumentation}{rgb}{0, 0.447, 0.741}
|
|
\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098}
|
|
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={4.0cm}{3.0cm}, fill=mechanics!20!white] (nano_hexapod) {Mechanics};
|
|
\coordinate[] (inputF) at (nano_hexapod.west);
|
|
\coordinate[] (outputL) at ($(nano_hexapod.south east)!0.8!(nano_hexapod.north east)$);
|
|
\coordinate[] (outputF) at ($(nano_hexapod.south east)!0.2!(nano_hexapod.north east)$);
|
|
|
|
\node[block, left= 0.8 of inputF, fill=instrumentation!20!white, align=center] (F_stack) {\tiny Actuator \\ \tiny stacks};
|
|
\node[block, left= 0.8 of F_stack, fill=instrumentation!20!white] (PD200) {PD200};
|
|
\node[DAC, left= 0.8 of PD200, fill=instrumentation!20!white] (F_DAC) {DAC};
|
|
\node[block, right=0.8 of outputF, fill=instrumentation!20!white, align=center] (Fm_stack){\tiny Sensor \\ \tiny stack};
|
|
\node[ADC, right=0.8 of Fm_stack,fill=instrumentation!20!white] (Fm_ADC) {ADC};
|
|
\node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder};
|
|
|
|
% Connections and labels
|
|
\draw[->] ($(F_DAC.west)+(-0.8,0)$) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west);
|
|
\draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west);
|
|
\draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west);
|
|
\draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$};
|
|
|
|
\draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$};
|
|
\draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west);
|
|
\draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$};
|
|
|
|
\draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$};
|
|
\draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$};
|
|
|
|
% Nano-Hexapod
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(F_stack.west|-nano_hexapod.south) (Fm_stack.east|-nano_hexapod.north)}, fill=black!20!white, draw, inner sep=2pt] (system) {};
|
|
\node[above] at (system.north) {Nano-Hexapod};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:nano_hexapod_signals
|
|
#+caption: Block diagram of the system with named signals
|
|
#+attr_latex: :scale 1
|
|
[[file:figs/nano_hexapod_signals.png]]
|
|
|
|
#+name: tab:list_signals
|
|
#+caption: List of signals
|
|
#+attr_latex: :environment tabularx :width \linewidth :align Xllll
|
|
#+attr_latex: :center t :booktabs t
|
|
| | *Unit* | *Matlab* | *Vector* | *Elements* |
|
|
|------------------------------------+-----------+-----------+-----------------------+----------------------|
|
|
| Control Input (wanted DAC voltage) | =[V]= | =u= | $\bm{u}$ | $u_i$ |
|
|
| DAC Output Voltage | =[V]= | =u= | $\tilde{\bm{u}}$ | $\tilde{u}_i$ |
|
|
| PD200 Output Voltage | =[V]= | =ua= | $\bm{u}_a$ | $u_{a,i}$ |
|
|
| Actuator applied force | =[N]= | =tau= | $\bm{\tau}$ | $\tau_i$ |
|
|
|------------------------------------+-----------+-----------+-----------------------+----------------------|
|
|
| Strut motion | =[m]= | =dL= | $d\bm{\mathcal{L}}$ | $d\mathcal{L}_i$ |
|
|
| Encoder measured displacement | =[m]= | =dLm= | $d\bm{\mathcal{L}}_m$ | $d\mathcal{L}_{m,i}$ |
|
|
|------------------------------------+-----------+-----------+-----------------------+----------------------|
|
|
| Force Sensor strain | =[m]= | =epsilon= | $\bm{\epsilon}$ | $\epsilon_i$ |
|
|
| Force Sensor Generated Voltage | =[V]= | =taum= | $\tilde{\bm{\tau}}_m$ | $\tilde{\tau}_{m,i}$ |
|
|
| Measured Generated Voltage | =[V]= | =taum= | $\bm{\tau}_m$ | $\tau_{m,i}$ |
|
|
|------------------------------------+-----------+-----------+-----------------------+----------------------|
|
|
| Motion of the top platform | =[m,rad]= | =dX= | $d\bm{\mathcal{X}}$ | $d\mathcal{X}_i$ |
|
|
| Metrology measured displacement | =[m,rad]= | =dXm= | $d\bm{\mathcal{X}}_m$ | $d\mathcal{X}_{m,i}$ |
|
|
|
|
This document is divided in the following sections:
|
|
- Section [[sec:encoders_struts]]: the dynamics of the nano-hexapod when the encoders are fixed to the struts is studied.
|
|
- Section [[sec:encoders_plates]]: the same is done when the encoders are fixed to the plates.
|
|
- Section [[sec:decentralized_hac_iff]]: a decentralized HAC-LAC strategy is studied and implemented.
|
|
|
|
* Encoders fixed to the Struts - Dynamics
|
|
<<sec:encoders_struts>>
|
|
|
|
** Introduction :ignore:
|
|
In this section, the encoders are fixed to the struts.
|
|
|
|
It is divided in the following sections:
|
|
- Section [[sec:enc_struts_plant_id]]: the transfer function matrix from the actuators to the force sensors and to the encoders is experimentally identified.
|
|
- Section [[sec:enc_struts_comp_simscape]]: the obtained FRF matrix is compared with the dynamics of the simscape model
|
|
- Section [[sec:enc_struts_iff]]: decentralized Integral Force Feedback (IFF) is applied and its performances are evaluated.
|
|
- Section [[sec:enc_struts_modal_analysis]]: a modal analysis of the nano-hexapod is performed
|
|
|
|
** Identification of the dynamics
|
|
<<sec:enc_struts_plant_id>>
|
|
*** Introduction :ignore:
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
*** Load Measurement Data
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_data_lf = {};
|
|
|
|
for i = 1:6
|
|
meas_data_lf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')};
|
|
meas_data_hf(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de')};
|
|
end
|
|
#+end_src
|
|
|
|
*** Spectral Analysis - Setup
|
|
#+begin_src matlab
|
|
%% Setup useful variables
|
|
% Sampling Time [s]
|
|
Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1);
|
|
|
|
% Sampling Frequency [Hz]
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1*Fs));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts);
|
|
|
|
i_lf = f < 250; % Points for low frequency excitation
|
|
i_hf = f > 250; % Points for high frequency excitation
|
|
#+end_src
|
|
|
|
*** Transfer function from Actuator to Encoder
|
|
First, let's compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure [[fig:enc_struts_dvf_coh]]).
|
|
|
|
#+begin_src matlab
|
|
%% Coherence
|
|
coh_dvf = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
coh_dvf_lf = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
|
|
coh_dvf_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
|
|
coh_dvf(:,:,i) = [coh_dvf_lf(i_lf, :); coh_dvf_hf(i_hf, :)];
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Coherence for the transfer function from u to dLm
|
|
figure;
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, coh_dvf(:, i, j), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, coh_dvf(:, i, i), ...
|
|
'DisplayName', sprintf('$G_{dvf}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, coh_dvf(:, 1, 2), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{dvf}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
|
xlim([20, 2e3]); ylim([0, 1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_dvf_coh.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_dvf_coh
|
|
#+caption: Obtained coherence for the DVF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_dvf_coh.png]]
|
|
|
|
Then the 6x6 transfer function matrix is estimated (Figure [[fig:enc_struts_dvf_frf]]).
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dvf = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
G_dvf_lf = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
|
|
G_dvf_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.de, win, [], [], 1/Ts);
|
|
G_dvf(:,:,i) = [G_dvf_lf(i_lf, :); G_dvf_hf(i_hf, :)];
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_dvf(:,i, i)), ...
|
|
'DisplayName', sprintf('$G_{dvf}(%i,%i)$', i, i));
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_dvf(:,i, i)), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(f, abs(G_dvf(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{dvf}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_dvf_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_dvf_frf
|
|
#+caption: Measured FRF for the DVF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_dvf_frf.png]]
|
|
|
|
*** Transfer function from Actuator to Force Sensor
|
|
First, let's compute the coherence from the excitation voltage and the displacement as measured by the encoders (Figure [[fig:enc_struts_iff_coh]]).
|
|
|
|
#+begin_src matlab
|
|
%% Coherence for the IFF plant
|
|
coh_iff = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
coh_iff_lf = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
|
|
coh_iff_hf = mscohere(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
|
|
coh_iff(:,:,i) = [coh_iff_lf(i_lf, :); coh_iff_hf(i_hf, :)];
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Coherence of the IFF Plant (transfer function from u to taum)
|
|
figure;
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, coh_iff(:, i, j), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, coh_iff(:,i, i), ...
|
|
'DisplayName', sprintf('$G_{iff}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, coh_iff(:, 1, 2), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{iff}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
|
xlim([20, 2e3]); ylim([0, 1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_coh.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_coh
|
|
#+caption: Obtained coherence for the IFF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_coh.png]]
|
|
|
|
Then the 6x6 transfer function matrix is estimated (Figure [[fig:enc_struts_iff_frf]]).
|
|
#+begin_src matlab
|
|
%% IFF Plant
|
|
G_iff = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
G_iff_lf = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
|
|
G_iff_hf = tfestimate(meas_data_hf{i}.Va, meas_data_hf{i}.Vs, win, [], [], 1/Ts);
|
|
G_iff(:,:,i) = [G_iff_lf(i_lf, :); G_iff_hf(i_hf, :)];
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the IFF Plant (transfer function from u to taum)
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_iff(:,i , i)), ...
|
|
'DisplayName', sprintf('$G_{iff}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, abs(G_iff(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{iff}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
ylim([1e-3, 1e2]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_frf
|
|
#+caption: Measured FRF for the IFF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_frf.png]]
|
|
|
|
*** Save Identified Plants
|
|
#+begin_src matlab :tangle no
|
|
save('matlab/mat/identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :eval no
|
|
save('mat/identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
** Jacobian :noexport:
|
|
*** Introduction :ignore:
|
|
The Jacobian is used to transform the excitation force in the cartesian frame as well as the displacements.
|
|
|
|
Consider the plant shown in Figure [[fig:schematic_jacobian_in_out]] with:
|
|
- $\tau$ the 6 input voltages (going to the PD200 amplifier and then to the APA)
|
|
- $d\mathcal{L}$ the relative motion sensor outputs (encoders)
|
|
- $\bm{\tau}_m$ the generated voltage of the force sensor stacks
|
|
- $J_a$ and $J_s$ the Jacobians for the actuators and sensors
|
|
|
|
#+begin_src latex :file schematic_jacobian_in_out.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={2.0cm}{2.0cm}] (P) {Plant};
|
|
\coordinate[] (inputF) at (P.west);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$);
|
|
|
|
\node[block, left= of inputF] (Ja) {$\bm{J}^{-T}_a$};
|
|
\node[block, right= of outputL] (Js) {$\bm{J}^{-1}_s$};
|
|
\node[block, right= of outputF] (Jf) {$\bm{J}^{-1}_s$};
|
|
|
|
% Connections and labels
|
|
\draw[->] ($(Ja.west)+(-1,0)$) -- (Ja.west) node[above left]{$\bm{\mathcal{F}}$};
|
|
\draw[->] (Ja.east) -- (inputF) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (outputL) -- (Js.west) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\draw[->] (Js.east) -- ++(1, 0) node[above left]{$d\bm{\mathcal{X}}$};
|
|
\draw[->] (outputF) -- (Jf.west) node[above left]{$\bm{\tau}_m$};
|
|
\draw[->] (Jf.east) -- ++(1, 0) node[above left]{$\bm{\mathcal{F}}_m$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:schematic_jacobian_in_out
|
|
#+caption: Plant in the cartesian Frame
|
|
#+RESULTS:
|
|
[[file:figs/schematic_jacobian_in_out.png]]
|
|
|
|
First, we load the Jacobian matrix (same for the actuators and sensors).
|
|
#+begin_src matlab
|
|
load('jacobian.mat', 'J');
|
|
#+end_src
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
load('jacobian.mat', 'J');
|
|
#+end_src
|
|
|
|
*** DVF Plant
|
|
The transfer function from $\bm{\mathcal{F}}$ to $d\bm{\mathcal{X}}$ is computed and shown in Figure [[fig:enc_struts_dvf_cart_frf]].
|
|
|
|
#+begin_src matlab
|
|
G_dvf_J = permute(pagemtimes(inv(J), pagemtimes(permute(G_dvf, [2 3 1]), inv(J'))), [3 1 2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
labels = {'$D_x/F_{x}$', '$D_y/F_{y}$', '$D_z/F_{z}$', '$R_{x}/M_{x}$', '$R_{y}/M_{y}$', '$R_{R}/M_{z}$'};
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf_J(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_dvf_J(:,i , i)), ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
plot(f, abs(G_dvf_J(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$D_i/F_j$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-7, 1e-1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_dvf_J(:,i , i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_dvf_cart_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_dvf_cart_frf
|
|
#+caption: Measured FRF for the DVF plant in the cartesian frame
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_dvf_cart_frf.png]]
|
|
|
|
*** IFF Plant
|
|
The transfer function from $\bm{\mathcal{F}}$ to $\bm{\mathcal{F}}_m$ is computed and shown in Figure [[fig:enc_struts_iff_cart_frf]].
|
|
|
|
#+begin_src matlab
|
|
G_iff_J = permute(pagemtimes(inv(J), pagemtimes(permute(G_iff, [2 3 1]), inv(J'))), [3 1 2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
labels = {'$F_{m,x}/F_{x}$', '$F_{m,y}/F_{y}$', '$F_{m,z}/F_{z}$', '$M_{m,x}/M_{x}$', '$M_{m,y}/M_{y}$', '$M_{m,z}/M_{z}$'};
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff_J(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_iff_J(:,i, i)), ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
plot(f, abs(G_iff_J(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$D_i/F_j$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e4]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_iff_J(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_cart_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_cart_frf
|
|
#+caption: Measured FRF for the IFF plant in the cartesian frame
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_cart_frf.png]]
|
|
|
|
** Comparison with the Simscape Model
|
|
<<sec:enc_struts_comp_simscape>>
|
|
*** Introduction :ignore:
|
|
In this section, the measured dynamics is compared with the dynamics estimated from the Simscape model.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
open(mdl)
|
|
#+end_src
|
|
|
|
*** Load measured FRF
|
|
|
|
#+begin_src matlab
|
|
%% Load data
|
|
load('identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
*** Dynamics from Actuator to Force Sensors
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', '2dof');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_iff(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_comp_simscape.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_comp_simscape
|
|
#+caption: Diagonal elements of the IFF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_comp_simscape.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data (off-diagonal elements)
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
% Off diagonal terms
|
|
plot(f, abs(G_iff(:, 1, 2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff(:, i, j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1, 2), freqs, 'Hz'))), ...
|
|
'DisplayName', '$\tau_{m,i}/u_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(i, j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]');
|
|
xlim([freqs(1), freqs(end)]); ylim([1e-3, 1e2]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_comp_offdiag_simscape
|
|
#+caption: Off diagonal elements of the IFF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_comp_offdiag_simscape.png]]
|
|
|
|
*** Dynamics from Actuator to Encoder
|
|
#+begin_src matlab
|
|
%% Initialization of the Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
|
|
Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_dvf_comp_simscape.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_dvf_comp_simscape
|
|
#+caption: Diagonal elements of the DVF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_dvf_comp_simscape.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Off-diagonal elements of the DVF plant
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
% Off diagonal terms
|
|
plot(f, abs(G_dvf(:, 1, 2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf(:, i, j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1, 2), freqs, 'Hz'))), ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i, j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
|
xlim([freqs(1), freqs(end)]); ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_dvf_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_dvf_comp_offdiag_simscape
|
|
#+caption: Off diagonal elements of the DVF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_dvf_comp_offdiag_simscape.png]]
|
|
|
|
*** Effect of a change in bending damping of the joints
|
|
#+begin_src matlab
|
|
%% Tested bending dampings [Nm/(rad/s)]
|
|
cRs = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
#+end_src
|
|
|
|
Then the identification is performed for all the values of the bending damping.
|
|
#+begin_src matlab
|
|
%% Idenfity the transfer function from actuator to encoder for all bending dampins
|
|
Gs = {zeros(length(cRs), 1)};
|
|
|
|
for i = 1:length(cRs)
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible', ...
|
|
'flex_bot_cRx', cRs(i), ...
|
|
'flex_bot_cRy', cRs(i), ...
|
|
'flex_top_cRx', cRs(i), ...
|
|
'flex_top_cRy', cRs(i));
|
|
|
|
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
|
|
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};
|
|
|
|
Gs(i) = {G};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained direct transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:length(cRs)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$c_R = %.3f\\,[\\frac{Nm}{rad/s}]$', cRs(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:length(cRs)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained coupling transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(cRs)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL2', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$c_R = %.3f\\,[\\frac{Nm}{rad/s}]$', cRs(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
- Could be nice
|
|
- Actual damping is very small
|
|
|
|
*** Effect of a change in damping factor of the APA
|
|
#+begin_src matlab
|
|
%% Tested bending dampings [Nm/(rad/s)]
|
|
xis = [1e-3, 5e-3, 1e-2, 5e-2, 1e-1];
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Idenfity the transfer function from actuator to encoder for all bending dampins
|
|
Gs = {zeros(length(xis), 1)};
|
|
|
|
for i = 1:length(xis)
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible', ...
|
|
'actuator_xi', xis(i));
|
|
|
|
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
|
|
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};
|
|
|
|
Gs(i) = {G};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained direct transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:length(xis)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$\\xi = %.3f$', xis(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:length(xis)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_Va_dL_effect_xi_damp.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_Va_dL_effect_xi_damp
|
|
#+caption: Effect of the APA damping factor $\xi$ on the dynamics from $u$ to $d\mathcal{L}$
|
|
#+RESULTS:
|
|
[[file:figs/bode_Va_dL_effect_xi_damp.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained coupling transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(xis)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL2', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$c_R = %.3f\\,[\\frac{Nm}{rad/s}]$', xis(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_important
|
|
Damping factor $\xi$ has a large impact on the damping of the "spurious resonances" at 200Hz and 300Hz.
|
|
#+end_important
|
|
|
|
#+begin_question
|
|
Why is the damping factor does not change the damping of the first peak?
|
|
#+end_question
|
|
|
|
*** Effect of a change in stiffness damping coef of the APA
|
|
#+begin_src matlab
|
|
m_coef = 1e1;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Tested bending dampings [Nm/(rad/s)]
|
|
k_coefs = [1e-6, 5e-6, 1e-5, 5e-5, 1e-4];
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Idenfity the transfer function from actuator to encoder for all bending dampins
|
|
Gs = {zeros(length(k_coefs), 1)};
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible');
|
|
|
|
for i = 1:length(k_coefs)
|
|
k_coef = k_coefs(i);
|
|
|
|
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
|
|
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};
|
|
|
|
Gs(i) = {G};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained direct transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:length(k_coefs)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('kcoef = %.0e', k_coefs(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:length(k_coefs)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_Va_dL_effect_k_coef.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_Va_dL_effect_k_coef
|
|
#+caption: Effect of a change of the damping "stiffness coeficient" on the transfer function from $u$ to $d\mathcal{L}$
|
|
#+RESULTS:
|
|
[[file:figs/bode_Va_dL_effect_k_coef.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained coupling transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(xis)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL2', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$c_R = %.3f\\,[\\frac{Nm}{rad/s}]$', xis(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
*** Effect of a change in mass damping coef of the APA
|
|
#+begin_src matlab
|
|
k_coef = 1e-6;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Tested bending dampings [Nm/(rad/s)]
|
|
m_coefs = [1e1, 5e1, 1e2, 5e2, 1e3];
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Idenfity the transfer function from actuator to encoder for all bending dampins
|
|
Gs = {zeros(length(m_coefs), 1)};
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible');
|
|
|
|
for i = 1:length(m_coefs)
|
|
m_coef = m_coefs(i);
|
|
|
|
G = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
G.InputName = {'Va1', 'Va2', 'Va3', 'Va4', 'Va5', 'Va6'};
|
|
G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'};
|
|
|
|
Gs(i) = {G};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained direct transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:length(m_coefs)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('mcoef = %.0e', m_coefs(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:length(m_coefs)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dL1', 'Va1'), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_Va_dL_effect_m_coef.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_Va_dL_effect_m_coef
|
|
#+caption: Effect of a change of the damping "mass coeficient" on the transfer function from $u$ to $d\mathcal{L}$
|
|
#+RESULTS:
|
|
[[file:figs/bode_Va_dL_effect_m_coef.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained coupling transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(xis)
|
|
plot(freqs, abs(squeeze(freqresp(Gs{i}('dL2', 'Va1'), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$c_R = %.3f\\,[\\frac{Nm}{rad/s}]$', xis(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
*** TODO Using Flexible model
|
|
#+begin_src matlab
|
|
d_aligns = [[-0.05, -0.3, 0];
|
|
[ 0, 0.5, 0];
|
|
[-0.1, -0.3, 0];
|
|
[ 0, 0.3, 0];
|
|
[-0.05, 0.05, 0];
|
|
[0, 0, 0]]*1e-3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
d_aligns = zeros(6,3);
|
|
% d_aligns(1,:) = [-0.05, -0.3, 0]*1e-3;
|
|
d_aligns(2,:) = [ 0, 0.3, 0]*1e-3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible', ...
|
|
'actuator_d_align', d_aligns);
|
|
#+end_src
|
|
|
|
#+begin_question
|
|
Why do we have smaller resonances when using flexible APA?
|
|
On the test bench we have the same resonance as the 2DoF model.
|
|
Could it be due to the compliance in other dof of the flexible model?
|
|
#+end_question
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
|
|
Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the plants (encoder output) when tuning the misalignment
|
|
freqs = 2*logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
ax1 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 1, 1)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]');
|
|
|
|
ax2 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 2, 2)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(2,2), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
|
|
ax3 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 3, 3)), 'DisplayName', 'Meas.');
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(3,3), freqs, 'Hz'))), ...
|
|
'DisplayName', 'Model');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
legend('location', 'southwest', 'FontSize', 8);
|
|
|
|
ax4 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 4, 4)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(4,4), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
|
|
|
ax5 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 5, 5)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(5,5), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
|
|
ax6 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 6, 6)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(6,6), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy');
|
|
% xlim([20, 2e3]); ylim([1e-8, 1e-3]);
|
|
xlim([50, 5e2]); ylim([1e-6, 1e-3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = 6*logspace(1, 2, 2000);
|
|
|
|
i_strut = 1;
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,i_strut, 2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(2,2), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(f, 180/pi*angle(G_dvf(:,2, 2)), 'color', [0,0,0,0.2]);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(2,2), freqs, 'Hz'))), '-');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = 6*logspace(1, 2, 2000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_iff(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
*** Flexible model + encoders fixed to the plates
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
d_aligns = [[-0.05, -0.3, 0];
|
|
[ 0, 0.5, 0];
|
|
[-0.1, -0.3, 0];
|
|
[ 0, 0.3, 0];
|
|
[-0.05, 0.05, 0];
|
|
[0, 0, 0]]*1e-3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible', ...
|
|
'actuator_d_align', d_aligns);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
Gdvf_struts = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', 'flexible', ...
|
|
'actuator_d_align', d_aligns);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
Gdvf_plates = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the obtained direct transfer functions for all the bending stiffnesses
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf_struts(1, 1), freqs, 'Hz'))), ...
|
|
'DisplayName', 'Struts');
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf_plates(1, 1), freqs, 'Hz'))), ...
|
|
'DisplayName', 'Plates');
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf_struts(i, i), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf_plates(i, i), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf_struts(i, i), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf_plates(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/dvf_plant_comp_struts_plates.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:dvf_plant_comp_struts_plates
|
|
#+caption: Comparison of the dynamics from $V_a$ to $d_L$ when the encoders are fixed to the struts (blue) and to the plates (red). APA are modeled as a flexible element.
|
|
#+RESULTS:
|
|
[[file:figs/dvf_plant_comp_struts_plates.png]]
|
|
|
|
** Integral Force Feedback
|
|
<<sec:enc_struts_iff>>
|
|
*** Introduction :ignore:
|
|
|
|
In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod.
|
|
The main goal of this to add damping to the nano-hexapod's modes.
|
|
|
|
The control architecture is shown in Figure [[fig:control_architecture_iff_struts]] where $\bm{K}_\text{IFF}$ is a diagonal $6 \times 6$ controller.
|
|
|
|
The system as then a new input $\bm{u}^\prime$, and the transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ should be easier to control than the initial transfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$.
|
|
|
|
#+begin_src latex :file control_architecture_iff_struts.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{2.0cm}] (P) {Plant};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.7!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.3!(P.north east)$);
|
|
|
|
\node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[addb, left= of inputF] (addF) {};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
|
|
\draw[->] (outputL) -- ++(1, 0) node[below left]{$d\bm{\mathcal{L}}_m$};
|
|
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.north);
|
|
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{u}$};
|
|
\draw[<-] (addF.west) -- ++(-1, 0) node[above right]{$\bm{u}^\prime$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_architecture_iff_struts
|
|
#+caption: Integral Force Feedback Strategy
|
|
#+RESULTS:
|
|
[[file:figs/control_architecture_iff_struts.png]]
|
|
|
|
This section is structured as follow:
|
|
- Section [[sec:iff_struts_plant_id]]: Using the Simscape model (APA taken as 2DoF model), the transfer function from $\bm{u}$ to $\bm{\tau}_m$ is identified. Based on the obtained dynamics, the control law is developed and the optimal gain is estimated using the Root Locus.
|
|
- Section [[sec:iff_struts_effect_plant]]: Still using the Simscape model, the effect of the IFF gain on the the transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is studied.
|
|
- Section [[sec:iff_struts_effect_plant_exp]]: The same is performed experimentally: several IFF gains are used and the damped plant is identified each time.
|
|
- Section [[sec:iff_struts_opt_gain]]: The damped model and the identified damped system are compared for the optimal IFF gain. It is found that IFF indeed adds a lot of damping into the system. However it is not efficient in damping the spurious struts modes.
|
|
- Section [[sec:iff_struts_comp_flex_model]]: Finally, a "flexible" model of the APA is used in the Simscape model and the optimally damped model is compared with the measurements.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('identified_plants_enc_struts.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
open(mdl)
|
|
#+end_src
|
|
|
|
*** IFF Control Law and Optimal Gain
|
|
<<sec:iff_struts_plant_id>>
|
|
|
|
Let's use a model of the Nano-Hexapod with the encoders fixed to the struts and the APA taken as 2DoF model.
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', '2dof');
|
|
#+end_src
|
|
|
|
The transfer function from $\bm{u}$ to $\bm{\tau}_m$ is identified.
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dum'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
The IFF controller is defined as shown below:
|
|
#+begin_src matlab
|
|
%% IFF Controller
|
|
Kiff_g1 = -(1/(s + 2*pi*40))*... % LPF: provides integral action above 40Hz
|
|
(s/(s + 2*pi*30))*... % HPF: limit low frequency gain
|
|
(1/(1 + s/2/pi/500))*... % LPF: more robust to high frequency resonances
|
|
eye(6); % Diagonal 6x6 controller
|
|
#+end_src
|
|
|
|
Then, the poles of the system are shown in the complex plane as a function of the controller gain (i.e. Root Locus plot) in Figure [[fig:enc_struts_iff_root_locus]].
|
|
A gain of $400$ is chosen as the "optimal" gain as it visually seems to be the gain that adds the maximum damping to all the suspension modes simultaneously.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Root Locus for IFF
|
|
gains = logspace(1, 4, 100);
|
|
|
|
figure;
|
|
|
|
hold on;
|
|
% Pure Integrator
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(pole(Giff)), imag(pole(Giff)), 'x', 'DisplayName', '$g = 0$');
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(tzero(Giff)), imag(tzero(Giff)), 'o', 'HandleVisibility', 'off');
|
|
|
|
for g = gains
|
|
clpoles = pole(feedback(Giff, g*Kiff_g1*eye(6)));
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(real(clpoles), imag(clpoles), '.', 'HandleVisibility', 'off');
|
|
end
|
|
|
|
g = 4e2;
|
|
clpoles = pole(feedback(Giff, g*Kiff_g1*eye(6)));
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(real(clpoles), imag(clpoles), 'x', 'DisplayName', sprintf('$g=%.0f$', g));
|
|
hold off;
|
|
axis square;
|
|
xlim([-1250, 0]); ylim([0, 1250]);
|
|
xlabel('Real Part'); ylabel('Imaginary Part');
|
|
legend('location', 'northwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_root_locus
|
|
#+caption: Root Locus for the IFF control strategy
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_root_locus.png]]
|
|
|
|
Then the "optimal" IFF controller is:
|
|
#+begin_src matlab
|
|
%% IFF controller with Optimal gain
|
|
Kiff = 400*Kiff_g1;
|
|
#+end_src
|
|
|
|
And it is saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/Kiff.mat', 'Kiff')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/Kiff.mat', 'Kiff')
|
|
#+end_src
|
|
|
|
The bode plots of the "diagonal" elements of the loop gain are shown in Figure [[fig:enc_struts_iff_opt_loop_gain]].
|
|
It is shown that the phase and gain margins are quite high and the loop gain is large arround the resonances.
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the "decentralized loop gain"
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(squeeze(freqresp(Kiff(1,1), f, 'Hz')).*G_iff(:, 1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_i \cdot K_{iff}$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(squeeze(freqresp(Kiff(1,1), f, 'Hz')).*G_iff(:, i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*Giff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$\tau_{m,i}/u_i \cdot K_{iff}$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*Giff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(squeeze(freqresp(Kiff(1,1), f, 'Hz')).*G_iff(:, i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kiff(1,1)*Giff(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_opt_loop_gain.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_opt_loop_gain
|
|
#+caption: Bode plot of the "decentralized loop gain" $G_\text{iff}(i,i) \times K_\text{iff}(i,i)$
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_opt_loop_gain.png]]
|
|
|
|
*** Effect of IFF on the plant - Simulations
|
|
<<sec:iff_struts_effect_plant>>
|
|
|
|
Still using the Simscape model with encoders fixed to the struts and 2DoF APA, the IFF strategy is tested.
|
|
#+begin_src matlab
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', '2dof', ...
|
|
'controller_type', 'iff');
|
|
#+end_src
|
|
|
|
The following IFF gains are tried:
|
|
#+begin_src matlab
|
|
%% Tested IFF gains
|
|
iff_gains = [4, 10, 20, 40, 100, 200, 400];
|
|
#+end_src
|
|
|
|
And the transfer functions from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ are identified for all the IFF gains.
|
|
#+begin_src matlab
|
|
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
|
|
Gd_iff = {zeros(1, length(iff_gains))};
|
|
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)
|
|
|
|
for i = 1:length(iff_gains)
|
|
Kiff = iff_gains(i)*Kiff_g1*eye(6); % IFF Controller
|
|
Gd_iff(i) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};
|
|
|
|
isstable(Gd_iff{i})
|
|
end
|
|
#+end_src
|
|
|
|
The obtained dynamics are shown in Figure [[fig:enc_struts_iff_gains_effect_dvf_plant]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:length(iff_gains)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$g = %.0f$', iff_gains(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:length(iff_gains)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_gains_effect_dvf_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_gains_effect_dvf_plant
|
|
#+caption: Effect of the IFF gain $g$ on the transfer function from $\bm{\tau}$ to $d\bm{\mathcal{L}}_m$
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_gains_effect_dvf_plant.png]]
|
|
|
|
*** Effect of IFF on the plant - Experimental Results
|
|
<<sec:iff_struts_effect_plant_exp>>
|
|
|
|
**** Introduction :ignore:
|
|
The IFF strategy is applied experimentally and the transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is identified for all the defined values of the gain.
|
|
|
|
**** Load Data
|
|
First load the identification data.
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_iff_gains = {};
|
|
|
|
for i = 1:length(iff_gains)
|
|
meas_iff_gains(i) = {load(sprintf('mat/iff_strut_1_noise_g_%i.mat', iff_gains(i)), 't', 'Vexc', 'Vs', 'de', 'u')};
|
|
end
|
|
#+end_src
|
|
|
|
**** Spectral Analysis - Setup
|
|
And define the useful variables that will be used for the identification using the =tfestimate= function.
|
|
#+begin_src matlab
|
|
%% Setup useful variables
|
|
% Sampling Time [s]
|
|
Ts = (meas_iff_gains{1}.t(end) - (meas_iff_gains{1}.t(1)))/(length(meas_iff_gains{1}.t)-1);
|
|
|
|
% Sampling Frequency [Hz]
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1*Fs));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_iff_gains{1}.Vexc, meas_iff_gains{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
**** DVF Plant
|
|
The transfer functions are estimated for all the values of the gain.
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_iff_gains = {};
|
|
|
|
for i = 1:length(iff_gains)
|
|
G_iff_gains{i} = tfestimate(meas_iff_gains{i}.Vexc, meas_iff_gains{i}.de(:,1), win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The obtained dynamics as shown in the bode plot in Figure [[fig:comp_iff_gains_dvf_plant]].
|
|
The dashed curves are the results obtained using the model, and the solid curves the results from the experimental identification.
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:length(iff_gains)
|
|
plot(f, abs(G_iff_gains{i}), '-', ...
|
|
'DisplayName', sprintf('$g = %.0f$', iff_gains(i)));
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i = 1:length(iff_gains)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '--', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:length(iff_gains)
|
|
plot(f, 180/pi*angle(G_iff_gains{i}), '-');
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i = 1:length(iff_gains)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{i}(1,1), freqs, 'Hz'))), '--');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_iff_gains_dvf_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_iff_gains_dvf_plant
|
|
#+caption: Transfer function from $u$ to $d\mathcal{L}_m$ for multiple values of the IFF gain
|
|
#+RESULTS:
|
|
[[file:figs/comp_iff_gains_dvf_plant.png]]
|
|
|
|
The bode plot is then zoomed on the suspension modes of the nano-hexapod in Figure [[fig:comp_iff_gains_dvf_plant_zoom]].
|
|
#+begin_src matlab :exports none
|
|
xlim([20, 200]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_iff_gains_dvf_plant_zoom.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_iff_gains_dvf_plant_zoom
|
|
#+caption: Transfer function from $u$ to $d\mathcal{L}_m$ for multiple values of the IFF gain (Zoom)
|
|
#+RESULTS:
|
|
[[file:figs/comp_iff_gains_dvf_plant_zoom.png]]
|
|
|
|
#+begin_important
|
|
The IFF control strategy is very effective for the damping of the suspension modes.
|
|
It however does not damp the modes at 200Hz, 300Hz and 400Hz (flexible modes of the APA).
|
|
|
|
Also, the experimental results and the models obtained from the Simscape model are in agreement concerning the damped system (up to the flexible modes).
|
|
#+end_important
|
|
|
|
**** Experimental Results - Comparison of the un-damped and fully damped system
|
|
The un-damped and damped experimental plants are compared in Figure [[fig:comp_undamped_opt_iff_gain_diagonal]] (diagonal terms).
|
|
|
|
It is very clear that all the suspension modes are very well damped thanks to IFF.
|
|
However, there is little to no effect on the flexible modes of the struts and of the plate.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Un Damped measurement
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(f, abs(G_dvf(:, 1, 1)), ...
|
|
'DisplayName', 'Un-Damped')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(f, abs(G_dvf(:,i , i)), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% IFF Damped measurement
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff_opt{1}(:,1)), ...
|
|
'DisplayName', 'Optimal gain')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff_opt{i}(:,i)), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_{exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(f, 180/pi*angle(G_dvf(i,i, i)));
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, 180/pi*angle(G_iff_opt{i}(:,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_undamped_opt_iff_gain_diagonal.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_undamped_opt_iff_gain_diagonal
|
|
#+caption: Comparison of the diagonal elements of the tranfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ without active damping and with optimal IFF gain
|
|
#+RESULTS:
|
|
[[file:figs/comp_undamped_opt_iff_gain_diagonal.png]]
|
|
|
|
*** Experimental Results - Damped Plant with Optimal gain
|
|
<<sec:iff_struts_opt_gain>>
|
|
**** Introduction :ignore:
|
|
Let's now look at the $6 \times 6$ damped plant with the optimal gain $g = 400$.
|
|
|
|
**** Load Data
|
|
The experimental data are loaded.
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_iff_struts = {};
|
|
|
|
for i = 1:6
|
|
meas_iff_struts(i) = {load(sprintf('mat/iff_strut_%i_noise_g_400.mat', i), 't', 'Vexc', 'Vs', 'de', 'u')};
|
|
end
|
|
#+end_src
|
|
|
|
**** Spectral Analysis - Setup
|
|
And the parameters useful for the spectral analysis are defined.
|
|
#+begin_src matlab
|
|
%% Setup useful variables
|
|
% Sampling Time [s]
|
|
Ts = (meas_iff_struts{1}.t(end) - (meas_iff_struts{1}.t(1)))/(length(meas_iff_struts{1}.t)-1);
|
|
|
|
% Sampling Frequency [Hz]
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1*Fs));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_iff_struts{1}.Vexc, meas_iff_struts{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
**** DVF Plant
|
|
Finally, the $6 \times 6$ plant is identified using the =tfestimate= function.
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_iff_opt = {};
|
|
|
|
for i = 1:6
|
|
G_iff_opt{i} = tfestimate(meas_iff_struts{i}.Vexc, meas_iff_struts{i}.de, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The obtained diagonal elements are compared with the model in Figure [[fig:damped_iff_plant_comp_diagonal]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Diagonal Elements FRF
|
|
plot(f, abs(G_iff_opt{1}(:,1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
plot(f, abs(G_iff_opt{i}(:,i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_{exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(f, 180/pi*angle(G_iff_opt{i}(:,i)), 'color', [0,0,0,0.2]);
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{end}(i,i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/damped_iff_plant_comp_diagonal.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:damped_iff_plant_comp_diagonal
|
|
#+caption: Comparison of the diagonal elements of the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ with active damping (IFF) applied with an optimal gain $g = 400$
|
|
#+RESULTS:
|
|
[[file:figs/damped_iff_plant_comp_diagonal.png]]
|
|
|
|
And all the off-diagonal elements are compared with the model in Figure [[fig:damped_iff_plant_comp_off_diagonal]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Off diagonal FRF
|
|
plot(f, abs(G_iff_opt{1}(:,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff_opt{i}(:,j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(1,2), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff{end}(i,j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_{exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
% Off diagonal FRF
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, 180/pi*angle(G_iff_opt{i}(:,j)), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff{end}(i,j), freqs, 'Hz'))));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/damped_iff_plant_comp_off_diagonal.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:damped_iff_plant_comp_off_diagonal
|
|
#+caption: Comparison of the off-diagonal elements of the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ with active damping (IFF) applied with an optimal gain $g = 400$
|
|
#+RESULTS:
|
|
[[file:figs/damped_iff_plant_comp_off_diagonal.png]]
|
|
|
|
#+begin_important
|
|
With the IFF control strategy applied and the optimal gain used, the suspension modes are very well damped.
|
|
Remains the un-damped flexible modes of the APA (200Hz, 300Hz, 400Hz), and the modes of the plates (700Hz).
|
|
|
|
The Simscape model and the experimental results are in very good agreement.
|
|
#+end_important
|
|
|
|
*** Comparison with the Flexible model
|
|
<<sec:iff_struts_comp_flex_model>>
|
|
|
|
When using the 2-DoF model for the APA, the flexible modes of the struts were not modelled, and it was the main limitation of the model.
|
|
Now, let's use a flexible model for the APA, and see if the obtained damped plant using the model is similar to the measured dynamics.
|
|
|
|
First, the nano-hexapod is initialized.
|
|
#+begin_src matlab
|
|
%% Estimated misalignement of the struts
|
|
d_aligns = [[-0.05, -0.3, 0];
|
|
[ 0, 0.5, 0];
|
|
[-0.1, -0.3, 0];
|
|
[ 0, 0.3, 0];
|
|
[-0.05, 0.05, 0];
|
|
[0, 0, 0]]*1e-3;
|
|
|
|
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible', ...
|
|
'actuator_d_align', d_aligns, ...
|
|
'controller_type', 'iff');
|
|
#+end_src
|
|
|
|
And the "optimal" controller is loaded.
|
|
#+begin_src matlab
|
|
%% Optimal IFF controller
|
|
load('Kiff.mat', 'Kiff');
|
|
#+end_src
|
|
|
|
The transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is identified using the Simscape model.
|
|
#+begin_src matlab
|
|
%% Linearized inputs/outputs
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Strut Displacement (encoder)
|
|
|
|
%% Identification of the plant
|
|
Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
The obtained diagonal elements are shown in Figure [[fig:enc_struts_iff_opt_damp_comp_flex_model_diag]] while the off-diagonal elements are shown in Figure [[fig:enc_struts_iff_opt_damp_comp_flex_model_off_diag]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Diagonal Elements FRF
|
|
plot(f, abs(G_iff_opt{1}(:,1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u^\prime_i$ - FRF')
|
|
for i = 2:6
|
|
plot(f, abs(G_iff_opt{i}(:,i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u^\prime_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d\mathcal{L}_m/u^\prime$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(f, 180/pi*angle(G_iff_opt{i}(:,i)), 'color', [0,0,0,0.2]);
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_opt_damp_comp_flex_model_diag.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_opt_damp_comp_flex_model_diag
|
|
#+caption: Diagonal elements of the transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ - comparison of the measured FRF and the identified dynamics using the flexible model
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_opt_damp_comp_flex_model_diag.png]]
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Off diagonal FRF
|
|
plot(f, abs(G_iff_opt{1}(:,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u^\prime_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff_opt{i}(:,j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,2), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u^\prime_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d\mathcal{L}_m/u^\prime$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
% Off diagonal FRF
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, 180/pi*angle(G_iff_opt{i}(:,j)), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_struts_iff_opt_damp_comp_flex_model_off_diag.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_struts_iff_opt_damp_comp_flex_model_off_diag
|
|
#+caption: Off-diagonal elements of the transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ - comparison of the measured FRF and the identified dynamics using the flexible model
|
|
#+RESULTS:
|
|
[[file:figs/enc_struts_iff_opt_damp_comp_flex_model_off_diag.png]]
|
|
|
|
#+begin_important
|
|
Using flexible models for the APA, the agreement between the Simscape model of the nano-hexapod and the measured FRF is very good.
|
|
|
|
Only the flexible mode of the top-plate is not appearing in the model which is very logical as the top plate is taken as a solid body.
|
|
#+end_important
|
|
|
|
*** Conclusion
|
|
#+begin_important
|
|
The decentralized Integral Force Feedback strategy applied on the nano-hexapod is very effective in damping all the suspension modes.
|
|
|
|
The Simscape model (especially when using a flexible model for the APA) is shown to be very accurate, even when IFF is applied.
|
|
#+end_important
|
|
|
|
** Modal Analysis
|
|
<<sec:enc_struts_modal_analysis>>
|
|
|
|
*** Introduction :ignore:
|
|
Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure [[fig:compliance_vertical_comp_iff]].
|
|
|
|
#+name: fig:accelerometers_nano_hexapod
|
|
#+caption: Location of the accelerometers on top of the nano-hexapod
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/accelerometers_nano_hexapod.jpg]]
|
|
|
|
The top platform is then excited using an instrumented hammer as shown in Figure [[fig:hammer_excitation_compliance_meas]].
|
|
|
|
#+name: fig:hammer_excitation_compliance_meas
|
|
#+caption: Example of an excitation using an instrumented hammer
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/hammer_excitation_compliance_meas.jpg]]
|
|
|
|
From this experiment, the resonance frequencies and the associated mode shapes can be computed (Section [[sec:modal_analysis_mode_shapes]]).
|
|
Then, in Section [[sec:compliance_effect_iff]], the vertical compliance of the nano-hexapod is experimentally estimated.
|
|
Finally, in Section [[sec:compliance_effect_iff_comp_model]], the measured compliance is compare with the estimated one from the Simscape model.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
open(mdl)
|
|
#+end_src
|
|
|
|
*** Obtained Mode Shapes
|
|
<<sec:modal_analysis_mode_shapes>>
|
|
|
|
We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is behaving as a solid body) in Figure [[fig:mode_shapes_annotated]].
|
|
|
|
#+name: fig:mode_shapes_annotated
|
|
#+caption: Measured mode shapes for the first six modes
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/mode_shapes_annotated.gif]]
|
|
|
|
Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure [[fig:mode_shapes_flexible_annotated]]).
|
|
|
|
#+name: fig:mode_shapes_flexible_annotated
|
|
#+caption: First flexible mode at 692Hz
|
|
#+attr_latex: :width 0.3\linewidth
|
|
[[file:figs/ModeShapeFlex1_crop.gif]]
|
|
|
|
The obtained modes are summarized in Table [[tab:description_modes]].
|
|
|
|
#+name: tab:description_modes
|
|
#+caption: Description of the identified modes
|
|
#+attr_latex: :environment tabularx :width 0.7\linewidth :align ccX
|
|
#+attr_latex: :center t :booktabs t
|
|
| *Mode* | *Freq. [Hz]* | *Description* |
|
|
|--------+--------------+----------------------------------------------|
|
|
| 1 | 105 | Suspension Mode: Y-translation |
|
|
| 2 | 107 | Suspension Mode: X-translation |
|
|
| 3 | 131 | Suspension Mode: Z-translation |
|
|
| 4 | 161 | Suspension Mode: Y-tilt |
|
|
| 5 | 162 | Suspension Mode: X-tilt |
|
|
| 6 | 180 | Suspension Mode: Z-rotation |
|
|
| 7 | 692 | (flexible) Membrane mode of the top platform |
|
|
|
|
*** Nano-Hexapod Compliance - Effect of IFF
|
|
<<sec:compliance_effect_iff>>
|
|
|
|
In this section, we wish to estimated the effectiveness of the IFF strategy concerning the compliance.
|
|
|
|
The top plate is excited vertically using the instrumented hammer two times:
|
|
1. no control loop is used
|
|
2. decentralized IFF is used
|
|
|
|
The data is loaded.
|
|
#+begin_src matlab
|
|
frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop
|
|
frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF
|
|
#+end_src
|
|
|
|
The mean vertical motion of the top platform is computed by averaging all 5 accelerometers.
|
|
#+begin_src matlab
|
|
%% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers)
|
|
d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod + frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2;
|
|
d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod + frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2;
|
|
#+end_src
|
|
|
|
The vertical compliance (magnitude of the transfer function from a vertical force applied on the top plate to the vertical motion of the top plate) is shown in Figure [[fig:compliance_vertical_comp_iff]].
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, 'DisplayName', 'OL');
|
|
plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, 'DisplayName', 'IFF');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]');
|
|
xlim([20, 2e3]); ylim([2e-9, 2e-5]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/compliance_vertical_comp_iff.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:compliance_vertical_comp_iff
|
|
#+caption: Measured vertical compliance with and without IFF
|
|
#+RESULTS:
|
|
[[file:figs/compliance_vertical_comp_iff.png]]
|
|
|
|
#+begin_important
|
|
From Figure [[fig:compliance_vertical_comp_iff]], it is clear that the IFF control strategy is very effective in damping the suspensions modes of the nano-hexapod.
|
|
It also has the effect of (slightly) degrading the vertical compliance at low frequency.
|
|
|
|
It also seems some damping can be added to the modes at around 205Hz which are flexible modes of the struts.
|
|
#+end_important
|
|
|
|
*** Comparison with the Simscape Model
|
|
<<sec:compliance_effect_iff_comp_model>>
|
|
|
|
Let's now compare the measured vertical compliance with the vertical compliance as estimated from the Simscape model.
|
|
|
|
The transfer function from a vertical external force to the absolute motion of the top platform is identified (with and without IFF) using the Simscape model.
|
|
#+begin_src matlab :exports none
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/duz_ext'], 1, 'openinput'); io_i = io_i + 1; % External - Vertical force
|
|
io(io_i) = linio([mdl, '/Z_top_plat'], 1, 'openoutput'); io_i = io_i + 1; % Absolute vertical motion of top platform
|
|
|
|
%% Initialize Nano-Hexapod in Open Loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', '2dof');
|
|
|
|
G_compl_z_ol = linearize(mdl, io, 0.0, options);
|
|
|
|
%% Initialize Nano-Hexapod with IFF
|
|
Kiff = 400*(1/(s + 2*pi*40))*... % Low pass filter (provides integral action above 40Hz)
|
|
(s/(s + 2*pi*30))*... % High pass filter to limit low frequency gain
|
|
(1/(1 + s/2/pi/500))*... % Low pass filter to be more robust to high frequency resonances
|
|
eye(6); % Diagonal 6x6 controller
|
|
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', '2dof', ...
|
|
'controller_type', 'iff');
|
|
|
|
G_compl_z_iff = linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
The comparison is done in Figure [[fig:compliance_vertical_comp_model_iff]].
|
|
Again, the model is quite accurate!
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the measured compliance and the one obtained from the model
|
|
freqs = 2*logspace(1,3,1000);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, '-', 'DisplayName', 'OL - Meas.');
|
|
plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, '-', 'DisplayName', 'IFF - Meas.');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(G_compl_z_ol, freqs, 'Hz'))), '--', 'DisplayName', 'OL - Model')
|
|
plot(freqs, abs(squeeze(freqresp(G_compl_z_iff, freqs, 'Hz'))), '--', 'DisplayName', 'IFF - Model')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]');
|
|
xlim([20, 2e3]); ylim([2e-9, 2e-5]);
|
|
legend('location', 'northeast', 'FontSize', 8);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/compliance_vertical_comp_model_iff.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:compliance_vertical_comp_model_iff
|
|
#+caption: Measured vertical compliance with and without IFF
|
|
#+RESULTS:
|
|
[[file:figs/compliance_vertical_comp_model_iff.png]]
|
|
|
|
** TODO Accelerometers fixed on the top platform :noexport:
|
|
*** Introduction :ignore:
|
|
|
|
#+name: fig:acc_top_plat_top_view
|
|
#+caption: Accelerometers fixed on the top platform
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/acc_top_plat_top_view.jpg]]
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
open(mdl)
|
|
#+end_src
|
|
|
|
*** Experimental Identification
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_acc = {};
|
|
|
|
for i = 1:6
|
|
meas_acc(i) = {load(sprintf('mat/meas_acc_top_plat_strut_%i.mat', i), 't', 'Va', 'de', 'Am')};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Setup useful variables
|
|
% Sampling Time [s]
|
|
Ts = (meas_acc{1}.t(end) - (meas_acc{1}.t(1)))/(length(meas_acc{1}.t)-1);
|
|
|
|
% Sampling Frequency [Hz]
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1*Fs));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_acc{1}.Va, meas_acc{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
The sensibility of the accelerometers are $0.1 V/g \approx 0.01 V/(m/s^2)$.
|
|
#+begin_src matlab
|
|
%% Compute the 6x6 transfer function matrix
|
|
G_acc = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
G_acc(:,:,i) = tfestimate(meas_acc{i}.Va, 1/0.01*meas_acc{i}.Am, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
*** Location and orientation of accelerometers
|
|
#+begin_src matlab
|
|
Opm = [ 0.047, -0.112, 10e-3;
|
|
0.047, -0.112, 10e-3;
|
|
-0.113, 0.011, 10e-3;
|
|
-0.113, 0.011, 10e-3;
|
|
0.040, 0.113, 10e-3;
|
|
0.040, 0.113, 10e-3]';
|
|
|
|
Osm = [-1, 0, 0;
|
|
0, 0, 1;
|
|
0, -1, 0;
|
|
0, 0, 1;
|
|
-1, 0, 0;
|
|
0, 0, 1]';
|
|
|
|
#+end_src
|
|
|
|
*** COM
|
|
#+begin_src matlab
|
|
Hbm = -15e-3;
|
|
|
|
M = getTransformationMatrixAcc(Opm-[0;0;Hbm], Osm);
|
|
J = getJacobianNanoHexapod(Hbm);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
G_acc_CoM = zeros(size(G_acc));
|
|
|
|
for i = 1:length(f)
|
|
G_acc_CoM(i, :, :) = inv(M)*squeeze(G_acc(i, :, :))*inv(J');
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
labels = {'$D_x/F_{x}$', '$D_y/F_{y}$', '$D_z/F_{z}$', '$R_{x}/M_{x}$', '$R_{y}/M_{y}$', '$R_{R}/M_{z}$'};
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:2
|
|
for j = i+1:3
|
|
plot(f, abs(G_acc_CoM(:, i, j)./(-(2*pi*f).^2)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:3
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_acc_CoM(:,i , i)./(-(2*pi*f).^2)), ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
plot(f, abs(G_acc_CoM(:, 1, 2)./(-(2*pi*f).^2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$D_i/F_j$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $A_m/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-5]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:3
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_acc_CoM(:,i , i)./(-(2*pi*f).^2)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
labels = {'$D_x/F_{x}$', '$D_y/F_{y}$', '$D_z/F_{z}$', '$R_{x}/M_{x}$', '$R_{y}/M_{y}$', '$R_{R}/M_{z}$'};
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_acc_CoM(:,i , i)./(-(2*pi*f).^2)), ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $A_m/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_acc_CoM(:,i , i)./(-(2*pi*f).^2)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([50, 5e2]);
|
|
#+end_src
|
|
|
|
*** COK
|
|
#+begin_src matlab
|
|
Hbm = -42.3e-3;
|
|
|
|
M = getTransformationMatrixAcc(Opm-[0;0;Hbm], Osm);
|
|
J = getJacobianNanoHexapod(Hbm);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
G_acc_CoK = zeros(size(G_acc));
|
|
|
|
for i = 1:length(f)
|
|
G_acc_CoK(i, :, :) = inv(M)*squeeze(G_acc(i, :, :))*inv(J');
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
labels = {'$D_x/F_{x}$', '$D_y/F_{y}$', '$D_z/F_{z}$', '$R_{x}/M_{x}$', '$R_{y}/M_{y}$', '$R_{R}/M_{z}$'};
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:2
|
|
for j = i+1:3
|
|
plot(f, abs(G_acc_CoK(:, i, j)./(-(2*pi*f).^2)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:3
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_acc_CoK(:,i , i)./(-(2*pi*f).^2)), ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
plot(f, abs(G_acc_CoK(:, 1, 2)./(-(2*pi*f).^2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$D_i/F_j$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $A_m/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-5]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:3
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_acc_CoK(:,i , i)./(-(2*pi*f).^2)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', ...
|
|
'$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'};
|
|
|
|
figure;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_acc_CoK(:,i,i)./(-(2*pi*f).^2)), ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
plot(f, abs(G_acc_CoK(:,1,2)./(-(2*pi*f).^2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', 'Off-Diagonal');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_acc_CoK(:,i,j)./(-(2*pi*f).^2)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude $X_m/V_a$ [m/V]');
|
|
xlim([50, 5e2]); ylim([1e-7, 1e-1]);
|
|
legend('location', 'southwest');
|
|
#+end_src
|
|
|
|
*** Comp with the Simscape Model
|
|
#+begin_src matlab
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', 'flexible', ...
|
|
'MO_B', -42.3e-3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
|
|
|
|
G = linearize(mdl, io, 0.0, options);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
|
|
#+end_src
|
|
|
|
Then use the Jacobian matrices to obtain the "cartesian" centralized plant.
|
|
#+begin_src matlab
|
|
Gc = inv(n_hexapod.geometry.J)*...
|
|
G*...
|
|
inv(n_hexapod.geometry.J');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', ...
|
|
'$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'};
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gc(i,i), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', labels{i});
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Gc(1, 2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', 'Off-Diagonal');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N,rad/N/m]');
|
|
xlim([50, 5e2]); ylim([1e-7, 1e-1]);
|
|
legend('location', 'southwest');
|
|
#+end_src
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
From the previous analysis, several conclusions can be drawn:
|
|
- Decentralized IFF is very effective in damping the "suspension" modes of the nano-hexapod (Figure [[fig:comp_undamped_opt_iff_gain_diagonal]])
|
|
- Decentralized IFF does not damp the "spurious" modes of the struts nor the flexible modes of the top plate (Figure [[fig:comp_undamped_opt_iff_gain_diagonal]])
|
|
- Even though the Simscape model and the experimentally measured FRF are in good agreement (Figures [[fig:enc_struts_iff_opt_damp_comp_flex_model_diag]] and [[fig:enc_struts_iff_opt_damp_comp_flex_model_off_diag]]), the obtain dynamics from the control inputs $\bm{u}$ and the encoders $d\bm{\mathcal{L}}_m$ is very difficult to control
|
|
|
|
Therefore, in the following sections, the encoders will be fixed to the plates.
|
|
The goal is to be less sensitive to the flexible modes of the struts.
|
|
#+end_important
|
|
|
|
* Encoders fixed to the plates - Dynamics
|
|
<<sec:encoders_plates>>
|
|
|
|
** Introduction :ignore:
|
|
In this section, the encoders are fixed to the plates rather than to the struts as shown in Figure [[fig:enc_fixed_to_struts]].
|
|
|
|
#+name: fig:enc_fixed_to_struts
|
|
#+caption: Nano-Hexapod with encoders fixed to the struts
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/IMG_20210625_083801.jpg]]
|
|
|
|
It is structured as follow:
|
|
- Section [[sec:enc_plates_plant_id]]: The dynamics of the nano-hexapod is identified.
|
|
- Section [[sec:enc_plates_comp_simscape]]: The identified dynamics is compared with the Simscape model.
|
|
- Section [[sec:enc_plates_iff]]: The Integral Force Feedback (IFF) control strategy is applied and the dynamics of the damped nano-hexapod is identified and compare with the Simscape model.
|
|
|
|
** Identification of the dynamics
|
|
<<sec:enc_plates_plant_id>>
|
|
*** Introduction :ignore:
|
|
In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified.
|
|
|
|
First, the measurement data are loaded in Section [[sec:enc_plates_plant_id_setup]], then the transfer function matrix from the actuators to the encoders are estimated in Section [[sec:enc_plates_plant_id_dvf]].
|
|
Finally, the transfer function matrix from the actuators to the force sensors is estimated in Section [[sec:enc_plates_plant_id_iff]].
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
*** Data Loading and Spectral Analysis Setup
|
|
<<sec:enc_plates_plant_id_setup>>
|
|
|
|
The actuators are excited one by one using a low pass filtered white noise.
|
|
For each excitation, the 6 force sensors and 6 encoders are measured and saved.
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_data_lf = {};
|
|
|
|
for i = 1:6
|
|
meas_data_lf(i) = {load(sprintf('mat/frf_exc_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de')};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Setup useful variables
|
|
% Sampling Time [s]
|
|
Ts = (meas_data_lf{1}.t(end) - (meas_data_lf{1}.t(1)))/(length(meas_data_lf{1}.t)-1);
|
|
|
|
% Sampling Frequency [Hz]
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1*Fs));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_data_lf{1}.Va, meas_data_lf{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
*** Transfer function from Actuator to Encoder
|
|
<<sec:enc_plates_plant_id_dvf>>
|
|
|
|
Let's compute the coherence from the excitation voltage $\bm{u}$ and the displacement $d\bm{\mathcal{L}}_m$ as measured by the encoders.
|
|
#+begin_src matlab
|
|
%% Coherence
|
|
coh_dvf = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
coh_dvf(:, :, i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The obtained coherence shown in Figure [[fig:enc_plates_dvf_coh]] is quite good up to 400Hz.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Coherence for the transfer function from u to dLm
|
|
figure;
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, coh_dvf(:, i, j), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, coh_dvf(:, i, i), ...
|
|
'DisplayName', sprintf('$G_{dvf}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, coh_dvf(:, 1, 2), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{dvf}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
|
xlim([20, 2e3]); ylim([0, 1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_dvf_coh.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_dvf_coh
|
|
#+caption: Obtained coherence for the DVF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_dvf_coh.png]]
|
|
|
|
Then the 6x6 transfer function matrix is estimated.
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dvf = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
G_dvf(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.de, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure [[fig:enc_plates_dvf_frf]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_dvf(:,i, i)), ...
|
|
'DisplayName', sprintf('$G_{dvf}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, abs(G_dvf(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{dvf}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_dvf_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_dvf_frf
|
|
#+caption: Measured FRF for the DVF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_dvf_frf.png]]
|
|
|
|
#+begin_important
|
|
From Figure [[fig:enc_plates_dvf_frf]], we can draw few conclusions on the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ when the encoders are fixed to the plates:
|
|
- the decoupling is rather good at low frequency (below the first suspension mode).
|
|
The low frequency gain is constant for the off diagonal terms, whereas when the encoders where fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero (Figure [[fig:enc_struts_dvf_frf]]).
|
|
- the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer functions, but their amplitudes are rather low.
|
|
- the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible modes of the struts are not affecting the alternating pole/zero pattern. This what not the case when the encoders were fixed to the struts (Figure [[fig:enc_struts_dvf_frf]]).
|
|
#+end_important
|
|
|
|
*** Transfer function from Actuator to Force Sensor
|
|
<<sec:enc_plates_plant_id_iff>>
|
|
|
|
Let's now compute the coherence from the excitation voltage $\bm{u}$ and the voltage $\bm{\tau}_m$ generated by the Force senors.
|
|
#+begin_src matlab
|
|
%% Coherence for the IFF plant
|
|
coh_iff = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
coh_iff(:,:,i) = mscohere(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The coherence is shown in Figure [[fig:enc_plates_iff_coh]], and is very good for from 10Hz up to 2kHz.
|
|
#+begin_src matlab :exports none
|
|
%% Coherence of the IFF Plant (transfer function from u to taum)
|
|
figure;
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, coh_iff(:, i, j), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, coh_iff(:,i, i), ...
|
|
'DisplayName', sprintf('$G_{iff}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, coh_iff(:, 1, 2), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{iff}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Coherence [-]');
|
|
xlim([20, 2e3]); ylim([0, 1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_iff_coh.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_iff_coh
|
|
#+caption: Obtained coherence for the IFF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_iff_coh.png]]
|
|
|
|
Then the 6x6 transfer function matrix is estimated.
|
|
#+begin_src matlab
|
|
%% IFF Plant
|
|
G_iff = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
G_iff(:,:,i) = tfestimate(meas_data_lf{i}.Va, meas_data_lf{i}.Vs, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The bode plot of the diagonal and off-diagonal terms are shown in Figure [[fig:enc_plates_iff_frf]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the IFF Plant (transfer function from u to taum)
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, abs(G_iff(:,i , i)), ...
|
|
'DisplayName', sprintf('$G_{iff}(%i,%i)$', i, i));
|
|
end
|
|
plot(f, abs(G_iff(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$G_{iff}(i,j)$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
ylim([1e-3, 1e2]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_iff_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_iff_frf
|
|
#+caption: Measured FRF for the IFF plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_iff_frf.png]]
|
|
|
|
#+begin_important
|
|
It is shown in Figure [[fig:enc_plates_iff_comp_simscape_all]] that:
|
|
- The IFF plant has alternating poles and zeros
|
|
- The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF
|
|
- The decoupling is quite good at low frequency (below the first model) as well as high frequency (above the last suspension mode, except near the flexible modes of the top plate)
|
|
#+end_important
|
|
|
|
*** Save Identified Plants
|
|
The identified dynamics is saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
** Comparison with the Simscape Model
|
|
<<sec:enc_plates_comp_simscape>>
|
|
*** Introduction :ignore:
|
|
In this section, the measured dynamics done in Section [[sec:enc_plates_plant_id]] is compared with the dynamics estimated from the Simscape model.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Load identification data
|
|
load('identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
open(mdl)
|
|
#+end_src
|
|
|
|
*** Identification Setup
|
|
The nano-hexapod is initialized with the APA taken as flexible models.
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', 'flexible');
|
|
#+end_src
|
|
|
|
*** TODO Paper MEDSI :noexport:
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', 'flexible');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
|
|
Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
colors = colororder;
|
|
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [colors(1,:),0.2], ...
|
|
'DisplayName', 'FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [colors(1,:),0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', 'Model')
|
|
% for i = 2:6
|
|
% set(gca,'ColorOrderIndex',2);
|
|
% plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
|
|
% 'HandleVisibility', 'off');
|
|
% end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([3e-7, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_iff(:,1, 1)), 'color', [colors(1,:),0.2])
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff(:,i, i)), 'color', [colors(1,:),0.2]);
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '-')
|
|
% for i = 2:6
|
|
% set(gca,'ColorOrderIndex',2);
|
|
% plot(freqs, abs(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
|
|
% end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([3e-2, 1e2]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [colors(1,:),0.2]);
|
|
end
|
|
for i = 1:1
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-90, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)), 'color', [colors(1,:),0.2]);
|
|
end
|
|
for i = 1:1
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-90, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_identification_comp_simscape.pdf', 'width', 'half', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:nano_hexapod_identification_comp_simscape
|
|
#+caption:
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_identification_comp_simscape.png]]
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_identification_comp_simscape_full.pdf', 'width', 'full', 'height', 'normal');
|
|
#+end_src
|
|
|
|
[[file:figs/nano_hexapod_identification_comp_simscape_full.png]]
|
|
|
|
*** MEDSI Talk :noexport:
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
colors = colororder;
|
|
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [colors(1,:),0.2], ...
|
|
'DisplayName', 'FRF - $d_{e,i}/V_{a,i}$')
|
|
for i = 2:6
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [colors(1,:),0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '--', 'color', colors(1,:), ...
|
|
'DisplayName', 'Model - $d_{e,i}/V_{a,i}$')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([3e-7, 1e-3]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
for i = [2,5]
|
|
plot(f, abs(G_dvf(:,1, i)), 'color', [colors(i,:),0.5], ...
|
|
'DisplayName', sprintf('FRF - $d_{e,1}/V_{a,%i}$', i));
|
|
end
|
|
for i = [2,5]
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,i), freqs, 'Hz'))), '--', 'color', colors(i,:), ...
|
|
'DisplayName', sprintf('Model - $d_{e,1}/V_{a,%i}$', i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'YTickLabel',[]); set(gca, 'XTickLabel',[]);
|
|
ylim([3e-7, 1e-3]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [colors(1,:),0.2]);
|
|
end
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '--', 'color', colors(1,:));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
for i = [2,5]
|
|
plot(f, 180/pi*angle(G_dvf(:,1,i)), 'color', [colors(i,:),0.5]);
|
|
end
|
|
for i = [2,5]
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(1,i), freqs, 'Hz'))), '--', 'color', colors(i,:));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_enc_bode_plot.pdf', 'width', 1500, 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:nano_hexapod_enc_bode_plot
|
|
#+caption:
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_enc_bode_plot.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the IFF plant
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
colors = colororder;
|
|
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_iff(:,1, 1)), 'color', [colors(1,:),0.2], ...
|
|
'DisplayName', 'FRF - $V_{s,i}/V_{a,i}$')
|
|
for i = 2:6
|
|
plot(f, abs(G_iff(:,i, i)), 'color', [colors(1,:),0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '--', 'color', colors(1,:), ...
|
|
'DisplayName', 'Model - $V_{s,i}/V_{a,i}$')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e2]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
for i = [2,3]
|
|
plot(f, abs(G_iff(:,1, i)), 'color', [colors(i,:),0.5], ...
|
|
'DisplayName', sprintf('FRF - $V_{s,1}/V_{a,%i}$', i));
|
|
end
|
|
for i = [2,3]
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,i), freqs, 'Hz'))), '--', 'color', colors(i,:), ...
|
|
'DisplayName', sprintf('Model - $V_{s,1}/V_{a,%i}$', i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'YTickLabel',[]); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e2]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)), 'color', [colors(1,:),0.2]);
|
|
end
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '--', 'color', colors(1,:));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
for i = [2,3]
|
|
plot(f, 180/pi*angle(G_iff(:,1,i)), 'color', [colors(i,:),0.5]);
|
|
end
|
|
for i = [2,3]
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(1,i), freqs, 'Hz'))), '--', 'color', colors(i,:));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_iff_bode_plot.pdf', 'width', 1500, 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:nano_hexapod_iff_bode_plot
|
|
#+caption:
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_iff_bode_plot.png]]
|
|
|
|
#+begin_src matlab
|
|
#+end_src
|
|
|
|
*** Dynamics from Actuator to Force Sensors
|
|
Then the transfer function from $\bm{u}$ to $\bm{\tau}_m$ is identified using the Simscape model.
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
The identified dynamics is compared with the measured FRF:
|
|
- Figure [[fig:enc_plates_iff_comp_simscape_all]]: the individual transfer function from $u_1$ (the DAC voltage for the first actuator) to the force sensors of all 6 struts are compared
|
|
- Figure [[fig:enc_plates_iff_comp_simscape]]: all the diagonal elements are compared
|
|
- Figure [[fig:enc_plates_iff_comp_offdiag_simscape]]: all the off-diagonal elements are compared
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the plants (encoder output) when tuning the misalignment
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
i_input = 1;
|
|
|
|
figure;
|
|
tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_iff(:, 1, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]');
|
|
title(sprintf('$d\\tau_{m1}/u_{%i}$', i_input));
|
|
|
|
ax2 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_iff(:, 2, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Giff(2, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
title(sprintf('$d\\tau_{m2}/u_{%i}$', i_input));
|
|
|
|
ax3 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_iff(:, 3, i_input)), ...
|
|
'DisplayName', 'Meas.');
|
|
plot(freqs, abs(squeeze(freqresp(Giff(3, i_input), freqs, 'Hz'))), ...
|
|
'DisplayName', 'Model');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8);
|
|
title(sprintf('$d\\tau_{m3}/u_{%i}$', i_input));
|
|
|
|
ax4 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_iff(:, 4, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Giff(4, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
|
title(sprintf('$d\\tau_{m4}/u_{%i}$', i_input));
|
|
|
|
ax5 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_iff(:, 5, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Giff(5, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
title(sprintf('$d\\tau_{m5}/u_{%i}$', i_input));
|
|
|
|
ax6 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_iff(:, 6, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Giff(6, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
title(sprintf('$d\\tau_{m6}/u_{%i}$', i_input));
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy');
|
|
xlim([20, 2e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_iff_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_iff_comp_simscape_all
|
|
#+caption: IFF Plant for the first actuator input and all the force senosrs
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_iff_comp_simscape_all.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_iff(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_iff_comp_simscape.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_iff_comp_simscape
|
|
#+caption: Diagonal elements of the IFF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_iff_comp_simscape.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data (off-diagonal elements)
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
% Off diagonal terms
|
|
plot(f, abs(G_iff(:, 1, 2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_iff(:, i, j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1, 2), freqs, 'Hz'))), ...
|
|
'DisplayName', '$\tau_{m,i}/u_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(i, j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]');
|
|
xlim([freqs(1), freqs(end)]); ylim([1e-3, 1e2]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_iff_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_iff_comp_offdiag_simscape
|
|
#+caption: Off diagonal elements of the IFF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_iff_comp_offdiag_simscape.png]]
|
|
|
|
*** Dynamics from Actuator to Encoder
|
|
Now, the dynamics from the DAC voltage $\bm{u}$ to the encoders $d\bm{\mathcal{L}}_m$ is estimated using the Simscape model.
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
|
|
Gdvf = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
The identified dynamics is compared with the measured FRF:
|
|
- Figure [[fig:enc_plates_dvf_comp_simscape_all]]: the individual transfer function from $u_3$ (the DAC voltage for the actuator number 3) to the six encoders
|
|
- Figure [[fig:enc_plates_dvf_comp_simscape]]: all the diagonal elements are compared
|
|
- Figure [[fig:enc_plates_dvf_comp_offdiag_simscape]]: all the off-diagonal elements are compared
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the plants (encoder output) when tuning the misalignment
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
i_input = 3;
|
|
|
|
figure;
|
|
tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 1, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]');
|
|
title(sprintf('$d\\mathcal{L}_{m1}/u_{%i}$', i_input));
|
|
|
|
ax2 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 2, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(2, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
title(sprintf('$d\\mathcal{L}_{m2}/u_{%i}$', i_input));
|
|
|
|
ax3 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 3, i_input)), ...
|
|
'DisplayName', 'Meas.');
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(3, i_input), freqs, 'Hz'))), ...
|
|
'DisplayName', 'Model');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8);
|
|
title(sprintf('$d\\mathcal{L}_{m3}/u_{%i}$', i_input));
|
|
|
|
ax4 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 4, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(4, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
|
title(sprintf('$d\\mathcal{L}_{m4}/u_{%i}$', i_input));
|
|
|
|
ax5 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 5, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(5, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
title(sprintf('$d\\mathcal{L}_{m5}/u_{%i}$', i_input));
|
|
|
|
ax6 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_dvf(:, 6, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(6, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
title(sprintf('$d\\mathcal{L}_{m6}/u_{%i}$', i_input));
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy');
|
|
xlim([40, 4e2]); ylim([1e-8, 1e-2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_dvf_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_dvf_comp_simscape_all
|
|
#+caption: DVF Plant for the first actuator input and all the encoders
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_dvf_comp_simscape_all.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_dvf_comp_simscape.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_dvf_comp_simscape
|
|
#+caption: Diagonal elements of the DVF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_dvf_comp_simscape.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Off-diagonal elements of the DVF plant
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
% Off diagonal terms
|
|
plot(f, abs(G_dvf(:, 1, 2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf(:, i, j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1, 2), freqs, 'Hz'))), ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i, j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
|
xlim([freqs(1), freqs(end)]); ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_dvf_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_dvf_comp_offdiag_simscape
|
|
#+caption: Off diagonal elements of the DVF Plant
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_dvf_comp_offdiag_simscape.png]]
|
|
|
|
*** TODO Flexible Top Plate
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...
|
|
'flex_top_type', '3dof', ...
|
|
'motion_sensor_type', 'struts', ...
|
|
'actuator_type', '2dof', ...
|
|
'top_plate_type', 'rigid');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
|
|
Gdvf = linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
size(Gdvf)
|
|
isstable(Gdvf)
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
[sys,g] = balreal(Gdvf); % Compute balanced realization
|
|
elim = (g<1e-4); % Small entries of g are negligible states
|
|
rsys = modred(sys,elim); % Remove negligible states
|
|
size(rsys)
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = logspace(-1, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('%i', i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]');
|
|
ylim([1e-8, 1e-3]);
|
|
xlim([freqs(1), freqs(end)]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gdvf(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
Giff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_iff(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_iff(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$\tau_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_iff(:,i, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Giff(i,i), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
*** Conclusion
|
|
#+begin_important
|
|
The Simscape model is quite accurate for the transfer function matrices from $\bm{u}$ to $\bm{\tau}_m$ and from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ except at frequencies of the flexible modes of the top-plate.
|
|
The Simscape model can therefore be used to develop the control strategies.
|
|
#+end_important
|
|
|
|
** Integral Force Feedback
|
|
<<sec:enc_plates_iff>>
|
|
*** Introduction :ignore:
|
|
|
|
In this section, the Integral Force Feedback (IFF) control strategy is applied to the nano-hexapod in order to add damping to the suspension modes.
|
|
|
|
The control architecture is shown in Figure [[fig:control_architecture_iff]]:
|
|
- $\bm{\tau}_m$ is the measured voltage of the 6 force sensors
|
|
- $\bm{K}_{\text{IFF}}$ is the $6 \times 6$ diagonal controller
|
|
- $\bm{u}$ is the plant input (voltage generated by the 6 DACs)
|
|
- $\bm{u}^\prime$ is the new plant inputs with added damping
|
|
|
|
#+begin_src latex :file control_architecture_iff.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{2.0cm}] (P) {Plant};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.7!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.3!(P.north east)$);
|
|
|
|
\node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[addb, left= of inputF] (addF) {};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
|
|
\draw[->] (outputL) -- ++(1, 0) node[below left]{$d\bm{\mathcal{L}}_m$};
|
|
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.north);
|
|
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{u}$};
|
|
\draw[<-] (addF.west) -- ++(-1, 0) node[above right]{$\bm{u}^\prime$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_architecture_iff
|
|
#+caption: Integral Force Feedback Strategy
|
|
#+RESULTS:
|
|
[[file:figs/control_architecture_iff.png]]
|
|
|
|
- Section [[sec:enc_struts_effect_iff_plant]]
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
open(mdl)
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Effect of IFF on the plant - Simscape Model
|
|
<<sec:enc_struts_effect_iff_plant>>
|
|
|
|
The nano-hexapod is initialized with flexible APA and the encoders fixed to the struts.
|
|
#+begin_src matlab
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', 'flexible');
|
|
#+end_src
|
|
|
|
The same controller as the one developed when the encoder were fixed to the struts is used.
|
|
#+begin_src matlab
|
|
%% Optimal IFF controller
|
|
load('Kiff.mat', 'Kiff')
|
|
#+end_src
|
|
|
|
The transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is identified.
|
|
#+begin_src matlab
|
|
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)
|
|
#+end_src
|
|
|
|
First in Open-Loop:
|
|
#+begin_src matlab
|
|
%% Transfer function from u to dL (open-loop)
|
|
Gd_ol = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
And then with the IFF controller:
|
|
#+begin_src matlab
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', 'flexible', ...
|
|
'controller_type', 'iff');
|
|
|
|
%% Transfer function from u to dL (IFF)
|
|
Gd_iff = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
It is first verified that the system is stable:
|
|
#+begin_src matlab :results value replace :exports both :tangle no
|
|
isstable(Gd_iff)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: 1
|
|
|
|
The diagonal and off-diagonal terms of the $6 \times 6$ transfer function matrices identified are compared in Figure [[fig:enc_plates_iff_gains_effect_dvf_plant]].
|
|
It is shown, as was the case when the encoders were fixed to the struts, that the IFF control strategy is very effective in damping the suspension modes of the nano-hexapod.
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', 'OL - Diag');
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', 'IFF - Diag');
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(1,2), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', 'OL - Off-diag')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,2), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', 'IFF - Off-diag')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_iff_gains_effect_dvf_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_iff_gains_effect_dvf_plant
|
|
#+caption: Effect of the IFF control strategy on the transfer function from $\bm{\tau}$ to $d\bm{\mathcal{L}}_m$
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_iff_gains_effect_dvf_plant.png]]
|
|
|
|
*** Effect of IFF on the plant - FRF
|
|
The IFF control strategy is experimentally implemented.
|
|
The (damped) transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is experimentally identified.
|
|
|
|
The identification data are loaded:
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_iff_plates = {};
|
|
|
|
for i = 1:6
|
|
meas_iff_plates(i) = {load(sprintf('mat/frf_exc_iff_strut_%i_enc_plates_noise.mat', i), 't', 'Va', 'Vs', 'de', 'u')};
|
|
end
|
|
#+end_src
|
|
|
|
And the parameters used for the transfer function estimation are defined below.
|
|
#+begin_src matlab
|
|
% Sampling Time [s]
|
|
Ts = (meas_iff_plates{1}.t(end) - (meas_iff_plates{1}.t(1)))/(length(meas_iff_plates{1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_iff_plates{1}.Va, meas_iff_plates{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
The estimation is performed using the =tfestimate= command.
|
|
#+begin_src matlab
|
|
%% Estimation of the transfer function matrix from u to dL when IFF is applied
|
|
G_enc_iff_opt = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
G_enc_iff_opt(:,:,i) = tfestimate(meas_iff_plates{i}.Va, meas_iff_plates{i}.de, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The obtained diagonal and off-diagonal elements of the transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ are shown in Figure [[fig:enc_plant_plates_effect_iff]] both without and with IFF.
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1,1)), '-', ...
|
|
'DisplayName', 'OL - Diag');
|
|
plot(f, abs(G_enc_iff_opt(:,1,1)), '-', ...
|
|
'DisplayName', 'IFF - Diag');
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(f, abs(G_dvf(:,1,1)), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(f, abs(G_enc_iff_opt(:,i,i)), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
plot(f, abs(G_dvf(:,1,2)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', 'OL - Off-diag')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf(:,i,j)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(f, abs(G_enc_iff_opt(:,1,2)), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', 'IFF - Off-diag')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_enc_iff_opt(:,i,j)), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(f, 180/pi*angle(G_dvf(:,i,i)), '-')
|
|
set(gca,'ColorOrderIndex',2);
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i,i)), '-')
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plant_plates_effect_iff.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plant_plates_effect_iff
|
|
#+caption: Effect of the IFF control strategy on the transfer function from $\bm{\tau}$ to $d\bm{\mathcal{L}}_m$
|
|
#+RESULTS:
|
|
[[file:figs/enc_plant_plates_effect_iff.png]]
|
|
|
|
#+begin_important
|
|
As was predicted with the Simscape model, the IFF control strategy is very effective in damping the suspension modes of the nano-hexapod.
|
|
Little damping is also applied on the first flexible mode of the strut at 235Hz.
|
|
However, no damping is applied on other modes, such as the flexible modes of the top plate.
|
|
#+end_important
|
|
|
|
*** Comparison of the measured FRF and the Simscape model
|
|
Let's now compare the obtained damped plants obtained experimentally with the one extracted from Simscape:
|
|
- Figure [[fig:enc_plates_opt_iff_comp_simscape_all]]: the individual transfer function from $u_1^\prime$ to the six encoders are comapred
|
|
- Figure [[fig:damped_iff_plates_plant_comp_diagonal]]: all the diagonal elements are compared
|
|
- Figure [[fig:damped_iff_plates_plant_comp_off_diagonal]]: all the off-diagonal elements are compared
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the plants (encoder output) when tuning the misalignment
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
i_input = 1;
|
|
|
|
figure;
|
|
tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_enc_iff_opt(:, 1, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]');
|
|
title(sprintf('$d\\tau_{m1}/u_{%i}$', i_input));
|
|
|
|
ax2 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_enc_iff_opt(:, 2, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(2, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
title(sprintf('$d\\tau_{m2}/u_{%i}$', i_input));
|
|
|
|
ax3 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_enc_iff_opt(:, 3, i_input)), ...
|
|
'DisplayName', 'Meas.');
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(3, i_input), freqs, 'Hz'))), ...
|
|
'DisplayName', 'Model');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
legend('location', 'southeast', 'FontSize', 8);
|
|
title(sprintf('$d\\tau_{m3}/u_{%i}$', i_input));
|
|
|
|
ax4 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_enc_iff_opt(:, 4, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(4, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]');
|
|
title(sprintf('$d\\tau_{m4}/u_{%i}$', i_input));
|
|
|
|
ax5 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_enc_iff_opt(:, 5, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(5, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
title(sprintf('$d\\tau_{m5}/u_{%i}$', i_input));
|
|
|
|
ax6 = nexttile();
|
|
hold on;
|
|
plot(f, abs(G_enc_iff_opt(:, 6, i_input)));
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(6, i_input), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
title(sprintf('$d\\tau_{m6}/u_{%i}$', i_input));
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy');
|
|
xlim([20, 2e3]); ylim([1e-8, 1e-4]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/enc_plates_opt_iff_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:enc_plates_opt_iff_comp_simscape_all
|
|
#+caption: FRF from one actuator to all the encoders when the plant is damped using IFF
|
|
#+RESULTS:
|
|
[[file:figs/enc_plates_opt_iff_comp_simscape_all.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Diagonal Elements FRF
|
|
plot(f, abs(G_enc_iff_opt(:,1,1)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF')
|
|
for i = 2:6
|
|
plot(f, abs(G_enc_iff_opt(:,i,i)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))), '-', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_{exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-4]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i,i)), 'color', [colors(1,:), 0.2]);
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/damped_iff_plates_plant_comp_diagonal.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:damped_iff_plates_plant_comp_diagonal
|
|
#+caption: Comparison of the diagonal elements of the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ with active damping (IFF) applied with an optimal gain $g = 400$
|
|
#+RESULTS:
|
|
[[file:figs/damped_iff_plates_plant_comp_diagonal.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Off diagonal FRF
|
|
plot(f, abs(G_enc_iff_opt(:,1,2)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_enc_iff_opt(:,i,j)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,2), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/V_{exc}$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-4]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
% Off diagonal FRF
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i,j)), 'color', [colors(1,:), 0.2]);
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/damped_iff_plates_plant_comp_off_diagonal.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:damped_iff_plates_plant_comp_off_diagonal
|
|
#+caption: Comparison of the off-diagonal elements of the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ with active damping (IFF) applied with an optimal gain $g = 400$
|
|
#+RESULTS:
|
|
[[file:figs/damped_iff_plates_plant_comp_off_diagonal.png]]
|
|
|
|
#+begin_important
|
|
From Figures [[fig:damped_iff_plates_plant_comp_diagonal]] and [[fig:damped_iff_plates_plant_comp_off_diagonal]], it is clear that the Simscape model very well represents the dynamics of the nano-hexapod.
|
|
This is true to around 400Hz, then the dynamics depends on the flexible modes of the top plate which are not modelled.
|
|
#+end_important
|
|
|
|
*** TODO Paper MEDSI :noexport:
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Undamped FRF
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}/u$')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements FRF
|
|
plot(f, abs(G_enc_iff_opt(:,1,1)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', 'FRF - $d\mathcal{L}/u^\prime$')
|
|
for i = 2:6
|
|
plot(f, abs(G_enc_iff_opt(:,i,i)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '--', ...
|
|
'DisplayName', 'Model')
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [0,0,0,0.2]);
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i,i)), 'color', [colors(1,:), 0.2]);
|
|
end
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '--');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_identification_damp_comp_simscape.pdf', 'width', 'half', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_identification_damp_comp_simscape.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Undamped FRF
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}/u$')
|
|
for i = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements FRF
|
|
plot(f, abs(G_enc_iff_opt(:,1,1)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}/u^\prime$')
|
|
for i = 2:6
|
|
plot(f, abs(G_enc_iff_opt(:,i,i)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
% Diagonal Elements Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '-', 'LineWidth', 1, 'color', colors(2,:), ...
|
|
'DisplayName', 'Model')
|
|
for i = 2:6
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,i), freqs, 'Hz'))), '-', 'LineWidth', 1, 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
% Off diagonal terms
|
|
plot(f, abs(G_dvf(:, 1, 2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF')
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dvf(:, i, j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
% Off diagonal FRF
|
|
plot(f, abs(G_enc_iff_opt(:,1,2)), 'color', [colors(1,:), 0.2])
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_enc_iff_opt(:,i,j)), 'color', [colors(1,:), 0.2]);
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,2), freqs, 'Hz'))), '-', 'LineWidth', 1)
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))));
|
|
end
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [0,0,0,0.2]);
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i,i)), 'color', [colors(1,:), 0.2]);
|
|
end
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '-', 'LineWidth', 1);
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
% for i = 1:5
|
|
% for j = i+1:6
|
|
% plot(f, 180/pi*angle(G_dvf(:, i, j)), 'color', [0,0,0,0.2]);
|
|
% end
|
|
% end
|
|
|
|
% Off diagonal FRF
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i,j)), 'color', [colors(1,:), 0.2]);
|
|
end
|
|
end
|
|
|
|
% Off diagonal Model
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i,j), freqs, 'Hz'))), 'LineWidth', 1);
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]');
|
|
hold off;
|
|
ylim([-180, 180]);
|
|
set(gca, 'YTickLabel',[]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
i_in = 1;
|
|
i_out = 6;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% OL - FRF
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [colors(1,:), 0.5], ...
|
|
'DisplayName', '$d\mathcal{L}/u$')
|
|
|
|
% IFF - FRF
|
|
plot(f, abs(G_enc_iff_opt(:,1,1)), 'color', [colors(2,:), 0.5], ...
|
|
'DisplayName', '$d\mathcal{L}/u^\prime$')
|
|
|
|
% OL - Model
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '--', 'LineWidth', 1, 'color', colors(1,:), ...
|
|
'DisplayName', 'Model')
|
|
|
|
% IFF - Model
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '--', 'LineWidth', 1, 'color', colors(2,:), ...
|
|
'DisplayName', 'Model')
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,i_out,i_in)), '-', 'color', [colors(1,:), 0.5])
|
|
plot(f, abs(G_enc_iff_opt(:,i_out,i_in)), '-', 'color', [colors(2,:), 0.5])
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(i_out,i_in), freqs, 'Hz'))), '--', 'color', colors(1,:), 'LineWidth', 1)
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(i_out,i_in), freqs, 'Hz'))), '--', 'color', colors(2,:), 'LineWidth', 1)
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(f, 180/pi*angle(G_dvf(:,1, 1)), '-', 'color', [colors(1,:), 0.5]);
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,1,1)), '-', 'color', [colors(2,:), 0.5]);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '--', 'color', colors(1,:), 'LineWidth', 1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '--', 'color', colors(2,:), 'LineWidth', 1);
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
plot(f, 180/pi*angle(G_dvf(:,i_out,i_in)), '-', 'color', [colors(1,:), 0.5]);
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i_out,i_in)), '-', 'color', [colors(2,:), 0.5]);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_ol(i_out,i_in), freqs, 'Hz'))), '--', 'color', colors(1,:), 'LineWidth', 1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(i_out,i_in), freqs, 'Hz'))), '--', 'color', colors(2,:), 'LineWidth', 1);
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]');
|
|
hold off;
|
|
ylim([-180, 180]);
|
|
set(gca, 'YTickLabel',[]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_identification_damp_comp_simscape_both.pdf', 'width', 'half', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_identification_damp_comp_simscape_both.png]]
|
|
|
|
*** MEDSI Talk :noexport:
|
|
#+begin_src matlab
|
|
%% Load identification data
|
|
load('identified_plants_enc_plates.mat', 'f', 'Ts', 'G_iff', 'G_dvf')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal elements of the DVF plant
|
|
freqs = logspace(log10(20), 3, 1000);
|
|
|
|
colors = colororder;
|
|
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 1)), 'color', [colors(1,:),0.2], ...
|
|
'DisplayName', 'FRF - $d_{e,i}/V_{a,i}$')
|
|
for i = 2:6
|
|
plot(f, abs(G_dvf(:,i, i)), 'color', [colors(1,:),0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(f, abs(G_enc_iff_opt(:,1, 1)), 'color', [colors(2,:),0.2], ...
|
|
'DisplayName', 'FRF - $d_{e,i}/V_{a,i}^\prime$')
|
|
for i = 2:6
|
|
plot(f, abs(G_enc_iff_opt(:,i, i)), 'color', [colors(2,:),0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '--', 'color', colors(1,:), ...
|
|
'DisplayName', 'Model - $d_{e,i}/V_{a,i}$')
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '--', 'color', colors(2,:), ...
|
|
'DisplayName', 'Model - $d_{e,i}/V_{a,i}^\prime$')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([3e-7, 1e-3]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(G_dvf(:,1, 2)), 'color', [colors(1,:),0.5], ...
|
|
'DisplayName', 'FRF - $d_{e,1}/V_{a,2}$')
|
|
plot(f, abs(G_enc_iff_opt(:,1, 2)), 'color', [colors(2,:),0.5], ...
|
|
'DisplayName', 'FRF - $d_{e,1}/V_{a,2}^\prime$')
|
|
plot(freqs, abs(squeeze(freqresp(Gd_ol(1,2), freqs, 'Hz'))), '--', 'color', colors(1,:), ...
|
|
'DisplayName', 'Model - $d_{e,1}/V_{a,2}$')
|
|
plot(freqs, abs(squeeze(freqresp(Gd_iff(1,2), freqs, 'Hz'))), '--', 'color', colors(2,:), ...
|
|
'DisplayName', 'Model - $d_{e,1}/V_{a,2}^\prime$')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'YTickLabel',[]); set(gca, 'XTickLabel',[]);
|
|
ylim([3e-7, 1e-3]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_dvf(:,i, i)), 'color', [colors(1,:),0.2]);
|
|
end
|
|
for i = 1:6
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,i, i)), 'color', [colors(2,:),0.2]);
|
|
end
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_ol(1,1), freqs, 'Hz'))), '--', 'color', colors(1,:));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(1,1), freqs, 'Hz'))), '--', 'color', colors(2,:));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
plot(f, 180/pi*angle(G_dvf(:,1, 2)), 'color', [colors(1,:),0.5]);
|
|
plot(f, 180/pi*angle(G_enc_iff_opt(:,1, 2)), 'color', [colors(2,:),0.5]);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_ol(1,2), freqs, 'Hz'))), '--', 'color', colors(1,:));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd_iff(1,2), freqs, 'Hz'))), '--', 'color', colors(2,:));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nano_hexapod_damped_bode_plot.pdf', 'width', 1500, 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:nano_hexapod_damped_bode_plot
|
|
#+caption:
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_damped_bode_plot.png]]
|
|
|
|
*** Save Damped Plant
|
|
The experimentally identified plant is saved for further use.
|
|
#+begin_src matlab :exports none:tangle no
|
|
save('matlab/mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')
|
|
#+end_src
|
|
|
|
** Effect of Payload mass - Robust IFF
|
|
<<sec:added_mass>>
|
|
*** Introduction :ignore:
|
|
In this section, the encoders are fixed to the plates, and we identify the dynamics for several payloads.
|
|
The added payload are half cylinders, and three layers can be added for a total of around 40kg (Figure [[fig:picture_added_3_masses]]).
|
|
|
|
#+name: fig:picture_added_3_masses
|
|
#+caption: Picture of the nano-hexapod with added mass
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/picture_added_3_masses.jpg]]
|
|
|
|
First the dynamics from $\bm{u}$ to $d\mathcal{L}_m$ and $\bm{\tau}_m$ is identified.
|
|
Then, the Integral Force Feedback controller is developed and applied as shown in Figure [[fig:nano_hexapod_signals_iff]].
|
|
Finally, the dynamics from $\bm{u}^\prime$ to $d\mathcal{L}_m$ is identified and the added damping can be estimated.
|
|
|
|
#+begin_src latex :file nano_hexapod_signals_iff.pdf
|
|
\definecolor{instrumentation}{rgb}{0, 0.447, 0.741}
|
|
\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098}
|
|
\definecolor{control}{rgb}{0.4660, 0.6740, 0.1880}
|
|
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={4.0cm}{3.0cm}, fill=mechanics!20!white] (nano_hexapod) {Mechanics};
|
|
\coordinate[] (inputF) at (nano_hexapod.west);
|
|
\coordinate[] (outputL) at ($(nano_hexapod.south east)!0.8!(nano_hexapod.north east)$);
|
|
\coordinate[] (outputF) at ($(nano_hexapod.south east)!0.2!(nano_hexapod.north east)$);
|
|
|
|
\node[block, left= 0.8 of inputF, fill=instrumentation!20!white, align=center] (F_stack) {\tiny Actuator \\ \tiny stacks};
|
|
\node[block, left= 0.8 of F_stack, fill=instrumentation!20!white] (PD200) {PD200};
|
|
\node[DAC, left= 0.8 of PD200, fill=instrumentation!20!white] (F_DAC) {DAC};
|
|
\node[block, right=0.8 of outputF, fill=instrumentation!20!white, align=center] (Fm_stack){\tiny Sensor \\ \tiny stack};
|
|
\node[ADC, right=0.8 of Fm_stack,fill=instrumentation!20!white] (Fm_ADC) {ADC};
|
|
\node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder};
|
|
\node[addb, left= 0.8 of F_DAC, fill=control!20!white] (add_iff) {};
|
|
\node[block, below=0.8 of add_iff, fill=control!20!white] (Kiff) {\tiny $K_{\text{IFF}}(s)$};
|
|
|
|
% Connections and labels
|
|
\draw[->] (add_iff.east) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west);
|
|
\draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west);
|
|
\draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west);
|
|
\draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$};
|
|
|
|
\draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$};
|
|
\draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west);
|
|
\draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$};
|
|
|
|
\draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$};
|
|
\draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$};
|
|
|
|
\draw[->] ($(Fm_ADC.east)+(0.14,0)$) node[branch]{} -- node[sloped]{$/$} ++(0, -1.8) -| (Kiff.south);
|
|
\draw[->] (Kiff.north) -- node[sloped]{$/$} (add_iff.south);
|
|
\draw[->] ($(add_iff.west)+(-0.8,0)$) node[above right]{$\bm{u}^\prime$} node[below right]{$[V]$} -- node[sloped]{$/$} (add_iff.west);
|
|
|
|
% Nano-Hexapod
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(F_stack.west|-nano_hexapod.south) (Fm_stack.east|-nano_hexapod.north)}, fill=black!20!white, draw, inner sep=2pt] (system) {};
|
|
\node[above] at (system.north) {Nano-Hexapod};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:nano_hexapod_signals_iff
|
|
#+caption: Block Diagram of the experimental setup and model
|
|
#+RESULTS:
|
|
[[file:figs/nano_hexapod_signals_iff.png]]
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports none
|
|
addpath('./matlab/mat/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no :exports none
|
|
addpath('./mat/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Measured Frequency Response Functions
|
|
The identification is performed without added mass, and with one, two and three layers of added cylinders.
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
The following data are loaded:
|
|
- =Va=: the excitation voltage (corresponding to $u_i$)
|
|
- =Vs=: the generated voltage by the 6 force sensors (corresponding to $\bm{\tau}_m$)
|
|
- =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$)
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_added_mass = {};
|
|
|
|
for i_mass = i_masses
|
|
for i_strut = 1:6
|
|
meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_%im.mat', i_strut, i_mass), 't', 'Va', 'Vs', 'de')};
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
The window =win= and the frequency vector =f= are defined.
|
|
#+begin_src matlab
|
|
% Sampling Time [s]
|
|
Ts = (meas_added_mass{1,1}.t(end) - (meas_added_mass{1,1}.t(1)))/(length(meas_added_mass{1,1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified:
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dL = {};
|
|
|
|
for i_mass = i_masses
|
|
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
|
|
for i_strut = 1:6
|
|
G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de, win, [], [], 1/Ts);
|
|
end
|
|
end
|
|
|
|
%% IFF Plant (transfer function from u to taum)
|
|
G_tau = {};
|
|
|
|
for i_mass = i_masses
|
|
G_tau(i_mass+1) = {zeros(length(f), 6, 6)};
|
|
for i_strut = 1:6
|
|
G_tau{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.Vs, win, [], [], 1/Ts);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL')
|
|
#+end_src
|
|
|
|
*** Transfer function from Actuators to Encoders
|
|
#+begin_src matlab :exports none
|
|
frf_ol = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL');
|
|
#+end_src
|
|
|
|
The transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ are shown in Figure [[fig:comp_plant_payloads_dvf]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,1, 1)), 'color', colors(i_mass+1,:), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - %i', i_mass));
|
|
for i = 2:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i =1:6
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_plant_payloads_dvf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_plant_payloads_dvf
|
|
#+caption: Measured Frequency Response Functions from $u_i$ to $d\mathcal{L}_{m,i}$ for all 4 payload conditions
|
|
#+RESULTS:
|
|
[[file:figs/comp_plant_payloads_dvf.png]]
|
|
|
|
|
|
#+begin_important
|
|
From Figure [[fig:comp_plant_payloads_dvf]], we can observe few things:
|
|
- The obtained dynamics is changing a lot between the case without mass and when there is at least one added mass.
|
|
- Between 1, 2 and 3 added masses, the dynamics is not much different, and it would be easier to design a controller only for these cases.
|
|
- The flexible modes of the top plate is first decreased a lot when the first mass is added (from 700Hz to 400Hz).
|
|
This is due to the fact that the added mass is composed of two half cylinders which are not fixed together.
|
|
Therefore is adds a lot of mass to the top plate without adding a lot of rigidity in one direction.
|
|
When more than 1 mass layer is added, the half cylinders are added with some angles such that rigidity are added in all directions (see Figure [[fig:picture_added_3_masses]]).
|
|
In that case, the frequency of these flexible modes are increased.
|
|
In practice, the payload should be one solid body, and we should not see a massive decrease of the frequency of this flexible mode.
|
|
- Flexible modes of the top plate are becoming less problematic as masses are added.
|
|
- First flexible mode of the strut at 230Hz is not much decreased when mass is added.
|
|
However, its apparent amplitude is much decreased.
|
|
#+end_important
|
|
|
|
*** Transfer function from Actuators to Force Sensors
|
|
The transfer functions from $u_i$ to $\tau_{m,i}$ are shown in Figure [[fig:comp_plant_payloads_iff]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
set(gca, 'ColorOrderIndex', i_mass+1)
|
|
plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,1, 1)), ...
|
|
'DisplayName', sprintf('$\\tau_{m,i}/u_i$ - %i', i_mass));
|
|
for i = 2:6
|
|
set(gca, 'ColorOrderIndex', i_mass+1)
|
|
plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,i, i)), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e2]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i_mass+1)
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau{i_mass+1}(:,i, i)));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_plant_payloads_iff.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_plant_payloads_iff
|
|
#+caption: Measured Frequency Response Functions from $u_i$ to $\tau_{m,i}$ for all 4 payload conditions
|
|
#+RESULTS:
|
|
[[file:figs/comp_plant_payloads_iff.png]]
|
|
|
|
#+begin_important
|
|
From Figure [[fig:comp_plant_payloads_iff]], we can see that for all added payloads, the transfer function from $u_i$ to $\tau_{m,i}$ always has alternating poles and zeros.
|
|
#+end_important
|
|
|
|
** Comparison with the Simscape model
|
|
*** Introduction :ignore:
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
addpath('matlab/vibration-table/matlab/')
|
|
addpath('matlab/vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
addpath('vibration-table/matlab/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Load the identified FRF
|
|
frf_ol = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
open(mdl)
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** System Identification
|
|
Let's initialize the simscape model with the nano-hexapod fixed on top of the vibration table.
|
|
#+begin_src matlab
|
|
support.type = 1; % On top of vibration table
|
|
#+end_src
|
|
|
|
The model of the nano-hexapod is defined as shown bellow:
|
|
#+begin_src matlab
|
|
%% Initialize Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...
|
|
'flex_top_type', '3dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', '2dof');
|
|
#+end_src
|
|
|
|
And finally, we add the same payloads as during the experiments:
|
|
#+begin_src matlab
|
|
payload.type = 1; % Payload / 1 "mass layer"
|
|
#+end_src
|
|
|
|
First perform the identification for the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$:
|
|
#+begin_src matlab
|
|
%% Identify the DVF Plant (transfer function from u to dLm)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders
|
|
|
|
%% Identification for all the added payloads
|
|
G_dL = {};
|
|
|
|
for i = i_masses
|
|
fprintf('i = %i\n', i)
|
|
payload.type = i;
|
|
G_dL(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the IFF Plant (transfer function from u to taum)
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
|
|
|
|
%% Identification for all the added payloads
|
|
G_tau = {};
|
|
|
|
for i = 0:3
|
|
fprintf('i = %i\n', i)
|
|
payload.type = i;
|
|
G_tau(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/sim_vib_table_m.mat', 'G_tau', 'G_dL')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/sim_vib_table_m.mat', 'G_tau', 'G_dL')
|
|
#+end_src
|
|
|
|
*** Transfer function from Actuators to Encoders
|
|
#+begin_src matlab :exports none
|
|
sim_m = load('sim_vib_table_m.mat', 'G_tau', 'G_dL');
|
|
#+end_src
|
|
|
|
The measured FRF and the identified dynamics from $u_i$ to $d\mathcal{L}_{m,i}$ are compared in Figure [[fig:comp_masses_model_exp_dvf]].
|
|
A zoom near the "suspension" modes is shown in Figure [[fig:comp_masses_model_exp_dvf_zoom]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
freqs = 2*logspace(1,3,1000);
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - FRF %i', i_mass));
|
|
for i = 2:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca, 'ColorOrderIndex', i_mass+1)
|
|
plot(freqs, abs(squeeze(freqresp(sim_m.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--', ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - Sim %i', i_mass));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i =1:6
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]);
|
|
end
|
|
set(gca, 'ColorOrderIndex', i_mass+1)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(sim_m.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:45:360);
|
|
ylim([-45, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_masses_model_exp_dvf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_masses_model_exp_dvf
|
|
#+caption: Comparison of the transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ - measured FRF and identification from the Simscape model
|
|
#+RESULTS:
|
|
[[file:figs/comp_masses_model_exp_dvf.png]]
|
|
|
|
#+begin_src matlab :exports none :tangle no
|
|
ax1.YLim = [1e-6, 5e-4];
|
|
xlim([40, 2e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_masses_model_exp_dvf_zoom.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_masses_model_exp_dvf_zoom
|
|
#+caption: Comparison of the transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ - measured FRF and identification from the Simscape model (Zoom)
|
|
#+RESULTS:
|
|
[[file:figs/comp_masses_model_exp_dvf_zoom.png]]
|
|
|
|
#+begin_important
|
|
The Simscape model is very accurately representing the measured dynamics up.
|
|
Only the flexible modes of the struts and of the top plate are not represented here as these elements are modelled as rigid bodies.
|
|
#+end_important
|
|
|
|
*** Transfer function from Actuators to Force Sensors
|
|
The measured FRF and the identified dynamics from $u_i$ to $\tau_{m,i}$ are compared in Figure [[fig:comp_masses_model_exp_iff]].
|
|
A zoom near the "suspension" modes is shown in Figure [[fig:comp_masses_model_exp_iff_zoom]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
freqs = 2*logspace(1,3,1000);
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = 0:3
|
|
plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'DisplayName', sprintf('$d\\tau_{m,i}/u_i$ - FRF %i', i_mass));
|
|
for i = 2:6
|
|
plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(sim_m.G_tau{i_mass+1}(1,1), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:), ...
|
|
'DisplayName', sprintf('$\\tau_{m,i}/u_i$ - Sim %i', i_mass));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e2]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = 0:3
|
|
for i =1:6
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]);
|
|
end
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(sim_m.G_tau{i_mass+1}(i,i), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_masses_model_exp_iff.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_masses_model_exp_iff
|
|
#+caption: Comparison of the transfer functions from $u_i$ to $\tau_{m,i}$ - measured FRF and identification from the Simscape model
|
|
#+RESULTS:
|
|
[[file:figs/comp_masses_model_exp_iff.png]]
|
|
|
|
#+begin_src matlab :exports none :tangle no
|
|
xlim([40, 2e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_masses_model_exp_iff_zoom.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_masses_model_exp_iff_zoom
|
|
#+caption: Comparison of the transfer functions from $u_i$ to $\tau_{m,i}$ - measured FRF and identification from the Simscape model (Zoom)
|
|
#+RESULTS:
|
|
[[file:figs/comp_masses_model_exp_iff_zoom.png]]
|
|
|
|
** Integral Force Feedback Controller
|
|
*** Introduction :ignore:
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
addpath('matlab/vibration-table/matlab/')
|
|
addpath('matlab/vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
addpath('vibration-table/matlab/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Load the identified FRF and Simscape model
|
|
frf_ol = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL');
|
|
sim_ol = load('sim_vib_table_m.mat', 'G_tau', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Robust IFF Controller
|
|
Based on the measured FRF from $u_i$ to $\tau_{m,i}$, the following IFF controller is developed:
|
|
#+begin_src matlab
|
|
%% IFF Controller
|
|
Kiff_g1 = (1/(s + 2*pi*20))*... % LPF: provides integral action above 20[Hz]
|
|
(s/(s + 2*pi*20))*... % HPF: limit low frequency gain
|
|
(1/(1 + s/2/pi/400)); % LPF: more robust to high frequency resonances
|
|
#+end_src
|
|
|
|
Then, the Root Locus plot of Figure [[fig:iff_root_locus_masses]] is used to estimate the optimal gain.
|
|
This Root Locus plot is computed from the Simscape model.
|
|
#+begin_src matlab :exports none
|
|
%% Root Locus for IFF
|
|
gains = -logspace(1, 3, 100);
|
|
|
|
figure;
|
|
|
|
hold on;
|
|
% Pure Integrator
|
|
for i_mass = 0:3
|
|
plot(real(pole(sim_ol.G_tau{i_mass+1})), imag(pole(sim_ol.G_tau{i_mass+1})), 'x', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('OL Poles - %i', i_mass));
|
|
plot(real(tzero(sim_ol.G_tau{i_mass+1})), imag(tzero(sim_ol.G_tau{i_mass+1})), 'o', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
|
|
for i_mass = 0:3
|
|
for g = gains
|
|
clpoles = pole(feedback(sim_ol.G_tau{i_mass+1}, g*Kiff_g1*eye(6), +1));
|
|
plot(real(clpoles), imag(clpoles), '.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
|
|
g_opt = -2e2;
|
|
|
|
clpoles = pole(feedback(sim_ol.G_tau{1}, g_opt*Kiff_g1*eye(6), +1));
|
|
plot(real(clpoles), imag(clpoles), 'kx', ...
|
|
'DisplayName', sprintf('$g = %.0f$', g_opt));
|
|
for i_mass = 1:3
|
|
clpoles = pole(feedback(sim_ol.G_tau{i_mass+1}, g_opt*Kiff_g1*eye(6), +1));
|
|
plot(real(clpoles), imag(clpoles), 'kx', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
axis square;
|
|
xlim([-600, 0]); ylim([0, 1400]);
|
|
xlabel('Real Part'); ylabel('Imaginary Part');
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/iff_root_locus_masses.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:iff_root_locus_masses
|
|
#+caption: Root Locus for the IFF control strategy (for all payload conditions).
|
|
#+RESULTS:
|
|
[[file:figs/iff_root_locus_masses.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Verify close-loop stability for all payloads
|
|
for i_mass = 0:3
|
|
clpoles = pole(feedback(sim_ol.G_tau{i_mass+1}, g_opt*Kiff_g1*eye(6), +1));
|
|
sum(real(clpoles)>0)
|
|
end
|
|
#+end_src
|
|
|
|
The found optimal IFF controller is:
|
|
#+begin_src matlab
|
|
%% Optimal controller
|
|
g_opt = -2e2;
|
|
Kiff = g_opt*Kiff_g1*eye(6);
|
|
#+end_src
|
|
|
|
It is saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/Kiff_opt.mat', 'Kiff')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/Kiff_opt.mat', 'Kiff')
|
|
#+end_src
|
|
|
|
The corresponding experimental loop gains are shown in Figure [[fig:iff_loop_gain_masses]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = 0:3
|
|
for i = 1:6
|
|
plot(frf_ol.f, abs(squeeze(freqresp(Kiff(i,i), frf_ol.f, 'Hz')).*frf_ol.G_tau{i_mass+1}(:,i,i)), '-', 'color', [colors(i_mass+1,:), 0.2]);
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e2]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = 0:3
|
|
for i = 1:6
|
|
plot(frf_ol.f, 180/pi*angle(squeeze(freqresp(-Kiff(i,i), frf_ol.f, 'Hz')).*frf_ol.G_tau{i_mass+1}(:,i,i)), '-', 'color', [colors(i_mass+1,:), 0.2]);
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/iff_loop_gain_masses.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:iff_loop_gain_masses
|
|
#+caption: Loop gain for the Integral Force Feedback controller
|
|
#+RESULTS:
|
|
[[file:figs/iff_loop_gain_masses.png]]
|
|
|
|
#+begin_important
|
|
Based on the above analysis:
|
|
- The same IFF controller can be used to damp the suspension modes for all payload conditions
|
|
- The IFF controller should be robust
|
|
#+end_important
|
|
|
|
*** Estimated Damped Plant from the Simscape model
|
|
Let's initialize the simscape model with the nano-hexapod fixed on top of the vibration table.
|
|
#+begin_src matlab
|
|
support.type = 1; % On top of vibration table
|
|
#+end_src
|
|
|
|
The model of the nano-hexapod is defined as shown bellow:
|
|
#+begin_src matlab
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...
|
|
'flex_top_type', '3dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', '2dof', ...
|
|
'controller_type', 'iff');
|
|
#+end_src
|
|
|
|
And finally, we add the same payloads as during the experiments:
|
|
#+begin_src matlab
|
|
payload.type = 1; % Payload / 1 "mass layer"
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Open Simscape Model
|
|
open(mdl)
|
|
|
|
%% Make sure IFF controller is loaded
|
|
load('mat/Kiff_opt.mat', 'Kiff')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the (damped) transfer function from u to dLm
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)
|
|
|
|
%% Identify for all add masses
|
|
G_dL = {};
|
|
|
|
for i = i_masses
|
|
payload.type = i;
|
|
G_dL(i+1) = {exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options)};
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/sim_iff_vib_table_m.mat', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/sim_iff_vib_table_m.mat', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Verify Stability
|
|
for i = i_masses
|
|
isstable(sim_iff.G_dL{i+1})
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
freqs = logspace(1,3,1000);
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i = 1
|
|
plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL{i_mass+1}(i,i), freqs, 'Hz'))), '-', 'color', [colors(i_mass+1, :), 0.5], ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_i/u_i$ - %i', i_mass));
|
|
plot(freqs, abs(squeeze(freqresp(sim_iff.G_dL{i_mass+1}(i,i), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_i/u^\\prime_i$ - %i', i_mass));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 4);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i = 1
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '-', 'color', [colors(i_mass+1, :), 0.5]);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(sim_iff.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/damped_plant_model_masses.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:damped_plant_model_masses
|
|
#+caption: Transfer function from $u_i$ to $d\mathcal{L}_{m,i}$ (without active damping) and from $u^\prime_i$ to $d\mathcal{L}_{m,i}$ (with IFF)
|
|
#+RESULTS:
|
|
[[file:figs/damped_plant_model_masses.png]]
|
|
|
|
*** Compute the identified FRF with IFF
|
|
The identification is performed without added mass, and with one, two and three layers of added cylinders.
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
The following data are loaded:
|
|
- =Va=: the excitation voltage for the damped plant (corresponding to $u^\prime_i$)
|
|
- =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$)
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_added_mass = {};
|
|
|
|
for i_mass = i_masses
|
|
for i_strut = 1:6
|
|
meas_iff_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_iff_vib_table_%im.mat', i_strut, i_mass), 't', 'Va', 'de')};
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
The window =win= and the frequency vector =f= are defined.
|
|
#+begin_src matlab
|
|
% Sampling Time [s]
|
|
Ts = (meas_iff_mass{1,1}.t(end) - (meas_iff_mass{1,1}.t(1)))/(length(meas_iff_mass{1,1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_iff_mass{1,1}.Va, meas_iff_mass{1,1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
Finally the $6 \times 6$ transfer function matrix from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is estimated:
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dL = {};
|
|
|
|
for i_mass = i_masses
|
|
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
|
|
for i_strut = 1:6
|
|
G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_iff_mass{i_strut, i_mass+1}.Va, meas_iff_mass{i_strut, i_mass+1}.de, win, [], [], 1/Ts);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
*** Comparison of the measured FRF and the Simscape model
|
|
#+begin_src matlab :exports none
|
|
%% Load the Measured FRF of the damped plant
|
|
frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
The following figures are computed:
|
|
- Figure [[fig:damped_iff_plant_meas_frf]]: the measured damped FRF are displayed
|
|
- Figure [[fig:comp_undamped_damped_plant_meas_frf]]: the open-loop and damped FRF are compared (diagonal elements)
|
|
- Figure [[fig:comp_iff_plant_frf_sim]]: the obtained damped FRF is compared with the identified damped from using the Simscape model
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal and Off Diagonal elements of the damped plants
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,1)), 'color', colors(i_mass+1,:), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u^\\prime_i$ - %i', i_mass));
|
|
for i = 2:6
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i,i)), 'color', colors(i_mass+1,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,2)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u^\\prime_j$ - %i', i_mass));
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-4]);
|
|
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(frf_iff.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/damped_iff_plant_meas_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:damped_iff_plant_meas_frf
|
|
#+caption: Diagonal and off-diagonal of the measured FRF matrix for the damped plant
|
|
#+RESULTS:
|
|
[[file:figs/damped_iff_plant_meas_frf.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the OL and IFF identified FRF
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,1,1)), '-', 'color', [colors(i_mass+1, :), 0.5], ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_i/u_i$ - %i', i_mass));
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,1)), '-', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_i/u^\\prime_i$ - %i', i_mass));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-7, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL{i_mass+1}(:,1,1)), '-', 'color', [colors(i_mass+1, :), 0.5]);
|
|
plot(frf_iff.f, 180/pi*angle(frf_iff.G_dL{i_mass+1}(:,1,1)), '-', 'color', colors(i_mass+1, :));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_undamped_damped_plant_meas_frf.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_undamped_damped_plant_meas_frf
|
|
#+caption: Damped and Undamped measured FRF (diagonal elements)
|
|
#+RESULTS:
|
|
[[file:figs/comp_undamped_damped_plant_meas_frf.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the measured FRF and identified TF of the damped plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
freqs = logspace(1,3,1000);
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u^\\prime_i$ - FRF %i', i_mass));
|
|
for i = 2:6
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
set(gca, 'ColorOrderIndex', i_mass+1)
|
|
plot(freqs, abs(squeeze(freqresp(sim_iff.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--', ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u^\\prime_i$ - Sim %i', i_mass));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-4]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(frf_iff.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]);
|
|
end
|
|
set(gca, 'ColorOrderIndex', i_mass+1)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(sim_iff.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/comp_iff_plant_frf_sim.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:comp_iff_plant_frf_sim
|
|
#+caption: Comparison of the measured FRF and the identified dynamics from the Simscape model
|
|
#+RESULTS:
|
|
[[file:figs/comp_iff_plant_frf_sim.png]]
|
|
|
|
#+begin_important
|
|
The IFF control strategy effectively damps all the suspensions modes of the nano-hexapod whatever the payload is.
|
|
The obtained plant is easier to control (provided the flexible modes of the top platform are well damped).
|
|
#+end_important
|
|
|
|
*** Change of coupling with IFF
|
|
The added damping using IFF reduces the coupling in the system near the suspensions modes that are damped.
|
|
It can be estimated by taking the ratio of the diagonal-term and the off-diagonal term.
|
|
|
|
This is shown in Figure [[fig:reduced_coupling_iff_masses]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Estimation of the coupling and comparison between OL and IFF
|
|
figure;
|
|
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile;
|
|
hold on;
|
|
i_mass = 0
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,1,2))./abs(frf_ol.G_dL{i_mass+1}(:,1,1)), 'color', [colors(1,:), 0.5], ...
|
|
'DisplayName', 'OL - 0');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,2))./abs(frf_iff.G_dL{i_mass+1}(:,1,1)), 'color', [colors(2,:), 0.5], ...
|
|
'DisplayName', 'IFF - 0');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,i,j))./abs(frf_ol.G_dL{i_mass+1}(:,i,i)), 'color', [colors(1,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i,j))./abs(frf_iff.G_dL{i_mass+1}(:,i,i)), 'color', [colors(2,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
set(gca, 'XTickLabel',[]); ylabel('Amplitude [-]');
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
i_mass = 1
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,1,2))./abs(frf_ol.G_dL{i_mass+1}(:,1,1)), 'color', [colors(1,:), 0.5], ...
|
|
'DisplayName', 'OL - 0');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,2))./abs(frf_iff.G_dL{i_mass+1}(:,1,1)), 'color', [colors(2,:), 0.5], ...
|
|
'DisplayName', 'IFF - 0');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,i,j))./abs(frf_ol.G_dL{i_mass+1}(:,i,i)), 'color', [colors(1,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i,j))./abs(frf_iff.G_dL{i_mass+1}(:,i,i)), 'color', [colors(2,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax3 = nexttile;
|
|
hold on;
|
|
i_mass = 2
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,1,2))./abs(frf_ol.G_dL{i_mass+1}(:,1,1)), 'color', [colors(1,:), 0.5], ...
|
|
'DisplayName', 'OL - 0');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,2))./abs(frf_iff.G_dL{i_mass+1}(:,1,1)), 'color', [colors(2,:), 0.5], ...
|
|
'DisplayName', 'IFF - 0');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,i,j))./abs(frf_ol.G_dL{i_mass+1}(:,i,i)), 'color', [colors(1,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i,j))./abs(frf_iff.G_dL{i_mass+1}(:,i,i)), 'color', [colors(2,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude [-]');
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
ax4 = nexttile;
|
|
hold on;
|
|
i_mass = 3
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,1,2))./abs(frf_ol.G_dL{i_mass+1}(:,1,1)), 'color', [colors(1,:), 0.5], ...
|
|
'DisplayName', 'OL - 0');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1,2))./abs(frf_iff.G_dL{i_mass+1}(:,1,1)), 'color', [colors(2,:), 0.5], ...
|
|
'DisplayName', 'IFF - 0');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_ol.G_dL{i_mass+1}(:,i,j))./abs(frf_ol.G_dL{i_mass+1}(:,i,i)), 'color', [colors(1,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i,j))./abs(frf_iff.G_dL{i_mass+1}(:,i,i)), 'color', [colors(2,:), 0.5], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
|
|
legend('location', 'northwest', 'FontSize', 8);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'xy');
|
|
ylim([0, 1]); xlim([10, 5e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/reduced_coupling_iff_masses.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:reduced_coupling_iff_masses
|
|
#+caption: Comparison of the coupling with and without IFF
|
|
#+RESULTS:
|
|
[[file:figs/reduced_coupling_iff_masses.png]]
|
|
|
|
** Un-Balanced mass
|
|
*** Introduction
|
|
|
|
#+name: fig:picture_unbalanced_payload
|
|
#+caption: Nano-Hexapod with unbalanced payload
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/picture_unbalanced_payload.jpg]]
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
addpath('matlab/vibration-table/matlab/')
|
|
addpath('matlab/vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
addpath('vibration-table/matlab/')
|
|
addpath('vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
|
|
|
|
*** Compute the identified FRF with IFF
|
|
The following data are loaded:
|
|
- =Va=: the excitation voltage for the damped plant (corresponding to $u^\prime_i$)
|
|
- =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$)
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_added_mass = {zeros(6,1)};
|
|
|
|
for i_strut = 1:6
|
|
meas_iff_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_iff_vib_table_1m_unbalanced.mat', i_strut), 't', 'Va', 'de')};
|
|
end
|
|
#+end_src
|
|
|
|
The window =win= and the frequency vector =f= are defined.
|
|
#+begin_src matlab
|
|
% Sampling Time [s]
|
|
Ts = (meas_iff_mass{1}.t(end) - (meas_iff_mass{1}.t(1)))/(length(meas_iff_mass{1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_iff_mass{1}.Va, meas_iff_mass{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
Finally the $6 \times 6$ transfer function matrix from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ is estimated:
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dL = zeros(length(f), 6, 6);
|
|
for i_strut = 1:6
|
|
G_dL(:,:,i_strut) = tfestimate(meas_iff_mass{i_strut}.Va, meas_iff_mass{i_strut}.de, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/frf_iff_unbalanced_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/frf_iff_unbalanced_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
*** Effect of an unbalanced payload
|
|
#+begin_src matlab :exports none
|
|
%% Load the Measured FRF of the damped plant
|
|
frf_unb_iff = load('frf_iff_unbalanced_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
The transfer functions from $u_i$ to $d\mathcal{L}_i$ are shown in Figure [[fig:frf_damp_unbalanced_mass]].
|
|
Due to the unbalanced payload, the system is not symmetrical anymore, and therefore each of the diagonal elements are not equal.
|
|
This is due to the fact that each strut is not affected by the same inertia.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal and Off Diagonal elements of the damped plants
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_unb_iff.f, abs(frf_unb_iff.G_dL(:,i,i)), 'color', colors(i,:), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,%i}/u^\\prime_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([5e-8, 3e-5]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_unb_iff.f, 180/pi*angle(frf_unb_iff.G_dL(:,i, i)), 'color', colors(i,:));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_damp_unbalanced_mass.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_damp_unbalanced_mass
|
|
#+caption: Transfer function from $u_i$ to $d\mathcal{L}_i$ for the nano-hexapod with an unbalanced payload
|
|
#+RESULTS:
|
|
[[file:figs/frf_damp_unbalanced_mass.png]]
|
|
|
|
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied.
|
|
|
|
It has been found that:
|
|
- The measured dynamics is in agreement with the dynamics of the simscape model, up to the flexible modes of the top plate.
|
|
See figures [[fig:enc_plates_iff_comp_simscape]] and [[fig:enc_plates_iff_comp_offdiag_simscape]] for the transfer function to the force sensors and Figures [[fig:enc_plates_dvf_comp_simscape]] and [[fig:enc_plates_dvf_comp_offdiag_simscape]]for the transfer functions to the encoders
|
|
- The Integral Force Feedback strategy is very effective in damping the suspension modes of the nano-hexapod (Figure [[fig:enc_plant_plates_effect_iff]]).
|
|
- The transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ show nice dynamical properties and is a much better candidate for the high-authority-control than when the encoders were fixed to the struts.
|
|
At least up to the flexible modes of the top plate, the diagonal elements of the transfer function matrix have alternating poles and zeros, and the phase is moving smoothly.
|
|
Only the flexible modes of the top plates seems to be problematic for control.
|
|
#+end_important
|
|
|
|
|
|
* Noise Budgeting :noexport:
|
|
** Introduction :ignore:
|
|
|
|
Noise sources:
|
|
- PD200 => plant
|
|
- DAC => plant x 20
|
|
- Encoder => direct output
|
|
- ADC (Force Sensor) => added when closing the loop (controller + plant)
|
|
|
|
Disturbances Sources:
|
|
- Ground motion
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
** Measurements
|
|
#+begin_src matlab
|
|
noise_enc = load('noise_meas_100s_20kHz.mat', 't', 'x');
|
|
noise_enc.Ts = (noise_enc.t(end) - (noise_enc.t(1)))/(length(noise_enc.t)-1);
|
|
noise_enc.win = hanning(ceil(1/noise_enc.Ts));
|
|
noise_enc.x = noise_enc.x - noise_enc.x(1);
|
|
[noise_enc.pxx, noise_enc.f] = pwelch(noise_enc.x, noise_enc.win, [], [], 1/noise_enc.Ts);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
noise_ol = load('noise_meas_2m_ol.mat', 't', 'Vs', 'de');
|
|
noise_ol.Ts = (noise_ol.t(end) - (noise_ol.t(1)))/(length(noise_ol.t)-1);
|
|
noise_ol.win = hanning(ceil(1/noise_ol.Ts));
|
|
[noise_ol.pxx, noise_ol.f] = pwelch(noise_ol.de(:,1), noise_ol.win, [], [], 1/noise_ol.Ts);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
noise_iff = load('noise_meas_2m_iff.mat', 't', 'de');
|
|
noise_iff.Ts = (noise_iff.t(end) - (noise_iff.t(1)))/(length(noise_iff.t)-1);
|
|
noise_iff.win = hanning(ceil(1/noise_iff.Ts));
|
|
[noise_iff.pxx, noise_iff.f] = pwelch(noise_iff.de(:,1), noise_iff.win, [], [], 1/noise_iff.Ts);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(noise_ol.f, sqrt(noise_ol.pxx), 'DisplayName', 'OL');
|
|
plot(noise_iff.f, sqrt(noise_iff.pxx), 'DisplayName', 'IFF');
|
|
plot(noise_enc.f, sqrt(noise_enc.pxx), 'DisplayName', 'Encoder');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
|
|
legend('location', 'northeast');
|
|
xlim([1, Fs/2]); ylim([1e-11, 1e-7]);
|
|
#+end_src
|
|
|
|
|
|
* Decentralized High Authority Control with Integral Force Feedback
|
|
<<sec:decentralized_hac_iff>>
|
|
|
|
** Introduction :ignore:
|
|
|
|
In this section is studied the HAC-IFF architecture for the Nano-Hexapod.
|
|
More precisely:
|
|
- The LAC control is a decentralized integral force feedback as studied in Section [[sec:enc_plates_iff]]
|
|
- The HAC control is a decentralized controller working in the frame of the struts
|
|
|
|
The corresponding control architecture is shown in Figure [[fig:control_architecture_hac_iff_struts]] with:
|
|
- $\bm{r}_{\mathcal{X}_n}$: the $6 \times 1$ reference signal in the cartesian frame
|
|
- $\bm{r}_{d\mathcal{L}}$: the $6 \times 1$ reference signal transformed in the frame of the struts thanks to the inverse kinematic
|
|
- $\bm{\epsilon}_{d\mathcal{L}}$: the $6 \times 1$ length error of the 6 struts
|
|
- $\bm{u}^\prime$: input of the damped plant
|
|
- $\bm{u}$: generated DAC voltages
|
|
- $\bm{\tau}_m$: measured force sensors
|
|
- $d\bm{\mathcal{L}}_m$: measured displacement of the struts by the encoders
|
|
|
|
#+begin_src latex :file control_architecture_hac_iff_struts.pdf
|
|
\definecolor{instrumentation}{rgb}{0, 0.447, 0.741}
|
|
\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098}
|
|
\definecolor{control}{rgb}{0.4660, 0.6740, 0.1880}
|
|
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{2.0cm}, fill=black!20!white] (P) {Plant};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$);
|
|
|
|
\node[block, below=0.4 of P, fill=control!20!white] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[block, left=0.8 of inputF, fill=instrumentation!20!white] (pd200) {\tiny PD200};
|
|
\node[addb, left=0.8 of pd200, fill=control!20!white] (addF) {};
|
|
\node[block, left=0.8 of addF, fill=control!20!white] (K) {$\bm{K}_\mathcal{L}$};
|
|
\node[addb={+}{}{-}{}{}, left=0.8 of K, fill=control!20!white] (subr) {};
|
|
\node[block, align=center, left= of subr, fill=control!20!white] (J) {\tiny Inverse\\\tiny Kinematics};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1.0, 0) node[above left]{$\bm{\tau}_m$};
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.south);
|
|
\draw[->] (addF.east) -- (pd200.west) node[above left]{$\bm{u}$};
|
|
\draw[->] (pd200.east) -- (inputF) node[above left]{$\bm{u}_a$};
|
|
|
|
\draw[->] (outputL) -- ++(1.0, 0) node[below left]{$d\bm{\mathcal{L}_m}$};
|
|
\draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, 1) -| (subr.north);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$};
|
|
\draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$};
|
|
|
|
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$};
|
|
\draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_architecture_hac_iff_struts
|
|
#+caption: HAC-LAC: IFF + Control in the frame of the legs
|
|
#+RESULTS:
|
|
[[file:figs/control_architecture_hac_iff_struts.png]]
|
|
|
|
This part is structured as follow:
|
|
- Section [[sec:hac_iff_struts_ref_track]]: some reference tracking tests are performed
|
|
- Section [[sec:hac_iff_struts_controller]]: the decentralized high authority controller is tuned using the Simscape model and is implemented and tested experimentally
|
|
- Section [[sec:interaction_analysis]]: an interaction analysis is performed, from which the best decoupling strategy can be determined
|
|
- Section [[sec:robust_hac_design]]: Robust High Authority Controller are designed
|
|
|
|
** Reference Tracking - Trajectories
|
|
<<sec:hac_iff_struts_ref_track>>
|
|
*** Introduction :ignore:
|
|
In this section, several trajectories representing the wanted pose (position and orientation) of the top platform with respect to the bottom platform are defined.
|
|
|
|
These trajectories will be used to test the HAC-LAC architecture.
|
|
|
|
In order to transform the wanted pose to the wanted displacement of the 6 struts, the inverse kinematic is required.
|
|
As a first approximation, the Jacobian matrix $\bm{J}$ can be used instead of using the full inverse kinematic equations.
|
|
|
|
Therefore, the control architecture with the input trajectory $\bm{r}_{\mathcal{X}_n}$ is shown in Figure [[fig:control_architecture_hac_iff_L]].
|
|
|
|
#+begin_src latex :file control_architecture_hac_iff_struts_L.pdf
|
|
\definecolor{instrumentation}{rgb}{0, 0.447, 0.741}
|
|
\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098}
|
|
\definecolor{control}{rgb}{0.4660, 0.6740, 0.1880}
|
|
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{2.0cm}, fill=black!20!white] (P) {Plant};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$);
|
|
|
|
\node[block, below=0.4 of P, fill=control!20!white] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[block, left=0.8 of inputF, fill=instrumentation!20!white] (pd200) {\tiny PD200};
|
|
\node[addb, left=0.8 of pd200, fill=control!20!white] (addF) {};
|
|
\node[block, left=0.8 of addF, fill=control!20!white] (K) {$\bm{K}_\mathcal{L}$};
|
|
\node[addb={+}{}{-}{}{}, left=0.8 of K, fill=control!20!white] (subr) {};
|
|
\node[block, align=center, left= of subr, fill=control!20!white] (J) {$\bm{J}$};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1.0, 0) node[above left]{$\bm{\tau}_m$};
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.south);
|
|
\draw[->] (addF.east) -- (pd200.west) node[above left]{$\bm{u}$};
|
|
\draw[->] (pd200.east) -- (inputF) node[above left]{$\bm{u}_a$};
|
|
|
|
\draw[->] (outputL) -- ++(1.0, 0) node[below left]{$d\bm{\mathcal{L}_m}$};
|
|
\draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, 1) -| (subr.north);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$};
|
|
\draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$};
|
|
|
|
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$};
|
|
\draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_architecture_hac_iff_L
|
|
#+caption: HAC-LAC: IFF + Control in the frame of the legs
|
|
#+RESULTS:
|
|
[[file:figs/control_architecture_hac_iff_struts_L.png]]
|
|
|
|
In the following sections, several reference trajectories are defined:
|
|
- Section [[sec:yz_scans]]: simple scans in the Y-Z plane
|
|
- Section [[sec:tilt_scans]]: scans in tilt are performed
|
|
- Section [[sec:nass_scans]]: scans with X-Y-Z translations in order to draw the word "NASS"
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
*** Y-Z Scans
|
|
<<sec:yz_scans>>
|
|
A function =generateYZScanTrajectory= has been developed (accessible [[sec:generateYZScanTrajectory][here]]) in order to easily generate scans in the Y-Z plane.
|
|
|
|
For instance, the following generated trajectory is represented in Figure [[fig:yz_scan_example_trajectory_yz_plane]].
|
|
#+begin_src matlab
|
|
%% Generate the Y-Z trajectory scan
|
|
Rx_yz = generateYZScanTrajectory(...
|
|
'y_tot', 4e-6, ... % Length of Y scans [m]
|
|
'z_tot', 4e-6, ... % Total Z distance [m]
|
|
'n', 5, ... % Number of Y scans
|
|
'Ts', 1e-3, ... % Sampling Time [s]
|
|
'ti', 1, ... % Time to go to initial position [s]
|
|
'tw', 0, ... % Waiting time between each points [s]
|
|
'ty', 0.6, ... % Time for a scan in Y [s]
|
|
'tz', 0.2); % Time for a scan in Z [s]
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the trajectory in the Y-Z plane
|
|
figure;
|
|
plot(Rx_yz(:,3), Rx_yz(:,4));
|
|
xlabel('y [m]'); ylabel('z [m]');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/yz_scan_example_trajectory_yz_plane.pdf', 'width', 'normal', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:yz_scan_example_trajectory_yz_plane
|
|
#+caption: Generated scan in the Y-Z plane
|
|
#+RESULTS:
|
|
[[file:figs/yz_scan_example_trajectory_yz_plane.png]]
|
|
|
|
The Y and Z positions as a function of time are shown in Figure [[fig:yz_scan_example_trajectory]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the Y-Z trajectory as a function of time
|
|
figure;
|
|
hold on;
|
|
plot(Rx_yz(:,1), Rx_yz(:,3), ...
|
|
'DisplayName', 'Y motion')
|
|
plot(Rx_yz(:,1), Rx_yz(:,4), ...
|
|
'DisplayName', 'Z motion')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Displacement [m]');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/yz_scan_example_trajectory.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:yz_scan_example_trajectory
|
|
#+caption: Y and Z trajectories as a function of time
|
|
#+RESULTS:
|
|
[[file:figs/yz_scan_example_trajectory.png]]
|
|
|
|
Using the Jacobian matrix, it is possible to compute the wanted struts lengths as a function of time:
|
|
\begin{equation}
|
|
\bm{r}_{d\mathcal{L}} = \bm{J} \bm{r}_{\mathcal{X}_n}
|
|
\end{equation}
|
|
|
|
#+begin_src matlab :exports none
|
|
load('jacobian.mat', 'J');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Compute the reference in the frame of the legs
|
|
dL_ref = [J*Rx_yz(:, 2:7)']';
|
|
#+end_src
|
|
|
|
The reference signal for the strut length is shown in Figure [[fig:yz_scan_example_trajectory_struts]].
|
|
#+begin_src matlab :exports none
|
|
%% Plot the reference in the frame of the legs
|
|
figure;
|
|
hold on;
|
|
for i=1:6
|
|
plot(Rx_yz(:,1), dL_ref(:, i), ...
|
|
'DisplayName', sprintf('$r_{d\\mathcal{L}_%i}$', i))
|
|
end
|
|
xlabel('Time [s]'); ylabel('Strut Motion [m]');
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
|
yticks(1e-6*[-5:5]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/yz_scan_example_trajectory_struts.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:yz_scan_example_trajectory_struts
|
|
#+caption: Trajectories for the 6 individual struts
|
|
#+RESULTS:
|
|
[[file:figs/yz_scan_example_trajectory_struts.png]]
|
|
|
|
*** Tilt Scans
|
|
<<sec:tilt_scans>>
|
|
|
|
A function =generalSpiralAngleTrajectory= has been developed in order to easily generate $R_x,R_y$ tilt scans.
|
|
|
|
For instance, the following generated trajectory is represented in Figure [[fig:tilt_scan_example_trajectory]].
|
|
#+begin_src matlab
|
|
%% Generate the "tilt-spiral" trajectory scan
|
|
R_tilt = generateSpiralAngleTrajectory(...
|
|
'R_tot', 20e-6, ... % Total Tilt [ad]
|
|
'n_turn', 5, ... % Number of scans
|
|
'Ts', 1e-3, ... % Sampling Time [s]
|
|
't_turn', 1, ... % Turn time [s]
|
|
't_end', 1); % End time to go back to zero [s]
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the trajectory
|
|
figure;
|
|
plot(1e6*R_tilt(:,5), 1e6*R_tilt(:,6));
|
|
xlabel('$R_x$ [$\mu$rad]'); ylabel('$R_y$ [$\mu$rad]');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/tilt_scan_example_trajectory.pdf', 'width', 'normal', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:tilt_scan_example_trajectory
|
|
#+caption: Generated "spiral" scan
|
|
#+RESULTS:
|
|
[[file:figs/tilt_scan_example_trajectory.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute the reference in the frame of the legs
|
|
load('jacobian.mat', 'J');
|
|
dL_ref = [J*R_tilt(:, 2:7)']';
|
|
#+end_src
|
|
|
|
The reference signal for the strut length is shown in Figure [[fig:tilt_scan_example_trajectory_struts]].
|
|
#+begin_src matlab :exports none
|
|
%% Plot the reference in the frame of the legs
|
|
figure;
|
|
hold on;
|
|
for i=1:6
|
|
plot(R_tilt(:,1), dL_ref(:, i), ...
|
|
'DisplayName', sprintf('$r_{d\\mathcal{L}_%i}$', i))
|
|
end
|
|
xlabel('Time [s]'); ylabel('Strut Motion [m]');
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
yticks(1e-6*[-5:5]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/tilt_scan_example_trajectory_struts.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:tilt_scan_example_trajectory_struts
|
|
#+caption: Trajectories for the 6 individual struts - Tilt scan
|
|
#+RESULTS:
|
|
[[file:figs/tilt_scan_example_trajectory_struts.png]]
|
|
|
|
*** "NASS" reference path
|
|
<<sec:nass_scans>>
|
|
In this section, a reference path that "draws" the work "NASS" is developed.
|
|
|
|
First, a series of points representing each letter are defined.
|
|
Between each letter, a negative Z motion is performed.
|
|
#+begin_src matlab
|
|
%% List of points that draws "NASS"
|
|
ref_path = [ ...
|
|
0, 0,0; % Initial Position
|
|
0,0,1; 0,4,1; 3,0,1; 3,4,1; % N
|
|
3,4,0; 4,0,0; % Transition
|
|
4,0,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,2,1; 4,2,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,0,1; % A
|
|
7,0,0; 8,0,0; % Transition
|
|
8,0,1; 11,0,1; 11,2,1; 8,2,1; 8,4,1; 11,4,1; % S
|
|
11,4,0; 12,0,0; % Transition
|
|
12,0,1; 15,0,1; 15,2,1; 12,2,1; 12,4,1; 15,4,1; % S
|
|
15,4,0;
|
|
];
|
|
|
|
%% Center the trajectory arround zero
|
|
ref_path = ref_path - (max(ref_path) - min(ref_path))/2;
|
|
|
|
%% Define the X-Y-Z cuboid dimensions containing the trajectory
|
|
X_max = 10e-6;
|
|
Y_max = 4e-6;
|
|
Z_max = 2e-6;
|
|
|
|
ref_path = ([X_max, Y_max, Z_max]./max(ref_path)).*ref_path; % [m]
|
|
#+end_src
|
|
|
|
Then, using the =generateXYZTrajectory= function, the $6 \times 1$ trajectory signal is computed.
|
|
#+begin_src matlab
|
|
%% Generating the trajectory
|
|
Rx_nass = generateXYZTrajectory('points', ref_path);
|
|
#+end_src
|
|
|
|
The trajectory in the X-Y plane is shown in Figure [[fig:ref_track_test_nass]] (the transitions between the letters are removed).
|
|
#+begin_src matlab :exports none
|
|
%% "NASS" trajectory in the X-Y plane
|
|
figure;
|
|
plot(1e6*Rx_nass(Rx_nass(:,4)>0, 2), 1e6*Rx_nass(Rx_nass(:,4)>0, 3), 'k.')
|
|
xlabel('X [$\mu m$]');
|
|
ylabel('Y [$\mu m$]');
|
|
axis equal;
|
|
xlim(1e6*[min(Rx_nass(:,2)), max(Rx_nass(:,2))]);
|
|
ylim(1e6*[min(Rx_nass(:,3)), max(Rx_nass(:,3))]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/ref_track_test_nass.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:ref_track_test_nass
|
|
#+caption: Reference path corresponding to the "NASS" acronym
|
|
#+RESULTS:
|
|
[[file:figs/ref_track_test_nass.png]]
|
|
|
|
It can also be better viewed in a 3D representation as in Figure [[fig:ref_track_test_nass_3d]].
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
plot3(1e6*Rx_nass(:,2), 1e6*Rx_nass(:,3), 1e6*Rx_nass(:,4), 'k-');
|
|
xlabel('x [$\mu m$]'); ylabel('y [$\mu m$]'); zlabel('z [$\mu m$]');
|
|
view(-13, 41)
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/ref_track_test_nass_3d.pdf', 'width', 'normal', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:ref_track_test_nass_3d
|
|
#+caption: Reference path that draws "NASS" - 3D view
|
|
#+RESULTS:
|
|
[[file:figs/ref_track_test_nass_3d.png]]
|
|
|
|
** First Basic High Authority Controller
|
|
<<sec:hac_iff_struts_controller>>
|
|
*** Introduction :ignore:
|
|
In this section, a simple decentralized high authority controller $\bm{K}_{\mathcal{L}}$ is developed to work without any payload.
|
|
|
|
The diagonal controller is tuned using classical Loop Shaping in Section [[sec:hac_iff_no_payload_tuning]].
|
|
The stability is verified in Section [[sec:hac_iff_no_payload_stability]] using the Simscape model.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add useful folders to the path
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
addpath('matlab/vibration-table/matlab/')
|
|
addpath('matlab/vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add other useful folders to the path related to the Simscape model
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
addpath('vibration-table/matlab/')
|
|
addpath('vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Load the identified FRF and Simscape model
|
|
frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
open(mdl)
|
|
|
|
%% Initialize the Rerference path to zero
|
|
Rx = zeros(1, 7);
|
|
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** HAC Controller
|
|
<<sec:hac_iff_no_payload_tuning>>
|
|
|
|
Let's first try to design a first decentralized controller with:
|
|
- a bandwidth of 100Hz
|
|
- sufficient phase margin
|
|
- simple and understandable components
|
|
|
|
After some very basic and manual loop shaping, A diagonal controller is developed.
|
|
Each diagonal terms are identical and are composed of:
|
|
- A lead around 100Hz
|
|
- A first order low pass filter starting at 200Hz to add some robustness to high frequency modes
|
|
- A notch at 700Hz to cancel the flexible modes of the top plate
|
|
- A pure integrator
|
|
|
|
#+begin_src matlab
|
|
%% Lead to increase phase margin
|
|
a = 2; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s]
|
|
|
|
H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)));
|
|
|
|
%% Low Pass filter to increase robustness
|
|
H_lpf = 1/(1 + s/2/pi/200);
|
|
|
|
%% Notch at the top-plate resonance
|
|
gm = 0.02;
|
|
xi = 0.3;
|
|
wn = 2*pi*700;
|
|
|
|
H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);
|
|
|
|
%% Decentralized HAC
|
|
Khac_iff_struts = -(1/(2.87e-5)) * ... % Gain
|
|
H_lead * ... % Lead
|
|
H_notch * ... % Notch
|
|
(2*pi*100/s) * ... % Integrator
|
|
eye(6); % 6x6 Diagonal
|
|
#+end_src
|
|
|
|
This controller is saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/Khac_iff_struts.mat', 'Khac_iff_struts')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/Khac_iff_struts.mat', 'Khac_iff_struts')
|
|
#+end_src
|
|
|
|
The experimental loop gain is computed and shown in Figure [[fig:loop_gain_hac_iff_struts]].
|
|
#+begin_src matlab
|
|
L_hac_iff_struts = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz')));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the Loop Gain
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Diagonal Elements Model
|
|
plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(1,1,:))), 'color', colors(1,:), ...
|
|
'DisplayName', 'Diagonal');
|
|
for i = 2:6
|
|
plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(i,i,:))), 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(1,2,:))), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', 'Off-Diag');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(i,j,:))), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e2]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(squeeze(L_hac_iff_struts(i,i,:))), 'color', colors(1,:));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([2, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/loop_gain_hac_iff_struts.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:loop_gain_hac_iff_struts
|
|
#+caption: Diagonal and off-diagonal elements of the Loop gain for "HAC-IFF-Struts"
|
|
#+RESULTS:
|
|
[[file:figs/loop_gain_hac_iff_struts.png]]
|
|
|
|
*** Verification of the Stability using the Simscape model
|
|
<<sec:hac_iff_no_payload_stability>>
|
|
|
|
The HAC-IFF control strategy is implemented using Simscape.
|
|
#+begin_src matlab
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', 'flexible', ...
|
|
'controller_type', 'hac-iff-struts');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
support.type = 1; % On top of vibration table
|
|
payload.type = 3; % Payload / 1 "mass layer"
|
|
|
|
load('Kiff_opt.mat', 'Kiff');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the (damped) transfer function from u to dLm
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)
|
|
#+end_src
|
|
|
|
We identify the closed-loop system.
|
|
#+begin_src matlab
|
|
%% Identification
|
|
Gd_iff_hac_opt = linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
And verify that it is indeed stable.
|
|
#+begin_src matlab :results value replace :exports both
|
|
%% Verify the stability
|
|
isstable(Gd_iff_hac_opt)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: 1
|
|
|
|
*** Experimental Validation
|
|
Both the Integral Force Feedback controller (developed in Section [[sec:enc_plates_iff]]) and the high authority controller working in the frame of the struts (developed in Section [[sec:hac_iff_struts_controller]]) are implemented experimentally.
|
|
|
|
Two reference tracking experiments are performed to evaluate the stability and performances of the implemented control.
|
|
|
|
#+begin_src matlab
|
|
%% Load the experimental data
|
|
load('hac_iff_struts_yz_scans.mat', 't', 'de')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Reset initial time
|
|
t = t - t(1);
|
|
#+end_src
|
|
|
|
The position of the top-platform is estimated using the Jacobian matrix:
|
|
#+begin_src matlab
|
|
%% Pose of the top platform from the encoder values
|
|
load('jacobian.mat', 'J');
|
|
Xe = [inv(J)*de']';
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Generate the Y-Z trajectory scan
|
|
Rx_yz = generateYZScanTrajectory(...
|
|
'y_tot', 4e-6, ... % Length of Y scans [m]
|
|
'z_tot', 8e-6, ... % Total Z distance [m]
|
|
'n', 5, ... % Number of Y scans
|
|
'Ts', 1e-3, ... % Sampling Time [s]
|
|
'ti', 1, ... % Time to go to initial position [s]
|
|
'tw', 0, ... % Waiting time between each points [s]
|
|
'ty', 0.6, ... % Time for a scan in Y [s]
|
|
'tz', 0.2); % Time for a scan in Z [s]
|
|
#+end_src
|
|
|
|
The reference path as well as the measured position are partially shown in the Y-Z plane in Figure [[fig:yz_scans_exp_results_first_K]].
|
|
#+begin_src matlab :exports none
|
|
%% Position and reference signal in the Y-Z plane
|
|
figure;
|
|
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile;
|
|
hold on;
|
|
plot(1e6*Xe(t>2,2), 1e6*Xe(t>2,3));
|
|
plot(1e6*Rx_yz(:,3), 1e6*Rx_yz(:,4), '--');
|
|
hold off;
|
|
xlabel('Y [$\mu m$]'); ylabel('Z [$\mu m$]');
|
|
xlim([-2.05, 2.05]); ylim([-4.1, 4.1]);
|
|
axis equal;
|
|
|
|
ax2 = nexttile([1,2]);
|
|
hold on;
|
|
plot(1e6*Xe(:,2), 1e6*Xe(:,3), ...
|
|
'DisplayName', '$\mathcal{X}_n$');
|
|
plot(1e6*Rx_yz(:,3), 1e6*Rx_yz(:,4), '--', ...
|
|
'DisplayName', '$r_{\mathcal{X}_n}$');
|
|
hold off;
|
|
legend('location', 'northwest');
|
|
xlabel('Y [$\mu m$]'); ylabel('Z [$\mu m$]');
|
|
axis equal;
|
|
xlim([1.6, 2.1]); ylim([-4.1, -3.6]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/yz_scans_exp_results_first_K.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:yz_scans_exp_results_first_K
|
|
#+caption: Measured position $\bm{\mathcal{X}}_n$ and reference signal $\bm{r}_{\mathcal{X}_n}$ in the Y-Z plane - Zoom on a change of direction
|
|
#+RESULTS:
|
|
[[file:figs/yz_scans_exp_results_first_K.png]]
|
|
|
|
#+begin_important
|
|
It is clear from Figure [[fig:yz_scans_exp_results_first_K]] that the position of the nano-hexapod effectively tracks to reference signal.
|
|
However, oscillations with amplitudes as large as 50nm can be observe.
|
|
|
|
It turns out that the frequency of these oscillations is 100Hz which is corresponding to the crossover frequency of the High Authority Control loop.
|
|
This clearly indicates poor stability margins.
|
|
In the next section, the controller is re-designed to improve the stability margins.
|
|
#+end_important
|
|
|
|
*** Controller with increased stability margins
|
|
The High Authority Controller is re-designed in order to improve the stability margins.
|
|
#+begin_src matlab
|
|
%% Lead
|
|
a = 5; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
wc = 2*pi*110; % Frequency with the maximum phase lead [rad/s]
|
|
|
|
H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)));
|
|
|
|
%% Low Pass Filter
|
|
H_lpf = 1/(1 + s/2/pi/300);
|
|
|
|
%% Notch
|
|
gm = 0.02;
|
|
xi = 0.5;
|
|
wn = 2*pi*700;
|
|
|
|
H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);
|
|
|
|
%% HAC Controller
|
|
Khac_iff_struts = -2.2e4 * ... % Gain
|
|
H_lead * ... % Lead
|
|
H_lpf * ... % Lead
|
|
H_notch * ... % Notch
|
|
(2*pi*100/s) * ... % Integrator
|
|
eye(6); % 6x6 Diagonal
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Load the FRF of the transfer function from u to dL with IFF
|
|
frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute the Loop Gain
|
|
L_frf = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz')));
|
|
#+end_src
|
|
|
|
The bode plot of the new loop gain is shown in Figure [[fig:hac_iff_plates_exp_loop_gain_redesigned_K]].
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = 2*logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
% Diagonal Elements FRF
|
|
plot(frf_iff.f, abs(squeeze(L_frf(1,1,:))), 'color', colors(1,:), ...
|
|
'DisplayName', 'Diagonal');
|
|
for i = 2:6
|
|
plot(frf_iff.f, abs(squeeze(L_frf(i,i,:))), 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(frf_iff.f, abs(squeeze(L_frf(1,2,:))), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', 'Off-Diag');
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(squeeze(L_frf(i,j,:))), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e2]);
|
|
legend('location', 'northeast');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(squeeze(L_frf(i,i,:))), 'color', colors(1,:));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([1, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/hac_iff_plates_exp_loop_gain_redesigned_K.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:hac_iff_plates_exp_loop_gain_redesigned_K
|
|
#+caption: Loop Gain for the updated decentralized HAC controller
|
|
#+RESULTS:
|
|
[[file:figs/hac_iff_plates_exp_loop_gain_redesigned_K.png]]
|
|
|
|
This new controller is implemented experimentally and several tracking tests are performed.
|
|
#+begin_src matlab
|
|
%% Load Measurements
|
|
load('hac_iff_more_lead_nass_scan.mat', 't', 'de')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Reset Time
|
|
t = t - t(1);
|
|
#+end_src
|
|
|
|
The pose of the top platform is estimated from the encoder position using the Jacobian matrix.
|
|
#+begin_src matlab
|
|
%% Compute the pose of the top platform
|
|
load('jacobian.mat', 'J');
|
|
Xe = [inv(J)*de']';
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Load the reference path
|
|
load('reference_path.mat', 'Rx_nass')
|
|
#+end_src
|
|
|
|
The measured motion as well as the trajectory are shown in Figure [[fig:nass_scans_first_test_exp]].
|
|
#+begin_src matlab :exports none
|
|
%% Plot the X-Y-Z "NASS" trajectory
|
|
figure;
|
|
hold on;
|
|
plot3(Xe(1:100:end,1), Xe(1:100:end,2), Xe(1:100:end,3))
|
|
plot3(Rx_nass(1:100:end,2), Rx_nass(1:100:end,3), Rx_nass(1:100:end,4))
|
|
hold off;
|
|
xlabel('x [$\mu m$]'); ylabel('y [$\mu m$]'); zlabel('z [$\mu m$]');
|
|
view(-13, 41)
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nass_scans_first_test_exp.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:nass_scans_first_test_exp
|
|
#+caption: Measured position $\bm{\mathcal{X}}_n$ and reference signal $\bm{r}_{\mathcal{X}_n}$ for the "NASS" trajectory
|
|
#+RESULTS:
|
|
[[file:figs/nass_scans_first_test_exp.png]]
|
|
|
|
The trajectory and measured motion are also shown in the X-Y plane in Figure [[fig:ref_track_nass_exp_hac_iff_struts]].
|
|
#+begin_src matlab :exports none
|
|
%% Estimate when the hexpod is on top position and drawing the letters
|
|
i_top = Xe(:,3) > 1.9e-6;
|
|
i_rx = Rx_nass(:,4) > 0;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the reference as well as the measurement in the X-Y plane
|
|
figure;
|
|
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([1,2]);
|
|
hold on;
|
|
scatter(1e6*Xe(i_top,1), 1e6*Xe(i_top,2),'.');
|
|
plot(1e6*Rx_nass(i_rx,2), 1e6*Rx_nass(i_rx,3), '--');
|
|
hold off;
|
|
xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]');
|
|
axis equal;
|
|
xlim([-10.5, 10.5]); ylim([-4.5, 4.5]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
scatter(1e6*Xe(i_top,1), 1e6*Xe(i_top,2),'.');
|
|
plot(1e6*Rx_nass(i_rx,2), 1e6*Rx_nass(i_rx,3), '--');
|
|
hold off;
|
|
xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]');
|
|
axis equal;
|
|
xlim([4.5, 4.7]); ylim([-0.15, 0.05]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/ref_track_nass_exp_hac_iff_struts.pdf', 'width', 'full', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:ref_track_nass_exp_hac_iff_struts
|
|
#+caption: Reference path and measured motion in the X-Y plane
|
|
#+RESULTS:
|
|
[[file:figs/ref_track_nass_exp_hac_iff_struts.png]]
|
|
|
|
The orientation errors during all the scans are shown in Figure [[fig:nass_ref_rx_ry]].
|
|
#+begin_src matlab :exports none
|
|
%% Orientation Errors
|
|
figure;
|
|
hold on;
|
|
plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,4), '-', 'DisplayName', '$\epsilon_{\theta_x}$');
|
|
plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,5), '-', 'DisplayName', '$\epsilon_{\theta_y}$');
|
|
plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,6), '-', 'DisplayName', '$\epsilon_{\theta_z}$');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Orientation Error [$\mu$ rad]');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Orientation Errors
|
|
figure;
|
|
hold on;
|
|
plot(1e9*Xe(100000:100:end,4), 1e9*Xe(100000:100:end,5), '.');
|
|
th = 0:pi/50:2*pi;
|
|
xunit = 90 * cos(th);
|
|
yunit = 90 * sin(th);
|
|
plot(xunit, yunit, '--');
|
|
hold off;
|
|
xlabel('$R_x$ [nrad]'); ylabel('$R_y$ [nrad]');
|
|
xlim([-100, 100]);
|
|
ylim([-100, 100]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/nass_ref_rx_ry.pdf', 'width', 500, 'height', 500);
|
|
#+end_src
|
|
|
|
#+name: fig:nass_ref_rx_ry
|
|
#+caption: Orientation errors during the scan
|
|
#+RESULTS:
|
|
[[file:figs/nass_ref_rx_ry.png]]
|
|
|
|
#+begin_important
|
|
Using the updated High Authority Controller, the nano-hexapod can follow trajectories with high accuracy (the position errors are in the order of 50nm peak to peak, and the orientation errors 300nrad peak to peak).
|
|
#+end_important
|
|
|
|
** Interaction Analysis and Decoupling
|
|
<<sec:interaction_analysis>>
|
|
*** Introduction :ignore:
|
|
|
|
In this section, the interaction in the identified plant is estimated using the Relative Gain Array (RGA) [[cite:skogestad07_multiv_feedb_contr][Chap. 3.4]].
|
|
|
|
Then, several decoupling strategies are compared for the nano-hexapod.
|
|
|
|
The RGA Matrix is defined as follow:
|
|
\begin{equation}
|
|
\text{RGA}(G(f)) = G(f) \times (G(f)^{-1})^T
|
|
\end{equation}
|
|
|
|
Then, the RGA number is defined:
|
|
\begin{equation}
|
|
\text{RGA-num}(f) = \| \text{I - RGA(G(f))} \|_{\text{sum}}
|
|
\end{equation}
|
|
|
|
|
|
In this section, the plant with 2 added mass is studied.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add useful folders to the path
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
addpath('matlab/vibration-table/matlab/')
|
|
addpath('matlab/vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add other useful folders to the path related to the Simscape model
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
addpath('vibration-table/matlab/')
|
|
addpath('vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Load the identified FRF and Simscape model
|
|
frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Parameters
|
|
#+begin_src matlab
|
|
wc = 100; % Wanted crossover frequency [Hz]
|
|
[~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Plant to be decoupled
|
|
frf_coupled = frf_iff.G_dL{2};
|
|
G_coupled = sim_iff.G_dL{2};
|
|
#+end_src
|
|
|
|
*** No Decoupling (Decentralized)
|
|
<<sec:interaction_decentralized>>
|
|
|
|
#+begin_src latex :file decoupling_arch_decentralized.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (G.west) -- ++(-1.8, 0) node[above right]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_decentralized
|
|
#+caption: Block diagram representing the plant.
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_decentralized.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Decentralized Plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_coupled(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(frf_coupled(:,i,i)), ...
|
|
'DisplayName', sprintf('$y_%i/u_%i$', i, i));
|
|
end
|
|
plot(frf_iff.f, abs(frf_coupled(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-4]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(frf_coupled(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_decentralized_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_decentralized_plant
|
|
#+caption: Bode Plot of the decentralized plant (diagonal and off-diagonal terms)
|
|
#+RESULTS:
|
|
[[file:figs/interaction_decentralized_plant.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Decentralized RGA
|
|
RGA_dec = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_dec(i,:,:) = squeeze(frf_coupled(i,:,:)).*inv(squeeze(frf_coupled(i,:,:))).';
|
|
end
|
|
|
|
RGA_dec_sum = zeros(length(frf_iff), 1);
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_dec_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_dec(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% RGA for Decentralized plant
|
|
figure;
|
|
plot(frf_iff.f, RGA_dec_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_decentralized.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_decentralized
|
|
#+caption: RGA number for the decentralized plant
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_decentralized.png]]
|
|
|
|
*** Static Decoupling
|
|
<<sec:interaction_static>>
|
|
|
|
#+begin_src latex :file decoupling_arch_static.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
\node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}(j0)^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$};
|
|
\draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {};
|
|
\node[below right] at (Gx.north west) {$\bm{G}_{\text{static}}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_static
|
|
#+caption: Decoupling using the inverse of the DC gain of the plant
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_static.png]]
|
|
|
|
The DC gain is evaluated from the model as be have bad low frequency identification.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute the inverse of the DC gain
|
|
G_model = G_coupled;
|
|
G_model.outputdelay = 0; % necessary for further inversion
|
|
dc_inv = inv(dcgain(G_model));
|
|
|
|
%% Compute the inversed plant
|
|
G_dL_sta = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_sta(i,:,:) = squeeze(frf_coupled(i,:,:))*dc_inv;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
|
data2orgtable(dc_inv, {}, {}, ' %.1f ');
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| -62011.5 | 3910.6 | 4299.3 | 660.7 | -4016.5 | -4373.6 |
|
|
| 3914.4 | -61991.2 | -4356.8 | -4019.2 | 640.2 | 4281.6 |
|
|
| -4020.0 | -4370.5 | -62004.5 | 3914.6 | 4295.8 | 653.8 |
|
|
| 660.9 | 4292.4 | 3903.3 | -62012.2 | -4366.5 | -4008.9 |
|
|
| 4302.8 | 655.6 | -4025.8 | -4377.8 | -62006.0 | 3919.7 |
|
|
| -4377.9 | -4013.2 | 668.6 | 4303.7 | 3906.8 | -62019.3 |
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the static decoupled plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_sta(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(G_dL_sta(:,i,i)), ...
|
|
'DisplayName', sprintf('$y_%i/u_%i$', i, i));
|
|
end
|
|
plot(frf_iff.f, abs(G_dL_sta(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e1]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_sta(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_static_dec_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_static_dec_plant
|
|
#+caption: Bode Plot of the static decoupled plant
|
|
#+RESULTS:
|
|
[[file:figs/interaction_static_dec_plant.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute RGA Matrix
|
|
RGA_sta = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_sta(i,:,:) = squeeze(G_dL_sta(i,:,:)).*inv(squeeze(G_dL_sta(i,:,:))).';
|
|
end
|
|
|
|
%% Compute RGA-number
|
|
RGA_sta_sum = zeros(length(frf_iff), 1);
|
|
for i = 1:size(RGA_sta, 1)
|
|
RGA_sta_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_sta(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the RGA-number for statically decoupled plant
|
|
figure;
|
|
plot(frf_iff.f, RGA_sta_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_static_dec.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_static_dec
|
|
#+caption: RGA number for the statically decoupled plant
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_static_dec.png]]
|
|
|
|
*** Decoupling at the Crossover
|
|
<<sec:interaction_crossover>>
|
|
|
|
#+begin_src latex :file decoupling_arch_crossover.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
\node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}(j\omega_c)^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$};
|
|
\draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {};
|
|
\node[below right] at (Gx.north west) {$\bm{G}_{\omega_c}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_crossover
|
|
#+caption: Decoupling using the inverse of a dynamical model $\bm{\hat{G}}$ of the plant dynamics $\bm{G}$
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_crossover.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Take complex matrix corresponding to the plant at 100Hz
|
|
V = squeeze(frf_coupled(i_wc,:,:));
|
|
|
|
%% Real approximation of inv(G(100Hz))
|
|
D = pinv(real(V'*V));
|
|
H1 = D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)));
|
|
|
|
%% Compute the decoupled plant
|
|
G_dL_wc = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_wc(i,:,:) = squeeze(frf_coupled(i,:,:))*H1;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
|
data2orgtable(H1, {}, {}, ' %.1f ');
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| 67229.8 | 3769.3 | -13704.6 | -23084.8 | -6318.2 | 23378.7 |
|
|
| 3486.2 | 67708.9 | 23220.0 | -6314.5 | -22699.8 | -14060.6 |
|
|
| -5731.7 | 22471.7 | 66701.4 | 3070.2 | -13205.6 | -21944.6 |
|
|
| -23305.5 | -14542.6 | 2743.2 | 70097.6 | 24846.8 | -5295.0 |
|
|
| -14882.9 | -22957.8 | -5344.4 | 25786.2 | 70484.6 | 2979.9 |
|
|
| 24353.3 | -5195.2 | -22449.0 | -14459.2 | 2203.6 | 69484.2 |
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the plant decoupled at the crossover
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_wc(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(G_dL_wc(:,i,i)), ...
|
|
'DisplayName', sprintf('$y_%i/u_%i$', i, i));
|
|
end
|
|
plot(frf_iff.f, abs(G_dL_wc(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e1]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_wc(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_wc_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_wc_plant
|
|
#+caption: Bode Plot of the plant decoupled at the crossover
|
|
#+RESULTS:
|
|
[[file:figs/interaction_wc_plant.png]]
|
|
|
|
#+begin_src matlab
|
|
%% Compute RGA Matrix
|
|
RGA_wc = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_wc(i,:,:) = squeeze(G_dL_wc(i,:,:)).*inv(squeeze(G_dL_wc(i,:,:))).';
|
|
end
|
|
|
|
%% Compute RGA-number
|
|
RGA_wc_sum = zeros(size(RGA_wc, 1), 1);
|
|
for i = 1:size(RGA_wc, 1)
|
|
RGA_wc_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the RGA-Number for the plant decoupled at crossover
|
|
figure;
|
|
plot(frf_iff.f, RGA_wc_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_wc.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_wc
|
|
#+caption: RGA number for the plant decoupled at the crossover
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_wc.png]]
|
|
|
|
*** SVD Decoupling
|
|
<<sec:interaction_svd>>
|
|
|
|
#+begin_src latex :file decoupling_arch_svd.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
|
|
\node[block, left=0.8 of G.west] (V) {$V^{-T}$};
|
|
\node[block, right=0.8 of G.east] (U) {$U^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$};
|
|
\draw[->] (V.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- (U.west) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
|
|
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_svd
|
|
#+caption: Decoupling using the Singular Value Decomposition
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_svd.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Take complex matrix corresponding to the plant at 100Hz
|
|
V = squeeze(frf_coupled(i_wc,:,:));
|
|
|
|
%% Real approximation of G(100Hz)
|
|
D = pinv(real(V'*V));
|
|
H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))));
|
|
|
|
%% Singular Value Decomposition
|
|
[U,S,V] = svd(H1);
|
|
|
|
%% Compute the decoupled plant using SVD
|
|
G_dL_svd = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_svd(i,:,:) = inv(U)*squeeze(frf_coupled(i,:,:))*inv(V');
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode Plot of the SVD decoupled plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_svd(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(G_dL_svd(:,i,i)), ...
|
|
'DisplayName', sprintf('$y_%i/u_%i$', i, i));
|
|
end
|
|
plot(frf_iff.f, abs(G_dL_svd(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-4]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_svd(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_svd_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_svd_plant
|
|
#+caption: Bode Plot of the plant decoupled using the Singular Value Decomposition
|
|
#+RESULTS:
|
|
[[file:figs/interaction_svd_plant.png]]
|
|
|
|
#+begin_src matlab
|
|
%% Compute the RGA matrix for the SVD decoupled plant
|
|
RGA_svd = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_svd(i,:,:) = squeeze(G_dL_svd(i,:,:)).*inv(squeeze(G_dL_svd(i,:,:))).';
|
|
end
|
|
|
|
%% Compute the RGA-number
|
|
RGA_svd_sum = zeros(size(RGA_svd, 1), 1);
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_svd_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% RGA Number for the SVD decoupled plant
|
|
figure;
|
|
plot(frf_iff.f, RGA_svd_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_svd.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_svd
|
|
#+caption: RGA number for the plant decoupled using the SVD
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_svd.png]]
|
|
|
|
*** Dynamic decoupling
|
|
<<sec:interaction_dynamic>>
|
|
|
|
#+begin_src latex :file decoupling_arch_dynamic.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
\node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$};
|
|
\draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {};
|
|
\node[below right] at (Gx.north west) {$\bm{G}_{\text{inv}}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_dynamic
|
|
#+caption: Decoupling using the inverse of a dynamical model $\bm{\hat{G}}$ of the plant dynamics $\bm{G}$
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_dynamic.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute the plant inverse from the model
|
|
G_model = G_coupled;
|
|
G_model.outputdelay = 0; % necessary for further inversion
|
|
G_inv = inv(G_model);
|
|
|
|
%% Compute the decoupled plant
|
|
G_dL_inv = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_inv(i,:,:) = squeeze(frf_coupled(i,:,:))*squeeze(evalfr(G_inv, 1j*2*pi*frf_iff.f(i)));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the decoupled plant by full inversion
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_inv(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(G_dL_inv(:,i,i)), ...
|
|
'DisplayName', sprintf('$y_%i/u_%i$', i, i));
|
|
end
|
|
plot(frf_iff.f, abs(G_dL_inv(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-4, 1e1]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_inv(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_dynamic_dec_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_dynamic_dec_plant
|
|
#+caption: Bode Plot of the dynamically decoupled plant
|
|
#+RESULTS:
|
|
[[file:figs/interaction_dynamic_dec_plant.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute the RGA matrix for the inverse based decoupled plant
|
|
RGA_inv = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_inv(i,:,:) = squeeze(G_dL_inv(i,:,:)).*inv(squeeze(G_dL_inv(i,:,:))).';
|
|
end
|
|
|
|
%% Compute the RGA-number
|
|
RGA_inv_sum = zeros(size(RGA_inv, 1), 1);
|
|
for i = 1:size(RGA_inv, 1)
|
|
RGA_inv_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_inv(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% RGA Number for the decoupled plant using full inversion
|
|
figure;
|
|
plot(frf_iff.f, RGA_inv_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_dynamic_dec.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_dynamic_dec
|
|
#+caption: RGA number for the dynamically decoupled plant
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_dynamic_dec.png]]
|
|
|
|
*** Jacobian Decoupling - Center of Stiffness
|
|
<<sec:interaction_jacobian_cok>>
|
|
|
|
#+begin_src latex :file decoupling_arch_jacobian_cok.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
\node[block, left=0.8 of G] (Jt) {$J_{s,\{K\}}^{-T}$};
|
|
\node[block, right=0.8 of G] (Ja) {$J_{a,\{K\}}^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$};
|
|
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- (Ja.west) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{K\}}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {};
|
|
\node[below right] at (Gx.north west) {$\bm{G}_{\{K\}}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_jacobian_cok
|
|
#+caption: Decoupling using Jacobian matrices evaluated at the Center of Stiffness
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_jacobian_cok.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Initialize the Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('MO_B', -42e-3, ...
|
|
'motion_sensor_type', 'plates');
|
|
|
|
%% Get the Jacobians
|
|
J_cok = n_hexapod.geometry.J;
|
|
Js_cok = n_hexapod.geometry.Js;
|
|
|
|
%% Decouple plant using Jacobian (CoM)
|
|
G_dL_J_cok = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_cok(i,:,:) = inv(Js_cok)*squeeze(frf_coupled(i,:,:))*inv(J_cok');
|
|
end
|
|
|
|
%% Normalize the plant input
|
|
[~, i_100] = min(abs(frf_iff.f - 100));
|
|
input_normalize = diag(1./diag(abs(squeeze(G_dL_J_cok(i_100,:,:)))));
|
|
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:))*input_normalize;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode Plot of the SVD decoupled plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ...
|
|
'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ...
|
|
'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ...
|
|
'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ...
|
|
'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ...
|
|
'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ...
|
|
'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e1]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_J_cok_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_J_cok_plant
|
|
#+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the "center of stiffness"
|
|
#+RESULTS:
|
|
[[file:figs/interaction_J_cok_plant.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute RGA Matrix
|
|
RGA_cok = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:)).*inv(squeeze(G_dL_J_cok(i,:,:))).';
|
|
end
|
|
|
|
%% Compute RGA-number
|
|
RGA_cok_sum = zeros(length(frf_iff.f), 1);
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_cok_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_cok(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the RGA-Number for the Jacobian (CoK) decoupled plant
|
|
figure;
|
|
plot(frf_iff.f, RGA_cok_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_J_cok.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_J_cok
|
|
#+caption: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Stiffness
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_J_cok.png]]
|
|
|
|
*** Jacobian Decoupling - Center of Mass
|
|
<<sec:interaction_jacobian_com>>
|
|
|
|
#+begin_src latex :file decoupling_arch_jacobian_com.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) {$\bm{G}$};
|
|
\node[block, left=0.8 of G] (Jt) {$J_{s,\{M\}}^{-T}$};
|
|
\node[block, right=0.8 of G] (Ja) {$J_{a,\{M\}}^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$};
|
|
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) -- (Ja.west) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {};
|
|
\node[below right] at (Gx.north west) {$\bm{G}_{\{M\}}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decoupling_arch_jacobian_com
|
|
#+caption: Decoupling using Jacobian matrices evaluated at the Center of Mass
|
|
#+RESULTS:
|
|
[[file:figs/decoupling_arch_jacobian_com.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Initialize the Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('MO_B', 25e-3, ...
|
|
'motion_sensor_type', 'plates');
|
|
|
|
%% Get the Jacobians
|
|
J_com = n_hexapod.geometry.J;
|
|
Js_com = n_hexapod.geometry.Js;
|
|
|
|
%% Decouple plant using Jacobian (CoM)
|
|
G_dL_J_com = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_com(i,:,:) = inv(Js_com)*squeeze(frf_coupled(i,:,:))*inv(J_com');
|
|
end
|
|
|
|
%% Normalize the plant input
|
|
[~, i_100] = min(abs(frf_iff.f - 100));
|
|
input_normalize = diag(1./diag(abs(squeeze(G_dL_J_com(i_100,:,:)))));
|
|
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_com(i,:,:) = squeeze(G_dL_J_com(i,:,:))*input_normalize;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode Plot of the SVD decoupled plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,1,1)), ...
|
|
'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$');
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,2,2)), ...
|
|
'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$');
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,3,3)), ...
|
|
'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$');
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,4,4)), ...
|
|
'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$');
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,5,5)), ...
|
|
'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$');
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,6,6)), ...
|
|
'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$');
|
|
plot(frf_iff.f, abs(G_dL_J_com(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e1]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_J_com(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_J_com_plant.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_J_com_plant
|
|
#+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the Center of Mass
|
|
#+RESULTS:
|
|
[[file:figs/interaction_J_com_plant.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute RGA Matrix
|
|
RGA_com = zeros(size(frf_coupled));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_com(i,:,:) = squeeze(G_dL_J_com(i,:,:)).*inv(squeeze(G_dL_J_com(i,:,:))).';
|
|
end
|
|
|
|
%% Compute RGA-number
|
|
RGA_com_sum = zeros(size(RGA_com, 1), 1);
|
|
for i = 1:size(RGA_com, 1)
|
|
RGA_com_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_com(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot the RGA-Number for the Jacobian (CoM) decoupled plant
|
|
figure;
|
|
plot(frf_iff.f, RGA_com_sum, 'k-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_rga_J_com.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_rga_J_com
|
|
#+caption: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Mass
|
|
#+RESULTS:
|
|
[[file:figs/interaction_rga_J_com.png]]
|
|
|
|
*** Decoupling Comparison
|
|
<<sec:interaction_comparison>>
|
|
|
|
Let's now compare all of the decoupling methods (Figure [[fig:interaction_compare_rga_numbers]]).
|
|
|
|
#+begin_important
|
|
From Figure [[fig:interaction_compare_rga_numbers]], the following remarks are made:
|
|
- *Decentralized plant*: well decoupled below suspension modes
|
|
- *Static inversion*: similar to the decentralized plant as the decentralized plant has already a good decoupling at low frequency
|
|
- *Crossover inversion*: the decoupling is improved around the crossover frequency as compared to the decentralized plant. However, the decoupling is increased at lower frequency.
|
|
- *SVD decoupling*: Very good decoupling up to 235Hz. Especially between 100Hz and 200Hz.
|
|
- *Dynamic Inversion*: the plant is very well decoupled at frequencies where the model is accurate (below 235Hz where flexible modes are not modelled).
|
|
- *Jacobian - Stiffness*: good decoupling at low frequency. The decoupling increases at the frequency of the suspension modes, but is acceptable up to the strut flexible modes (235Hz).
|
|
- *Jacobian - Mass*: bad decoupling at low frequency. Better decoupling above the frequency of the suspension modes, and acceptable decoupling up to the strut flexible modes (235Hz).
|
|
#+end_important
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Comparison of the RGA-Numbers
|
|
figure;
|
|
hold on;
|
|
plot(frf_iff.f, RGA_dec_sum, 'DisplayName', 'Decentralized');
|
|
plot(frf_iff.f, RGA_sta_sum, 'DisplayName', 'Static inv.');
|
|
plot(frf_iff.f, RGA_wc_sum, 'DisplayName', 'Crossover inv.');
|
|
plot(frf_iff.f, RGA_svd_sum, 'DisplayName', 'SVD');
|
|
plot(frf_iff.f, RGA_inv_sum, 'DisplayName', 'Dynamic inv.');
|
|
plot(frf_iff.f, RGA_cok_sum, 'DisplayName', 'Jacobian - CoK');
|
|
plot(frf_iff.f, RGA_com_sum, 'DisplayName', 'Jacobian - CoM');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_compare_rga_numbers.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_compare_rga_numbers
|
|
#+caption: Comparison of the obtained RGA-numbers for all the decoupling methods
|
|
#+RESULTS:
|
|
[[file:figs/interaction_compare_rga_numbers.png]]
|
|
|
|
*** Decoupling Robustness
|
|
<<sec:interaction_robustness>>
|
|
|
|
Let's now see how the decoupling is changing when changing the payload's mass.
|
|
#+begin_src matlab
|
|
frf_new = frf_iff.G_dL{3};
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Decentralized RGA
|
|
RGA_dec_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_dec_b(i,:,:) = squeeze(frf_new(i,:,:)).*inv(squeeze(frf_new(i,:,:))).';
|
|
end
|
|
|
|
RGA_dec_sum_b = zeros(length(frf_iff), 1);
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_dec_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_dec_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Static Decoupling
|
|
G_dL_sta_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_sta_b(i,:,:) = squeeze(frf_new(i,:,:))*dc_inv;
|
|
end
|
|
|
|
RGA_sta_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_sta_b(i,:,:) = squeeze(G_dL_sta_b(i,:,:)).*inv(squeeze(G_dL_sta_b(i,:,:))).';
|
|
end
|
|
|
|
RGA_sta_sum_b = zeros(size(RGA_sta_b, 1), 1);
|
|
for i = 1:size(RGA_sta_b, 1)
|
|
RGA_sta_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_sta_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Crossover Decoupling
|
|
V = squeeze(frf_coupled(i_wc,:,:));
|
|
D = pinv(real(V'*V));
|
|
H1 = D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)));
|
|
|
|
G_dL_wc_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_wc_b(i,:,:) = squeeze(frf_new(i,:,:))*H1;
|
|
end
|
|
|
|
RGA_wc_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_wc_b(i,:,:) = squeeze(G_dL_wc_b(i,:,:)).*inv(squeeze(G_dL_wc_b(i,:,:))).';
|
|
end
|
|
|
|
RGA_wc_sum_b = zeros(size(RGA_wc_b, 1), 1);
|
|
for i = 1:size(RGA_wc_b, 1)
|
|
RGA_wc_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% SVD
|
|
V = squeeze(frf_coupled(i_wc,:,:));
|
|
D = pinv(real(V'*V));
|
|
H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))));
|
|
[U,S,V] = svd(H1);
|
|
|
|
G_dL_svd_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_svd_b(i,:,:) = inv(U)*squeeze(frf_new(i,:,:))*inv(V');
|
|
end
|
|
|
|
RGA_svd_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_svd_b(i,:,:) = squeeze(G_dL_svd_b(i,:,:)).*inv(squeeze(G_dL_svd_b(i,:,:))).';
|
|
end
|
|
|
|
RGA_svd_sum_b = zeros(size(RGA_svd_b, 1), 1);
|
|
for i = 1:size(RGA_svd, 1)
|
|
RGA_svd_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Dynamic Decoupling
|
|
G_model = G_coupled;
|
|
G_model.outputdelay = 0; % necessary for further inversion
|
|
G_inv = inv(G_model);
|
|
|
|
G_dL_inv_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_inv_b(i,:,:) = squeeze(frf_new(i,:,:))*squeeze(evalfr(G_inv, 1j*2*pi*frf_iff.f(i)));
|
|
end
|
|
|
|
RGA_inv_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_inv_b(i,:,:) = squeeze(G_dL_inv_b(i,:,:)).*inv(squeeze(G_dL_inv_b(i,:,:))).';
|
|
end
|
|
|
|
RGA_inv_sum_b = zeros(size(RGA_inv_b, 1), 1);
|
|
for i = 1:size(RGA_inv_b, 1)
|
|
RGA_inv_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_inv_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Jacobian (CoK)
|
|
G_dL_J_cok_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_cok_b(i,:,:) = inv(Js_cok)*squeeze(frf_new(i,:,:))*inv(J_cok');
|
|
end
|
|
|
|
RGA_cok_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_cok_b(i,:,:) = squeeze(G_dL_J_cok_b(i,:,:)).*inv(squeeze(G_dL_J_cok_b(i,:,:))).';
|
|
end
|
|
|
|
RGA_cok_sum_b = zeros(size(RGA_cok_b, 1), 1);
|
|
for i = 1:size(RGA_cok_b, 1)
|
|
RGA_cok_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_cok_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Jacobian (CoM)
|
|
G_dL_J_com_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_com_b(i,:,:) = inv(Js_com)*squeeze(frf_new(i,:,:))*inv(J_com');
|
|
end
|
|
|
|
RGA_com_b = zeros(size(frf_new));
|
|
for i = 1:length(frf_iff.f)
|
|
RGA_com_b(i,:,:) = squeeze(G_dL_J_com_b(i,:,:)).*inv(squeeze(G_dL_J_com_b(i,:,:))).';
|
|
end
|
|
|
|
RGA_com_sum_b = zeros(size(RGA_com_b, 1), 1);
|
|
for i = 1:size(RGA_com_b, 1)
|
|
RGA_com_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_com_b(i,:,:)))));
|
|
end
|
|
#+end_src
|
|
|
|
The obtained RGA-numbers are shown in Figure [[fig:interaction_compare_rga_numbers_rob]].
|
|
|
|
#+begin_important
|
|
From Figure [[fig:interaction_compare_rga_numbers_rob]]:
|
|
- The decoupling using the Jacobian evaluated at the "center of stiffness" seems to give the most robust results.
|
|
#+end_important
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Robustness of the Decoupling method
|
|
figure;
|
|
hold on;
|
|
plot(frf_iff.f, RGA_dec_sum, '-', 'DisplayName', 'Decentralized');
|
|
plot(frf_iff.f, RGA_sta_sum, '-', 'DisplayName', 'Static inv.');
|
|
plot(frf_iff.f, RGA_wc_sum, '-', 'DisplayName', 'Crossover inv.');
|
|
plot(frf_iff.f, RGA_svd_sum, '-', 'DisplayName', 'SVD');
|
|
plot(frf_iff.f, RGA_inv_sum, '-', 'DisplayName', 'Dynamic inv.');
|
|
plot(frf_iff.f, RGA_cok_sum, '-', 'DisplayName', 'Jacobian - CoK');
|
|
plot(frf_iff.f, RGA_com_sum, '-', 'DisplayName', 'Jacobian - CoM');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_iff.f, RGA_dec_sum_b, '--', 'HandleVisibility', 'off');
|
|
plot(frf_iff.f, RGA_sta_sum_b, '--', 'HandleVisibility', 'off');
|
|
plot(frf_iff.f, RGA_wc_sum_b, '--', 'HandleVisibility', 'off');
|
|
plot(frf_iff.f, RGA_svd_sum_b, '--', 'HandleVisibility', 'off');
|
|
plot(frf_iff.f, RGA_inv_sum_b, '--', 'HandleVisibility', 'off');
|
|
plot(frf_iff.f, RGA_cok_sum_b, '--', 'HandleVisibility', 'off');
|
|
plot(frf_iff.f, RGA_com_sum_b, '--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('RGA Number');
|
|
xlim([10, 1e3]); ylim([1e-2, 1e2]);
|
|
legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/interaction_compare_rga_numbers_rob.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:interaction_compare_rga_numbers_rob
|
|
#+caption: Change of the RGA-number with a change of the payload. Indication of the robustness of the inversion method.
|
|
#+RESULTS:
|
|
[[file:figs/interaction_compare_rga_numbers_rob.png]]
|
|
|
|
*** Conclusion
|
|
|
|
#+begin_important
|
|
Several decoupling methods can be used:
|
|
- SVD
|
|
- Inverse
|
|
- Jacobian (CoK)
|
|
#+end_important
|
|
|
|
#+name: tab:interaction_analysis_conclusion
|
|
#+caption: Summary of the interaction analysis and different decoupling strategies
|
|
#+attr_latex: :environment tabularx :width \linewidth :align lccc
|
|
#+attr_latex: :center t :booktabs t
|
|
| *Method* | *RGA* | *Diag Plant* | *Robustness* |
|
|
|----------------+-------+--------------+--------------|
|
|
| Decentralized | -- | Equal | ++ |
|
|
| Static dec. | -- | Equal | ++ |
|
|
| Crossover dec. | - | Equal | 0 |
|
|
| SVD | ++ | Diff | + |
|
|
| Dynamic dec. | ++ | Unity, equal | - |
|
|
| Jacobian - CoK | + | Diff | ++ |
|
|
| Jacobian - CoM | 0 | Diff | + |
|
|
|
|
** Robust High Authority Controller
|
|
<<sec:robust_hac_design>>
|
|
*** Introduction :ignore:
|
|
In this section we wish to develop a robust High Authority Controller (HAC) that is working for all payloads.
|
|
|
|
cite:indri20_mechat_robot
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add useful folders to the path
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
addpath('matlab/vibration-table/matlab/')
|
|
addpath('matlab/vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add other useful folders to the path related to the Simscape model
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
addpath('vibration-table/matlab/')
|
|
addpath('vibration-table/STEPS/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Load the identified FRF and Simscape model
|
|
frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL');
|
|
sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Using Jacobian evaluated at the center of stiffness
|
|
**** Decoupled Plant
|
|
#+begin_src matlab
|
|
G_nom = frf_iff.G_dL{2}; % Nominal Plant
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Initialize the Nano-Hexapod
|
|
n_hexapod = initializeNanoHexapodFinal('MO_B', -42e-3, ...
|
|
'motion_sensor_type', 'plates');
|
|
|
|
%% Get the Jacobians
|
|
J_cok = n_hexapod.geometry.J;
|
|
Js_cok = n_hexapod.geometry.Js;
|
|
|
|
%% Decouple plant using Jacobian (CoM)
|
|
G_dL_J_cok = zeros(size(G_nom));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_cok(i,:,:) = inv(Js_cok)*squeeze(G_nom(i,:,:))*inv(J_cok');
|
|
end
|
|
|
|
%% Normalize the plant input
|
|
[~, i_100] = min(abs(frf_iff.f - 10));
|
|
input_normalize = diag(1./diag(abs(squeeze(G_dL_J_cok(i_100,:,:)))));
|
|
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_J_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:))*input_normalize;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode Plot of the decoupled plant
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ...
|
|
'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ...
|
|
'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ...
|
|
'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ...
|
|
'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ...
|
|
'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ...
|
|
'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$');
|
|
plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e1]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_plot_hac_iff_plant_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_plot_hac_iff_plant_jacobian_cok
|
|
#+caption: Bode plot of the decoupled plant using the Jacobian evaluated at the Center of Stiffness
|
|
#+RESULTS:
|
|
[[file:figs/bode_plot_hac_iff_plant_jacobian_cok.png]]
|
|
|
|
**** SISO Controller Design
|
|
As the diagonal elements of the plant are not equal, several SISO controllers are designed and then combined to form a diagonal controller.
|
|
All the diagonal terms of the controller consists of:
|
|
- A double integrator to have high gain at low frequency
|
|
- A lead around the crossover frequency to increase stability margins
|
|
- Two second order low pass filters above the crossover frequency to increase the robustness to high frequency modes
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Controller Ry,Rz
|
|
|
|
% Wanted crossover frequency
|
|
wc_Rxy = 2*pi*80;
|
|
|
|
% Lead
|
|
a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
wc = wc_Rxy; % Frequency with the maximum phase lead [rad/s]
|
|
Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a);
|
|
|
|
% Integrator
|
|
w0_int = wc_Rxy/2; % [rad/s]
|
|
xi_int = 0.3;
|
|
|
|
Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2);
|
|
|
|
% Low Pass Filter (High frequency robustness)
|
|
w0_lpf = wc_Rxy*2; % Cut-off frequency [rad/s]
|
|
xi_lpf = 0.6; % Damping Ratio
|
|
|
|
Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2);
|
|
|
|
w0_lpf_b = wc_Rxy*4; % Cut-off frequency [rad/s]
|
|
xi_lpf_b = 0.7; % Damping Ratio
|
|
|
|
Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2);
|
|
|
|
% Unity Gain frequency
|
|
[~, i_80] = min(abs(frf_iff.f - wc_Rxy/2/pi));
|
|
|
|
% Combination of all the elements
|
|
Kd_Rxy = ...
|
|
-1/abs(G_dL_J_cok(i_80,4,4)) * ...
|
|
Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Rxy)) * ... % Lead (gain of 1 at wc)
|
|
Kd_int /abs(evalfr(Kd_int, 1j*wc_Rxy)) * ...
|
|
Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Rxy)) * ...
|
|
Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Rxy)); % Low Pass Filter
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Controller Dx,Dy,Rz
|
|
|
|
% Wanted crossover frequency
|
|
wc_Dxy = 2*pi*100;
|
|
|
|
% Lead
|
|
a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
wc = wc_Dxy; % Frequency with the maximum phase lead [rad/s]
|
|
Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a);
|
|
|
|
% Integrator
|
|
w0_int = wc_Dxy/2; % [rad/s]
|
|
xi_int = 0.3;
|
|
|
|
Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2);
|
|
|
|
% Low Pass Filter (High frequency robustness)
|
|
w0_lpf = wc_Dxy*2; % Cut-off frequency [rad/s]
|
|
xi_lpf = 0.6; % Damping Ratio
|
|
|
|
Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2);
|
|
|
|
w0_lpf_b = wc_Dxy*4; % Cut-off frequency [rad/s]
|
|
xi_lpf_b = 0.7; % Damping Ratio
|
|
|
|
Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2);
|
|
|
|
% Unity Gain frequency
|
|
[~, i_100] = min(abs(frf_iff.f - wc_Dxy/2/pi));
|
|
|
|
% Combination of all the elements
|
|
Kd_Dyx_Rz = ...
|
|
-1/abs(G_dL_J_cok(i_100,1,1)) * ...
|
|
Kd_int /abs(evalfr(Kd_int, 1j*wc_Dxy)) * ... % Integrator
|
|
Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Dxy)) * ... % Lead (gain of 1 at wc)
|
|
Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Dxy)) * ... % Lead (gain of 1 at wc)
|
|
Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Dxy)); % Low Pass Filter
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Controller Dz
|
|
|
|
% Wanted crossover frequency
|
|
wc_Dz = 2*pi*100;
|
|
|
|
% Lead
|
|
a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
wc = wc_Dz; % Frequency with the maximum phase lead [rad/s]
|
|
Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a);
|
|
|
|
% Integrator
|
|
w0_int = wc_Dz/2; % [rad/s]
|
|
xi_int = 0.3;
|
|
|
|
Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2);
|
|
|
|
% Low Pass Filter (High frequency robustness)
|
|
w0_lpf = wc_Dz*2; % Cut-off frequency [rad/s]
|
|
xi_lpf = 0.6; % Damping Ratio
|
|
|
|
Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2);
|
|
|
|
w0_lpf_b = wc_Dz*4; % Cut-off frequency [rad/s]
|
|
xi_lpf_b = 0.7; % Damping Ratio
|
|
|
|
Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2);
|
|
|
|
% Unity Gain frequency
|
|
[~, i_100] = min(abs(frf_iff.f - wc_Dz/2/pi));
|
|
|
|
% Combination of all the elements
|
|
Kd_Dz = ...
|
|
-1/abs(G_dL_J_cok(i_100,3,3)) * ...
|
|
Kd_int /abs(evalfr(Kd_int, 1j*wc_Dz)) * ... % Integrator
|
|
Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Dz)) * ... % Lead (gain of 1 at wc)
|
|
Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Dz)) * ... % Lead (gain of 1 at wc)
|
|
Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Dz)); % Low Pass Filter
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Diagonal Controller
|
|
Kd_diag = blkdiag(Kd_Dyx_Rz, Kd_Dyx_Rz, Kd_Dz, Kd_Rxy, Kd_Rxy, Kd_Dyx_Rz);
|
|
#+end_src
|
|
|
|
**** Obtained Loop Gain
|
|
#+begin_src matlab :exports none
|
|
%% Experimental Loop Gain
|
|
Lmimo = permute(pagemtimes(permute(G_dL_J_cok, [2,3,1]), squeeze(freqresp(Kd_diag, frf_iff.f, 'Hz'))), [3,1,2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the experimental Loop Gain
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(Lmimo(:,i,i)), '-');
|
|
end
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]);
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e+3]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:45:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([1, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_plot_hac_iff_loop_gain_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_plot_hac_iff_loop_gain_jacobian_cok
|
|
#+caption: Bode plot of the Loop Gain when using the Jacobian evaluated at the Center of Stiffness to decouple the system
|
|
#+RESULTS:
|
|
[[file:figs/bode_plot_hac_iff_loop_gain_jacobian_cok.png]]
|
|
|
|
#+begin_src matlab
|
|
%% Controller to be implemented
|
|
Kd = inv(J_cok')*input_normalize*ss(Kd_diag)*inv(Js_cok);
|
|
#+end_src
|
|
|
|
**** Verification of the Stability
|
|
Now the stability of the feedback loop is verified using the generalized Nyquist criteria.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Compute the Eigenvalues of the loop gain
|
|
Ldet = zeros(3, 6, length(frf_iff.f));
|
|
|
|
for i_mass = 1:3
|
|
% Loop gain
|
|
Lmimo = pagemtimes(permute(frf_iff.G_dL{i_mass}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz')));
|
|
for i_f = 2:length(frf_iff.f)
|
|
Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f)));
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot of the eigenvalues of L in the complex plane
|
|
figure;
|
|
hold on;
|
|
for i_mass = 2:3
|
|
plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('%i masses', i_mass));
|
|
plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
for i = 1:6
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(-1, 0, 'kx', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin');
|
|
xlabel('Real'); ylabel('Imag');
|
|
legend('location', 'southeast');
|
|
xlim([-3, 1]); ylim([-2, 2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/loci_hac_iff_loop_gain_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:loci_hac_iff_loop_gain_jacobian_cok
|
|
#+caption: Loci of $L(j\omega)$ in the complex plane.
|
|
#+RESULTS:
|
|
[[file:figs/loci_hac_iff_loop_gain_jacobian_cok.png]]
|
|
|
|
**** Save for further analysis
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/Khac_iff_struts_jacobian_cok.mat', 'Kd')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/Khac_iff_struts_jacobian_cok.mat', 'Kd')
|
|
#+end_src
|
|
|
|
**** Sensitivity transfer function from the model
|
|
#+begin_src matlab :exports none
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
open(mdl)
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', '2dof', ...
|
|
'controller_type', 'hac-iff-struts');
|
|
|
|
support.type = 1; % On top of vibration table
|
|
payload.type = 2; % Payload
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Load controllers
|
|
load('Kiff_opt.mat', 'Kiff');
|
|
Kiff = c2d(Kiff, Ts, 'Tustin');
|
|
load('Khac_iff_struts_jacobian_cok.mat', 'Kd')
|
|
Khac_iff_struts = c2d(Kd, Ts, 'Tustin');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Identify the (damped) transfer function from u to dLm
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Rx'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'output'); io_i = io_i + 1; % Plate Displacement (encoder)
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Identification of the dynamics
|
|
Gcl = linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Computation of the sensitivity transfer function
|
|
S = eye(6) - inv(n_hexapod.geometry.J)*Gcl;
|
|
#+end_src
|
|
|
|
The results are shown in Figure [[fig:sensitivity_hac_jacobian_cok_3m_comp_model]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(S(i,i), freqs, 'Hz'))), '--', ...
|
|
'DisplayName', sprintf('$S_{%s}$ - Model', labels{i}));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]');
|
|
ylim([1e-4, 1e1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
xlim([1, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensitivity_hac_jacobian_cok_3m_comp_model.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:sensitivity_hac_jacobian_cok_3m_comp_model
|
|
#+caption: Estimated sensitivity transfer functions for the HAC controller using the Jacobian estimated at the Center of Stiffness
|
|
#+RESULTS:
|
|
[[file:figs/sensitivity_hac_jacobian_cok_3m_comp_model.png]]
|
|
|
|
*** Using Singular Value Decomposition
|
|
**** Decoupled Plant
|
|
#+begin_src matlab
|
|
G_nom = frf_iff.G_dL{2}; % Nominal Plant
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Take complex matrix corresponding to the plant at 100Hz
|
|
wc = 100; % Wanted crossover frequency [Hz]
|
|
[~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc
|
|
|
|
V = squeeze(G_nom(i_wc,:,:));
|
|
|
|
%% Real approximation of G(100Hz)
|
|
D = pinv(real(V'*V));
|
|
H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))));
|
|
|
|
%% Singular Value Decomposition
|
|
[U,S,V] = svd(H1);
|
|
|
|
%% Compute the decoupled plant using SVD
|
|
G_dL_svd = zeros(size(G_nom));
|
|
for i = 1:length(frf_iff.f)
|
|
G_dL_svd(i,:,:) = inv(U)*squeeze(G_nom(i,:,:))*inv(V');
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the decoupled plant using SVD
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(G_dL_svd(:,i,j)), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(G_dL_svd(:,i,i)), ...
|
|
'DisplayName', sprintf('$y_%i/u_%i$', i, i));
|
|
end
|
|
plot(frf_iff.f, abs(G_dL_svd(:,1,2)), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', 'Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-9, 1e-4]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(G_dL_svd(:,i,i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_plot_hac_iff_plant_svd.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_plot_hac_iff_plant_svd
|
|
#+caption: Bode plot of the decoupled plant using the SVD
|
|
#+RESULTS:
|
|
[[file:figs/bode_plot_hac_iff_plant_svd.png]]
|
|
|
|
**** Controller Design
|
|
#+begin_src matlab :exports none
|
|
%% Lead
|
|
a = 6.0; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s]
|
|
Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a);
|
|
|
|
%% Integrator
|
|
Kd_int = ((2*pi*50 + s)/(2*pi*0.1 + s))^2;
|
|
|
|
%% Low Pass Filter (High frequency robustness)
|
|
w0_lpf = 2*pi*200; % Cut-off frequency [rad/s]
|
|
xi_lpf = 0.3; % Damping Ratio
|
|
|
|
Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2);
|
|
|
|
%% Normalize Gain
|
|
Kd_norm = diag(1./abs(diag(squeeze(G_dL_svd(i_100,:,:)))));
|
|
|
|
%% Diagonal Control
|
|
Kd_diag = ...
|
|
Kd_norm * ... % Normalize gain at 100Hz
|
|
Kd_int /abs(evalfr(Kd_int, 1j*2*pi*100)) * ... % Integrator
|
|
Kd_lead/abs(evalfr(Kd_lead, 1j*2*pi*100)) * ... % Lead (gain of 1 at wc)
|
|
Kd_lpf /abs(evalfr(Kd_lpf, 1j*2*pi*100)); % Low Pass Filter
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% MIMO Controller
|
|
Kd = -inv(V') * ... % Output decoupling
|
|
ss(Kd_diag) * ...
|
|
inv(U); % Input decoupling
|
|
#+end_src
|
|
|
|
**** Loop Gain
|
|
#+begin_src matlab :exports none
|
|
%% Experimental Loop Gain
|
|
Lmimo = permute(pagemtimes(permute(G_nom, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))), [3,1,2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Loop gain when using SVD
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(Lmimo(:,i,i)), '-');
|
|
end
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]);
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e+3]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:30:360);
|
|
ylim([-180, 0]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([1, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_plot_hac_iff_loop_gain_svd.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_plot_hac_iff_loop_gain_svd
|
|
#+caption: Bode plot of Loop Gain when using the SVD
|
|
#+RESULTS:
|
|
[[file:figs/bode_plot_hac_iff_loop_gain_svd.png]]
|
|
|
|
**** Stability Verification
|
|
#+begin_src matlab
|
|
%% Compute the Eigenvalues of the loop gain
|
|
Ldet = zeros(3, 6, length(frf_iff.f));
|
|
|
|
for i = 1:3
|
|
Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz')));
|
|
for i_f = 2:length(frf_iff.f)
|
|
Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f)));
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot of the eigenvalues of L in the complex plane
|
|
figure;
|
|
hold on;
|
|
for i_mass = 2:3
|
|
plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('%i masses', i_mass));
|
|
plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
for i = 1:6
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(-1, 0, 'kx', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin');
|
|
xlabel('Real'); ylabel('Imag');
|
|
legend('location', 'southeast');
|
|
xlim([-3, 1]); ylim([-2, 2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/loci_hac_iff_loop_gain_svd.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:loci_hac_iff_loop_gain_svd
|
|
#+caption: Locis of $L(j\omega)$ in the complex plane.
|
|
#+RESULTS:
|
|
[[file:figs/loci_hac_iff_loop_gain_svd.png]]
|
|
|
|
**** Save for further analysis
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/Khac_iff_struts_svd.mat', 'Kd')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/Khac_iff_struts_svd.mat', 'Kd')
|
|
#+end_src
|
|
|
|
**** Measured Sensitivity Transfer Function
|
|
The sensitivity transfer function is estimated by adding a reference signal $R_x$ consisting of a low pass filtered white noise, and measuring the position error $E_x$ at the same time.
|
|
|
|
The transfer function from $R_x$ to $E_x$ is the sensitivity transfer function.
|
|
|
|
In order to identify the sensitivity transfer function for all directions, six reference signals are used, one for each direction.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Tested directions
|
|
labels = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Load Identification Data
|
|
meas_hac_svd_3m = {};
|
|
|
|
for i = 1:6
|
|
meas_hac_svd_3m(i) = {load(sprintf('T_S_meas_%s_3m_hac_svd_iff.mat', labels{i}), 't', 'Va', 'Vs', 'de', 'Rx')};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Setup useful variables
|
|
% Sampling Time [s]
|
|
Ts = (meas_hac_svd_3m{1}.t(end) - (meas_hac_svd_3m{1}.t(1)))/(length(meas_hac_svd_3m{1}.t)-1);
|
|
|
|
% Sampling Frequency [Hz]
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(5*Fs));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_hac_svd_3m{1}.Va, meas_hac_svd_3m{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Load Jacobian matrix
|
|
load('jacobian.mat', 'J');
|
|
|
|
%% Compute position error
|
|
for i = 1:6
|
|
meas_hac_svd_3m{i}.Xm = [inv(J)*meas_hac_svd_3m{i}.de']';
|
|
meas_hac_svd_3m{i}.Ex = meas_hac_svd_3m{i}.Rx - meas_hac_svd_3m{i}.Xm;
|
|
end
|
|
#+end_src
|
|
|
|
An example is shown in Figure [[fig:ref_track_hac_svd_3m]] where both the reference signal and the measured position are shown for translations in the $x$ direction.
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(meas_hac_svd_3m{1}.t, meas_hac_svd_3m{1}.Xm(:,1), 'DisplayName', 'Pos.')
|
|
plot(meas_hac_svd_3m{1}.t, meas_hac_svd_3m{1}.Rx(:,1), 'DisplayName', 'Ref.')
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Dx motion [m]');
|
|
xlim([20, 22]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/ref_track_hac_svd_3m.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:ref_track_hac_svd_3m
|
|
#+caption: Reference position and measured position
|
|
#+RESULTS:
|
|
[[file:figs/ref_track_hac_svd_3m.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Transfer function estimate of S
|
|
S_hac_svd_3m = zeros(length(f), 6, 6);
|
|
|
|
for i = 1:6
|
|
S_hac_svd_3m(:,:,i) = tfestimate(meas_hac_svd_3m{i}.Rx, meas_hac_svd_3m{i}.Ex, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The sensitivity transfer functions estimated for all directions are shown in Figure [[fig:sensitivity_hac_svd_3m]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
hold on;
|
|
for i =1:6
|
|
plot(f, abs(S_hac_svd_3m(:,i,i)), ...
|
|
'DisplayName', sprintf('$S_{%s}$', labels{i}));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]');
|
|
ylim([1e-4, 1e1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
xlim([0.5, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensitivity_hac_svd_3m.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:sensitivity_hac_svd_3m
|
|
#+caption: Measured diagonal elements of the sensitivity transfer function matrix.
|
|
#+RESULTS:
|
|
[[file:figs/sensitivity_hac_svd_3m.png]]
|
|
|
|
#+begin_important
|
|
From Figure [[fig:sensitivity_hac_svd_3m]]:
|
|
- The sensitivity transfer functions are similar for all directions
|
|
- The disturbance attenuation at 1Hz is almost a factor 1000 as wanted
|
|
- The sensitivity transfer functions for $R_x$ and $R_y$ have high peak values which indicate poor stability margins.
|
|
#+end_important
|
|
|
|
**** Sensitivity transfer function from the model
|
|
The sensitivity transfer function is now estimated using the model and compared with the one measured.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
open(mdl)
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
|
|
'flex_top_type', '4dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', '2dof', ...
|
|
'controller_type', 'hac-iff-struts');
|
|
|
|
support.type = 1; % On top of vibration table
|
|
payload.type = 2; % Payload
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Load controllers
|
|
load('Kiff_opt.mat', 'Kiff');
|
|
Kiff = c2d(Kiff, Ts, 'Tustin');
|
|
load('Khac_iff_struts_svd.mat', 'Kd')
|
|
Khac_iff_struts = c2d(Kd, Ts, 'Tustin');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Identify the (damped) transfer function from u to dLm
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Rx'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'output'); io_i = io_i + 1; % Plate Displacement (encoder)
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Identification of the dynamics
|
|
Gcl = linearize(mdl, io, 0.0, options);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Computation of the sensitivity transfer function
|
|
S = eye(6) - inv(n_hexapod.geometry.J)*Gcl;
|
|
#+end_src
|
|
|
|
The results are shown in Figure [[fig:sensitivity_hac_svd_3m_comp_model]].
|
|
The model is quite effective in estimating the sensitivity transfer functions except around 60Hz were there is a peak for the measurement.
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
freqs = logspace(0,3,1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(f, abs(S_hac_svd_3m(:,i,i)), ...
|
|
'DisplayName', sprintf('$S_{%s}$', labels{i}));
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(S(i,i), freqs, 'Hz'))), '--', ...
|
|
'DisplayName', sprintf('$S_{%s}$ - Model', labels{i}));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]');
|
|
ylim([1e-4, 1e1]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
xlim([0.5, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/sensitivity_hac_svd_3m_comp_model.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:sensitivity_hac_svd_3m_comp_model
|
|
#+caption: Comparison of the measured sensitivity transfer functions with the model
|
|
#+RESULTS:
|
|
[[file:figs/sensitivity_hac_svd_3m_comp_model.png]]
|
|
|
|
*** Using (diagonal) Dynamical Inverse :noexport:
|
|
**** Decoupled Plant
|
|
#+begin_src matlab
|
|
G_nom = frf_iff.G_dL{2}; % Nominal Plant
|
|
G_model = sim_iff.G_dL{2}; % Model of the Plant
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Simplified model of the diagonal term
|
|
balred_opts = balredOptions('FreqIntervals', 2*pi*[0, 1000], 'StateElimMethod', 'Truncate');
|
|
|
|
G_red = balred(G_model(1,1), 8, balred_opts);
|
|
G_red.outputdelay = 0; % necessary for further inversion
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Inverse
|
|
G_inv = inv(G_red);
|
|
[G_z, G_p, G_g] = zpkdata(G_inv);
|
|
p_uns = real(G_p{1}) > 0;
|
|
G_p{1}(p_uns) = -G_p{1}(p_uns);
|
|
G_inv_stable = zpk(G_z, G_p, G_g);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% "Uncertainty" of inversed plant
|
|
freqs = logspace(0,3,1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i = 1
|
|
plot(freqs, abs(squeeze(freqresp(G_inv_stable*sim_iff.G_dL{i_mass+1}(i,i), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_i/u^\\prime_i$ - %i', i_mass));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-1, 1e1]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 4);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i = 1
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_inv_stable*sim_iff.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:15:360);
|
|
ylim([-45, 45]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
#+end_src
|
|
|
|
**** Controller Design
|
|
#+begin_src matlab :exports none
|
|
% Wanted crossover frequency
|
|
wc = 2*pi*80;
|
|
[~, i_wc] = min(abs(frf_iff.f - wc/2/pi));
|
|
|
|
%% Lead
|
|
a = 20.0; % Amount of phase lead / width of the phase lead / high frequency gain
|
|
Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a);
|
|
|
|
%% Integrator
|
|
Kd_int = ((wc)/(2*pi*0.2 + s))^2;
|
|
|
|
%% Low Pass Filter (High frequency robustness)
|
|
w0_lpf = 2*wc; % Cut-off frequency [rad/s]
|
|
xi_lpf = 0.3; % Damping Ratio
|
|
|
|
Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2);
|
|
|
|
w0_lpf_b = wc*4; % Cut-off frequency [rad/s]
|
|
xi_lpf_b = 0.7; % Damping Ratio
|
|
|
|
Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2);
|
|
|
|
%% Normalize Gain
|
|
Kd_norm = diag(1./abs(diag(squeeze(G_dL_svd(i_wc,:,:)))));
|
|
|
|
%% Diagonal Control
|
|
Kd_diag = ...
|
|
G_inv_stable * ... % Normalize gain at 100Hz
|
|
Kd_int /abs(evalfr(Kd_int, 1j*wc)) * ... % Integrator
|
|
Kd_lead/abs(evalfr(Kd_lead, 1j*wc)) * ... % Lead (gain of 1 at wc)
|
|
Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc)); % Low Pass Filter
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
Kd = ss(Kd_diag)*eye(6);
|
|
#+end_src
|
|
|
|
**** Loop Gain
|
|
#+begin_src matlab :exports none
|
|
%% Experimental Loop Gain
|
|
Lmimo = permute(pagemtimes(permute(G_nom, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))), [3,1,2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Loop gain when using SVD
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_iff.f, abs(Lmimo(:,i,i)), '-');
|
|
end
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]);
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e+3]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:30:360);
|
|
ylim([-180, 0]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([1, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/bode_plot_hac_iff_loop_gain_diag_inverse.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:bode_plot_hac_iff_loop_gain_diag_inverse
|
|
#+caption: Bode plot of Loop Gain when using the Diagonal inversion
|
|
#+RESULTS:
|
|
[[file:figs/bode_plot_hac_iff_loop_gain_diag_inverse.png]]
|
|
|
|
**** Stability Verification
|
|
MIMO Nyquist with eigenvalues
|
|
#+begin_src matlab
|
|
%% Compute the Eigenvalues of the loop gain
|
|
Ldet = zeros(3, 6, length(frf_iff.f));
|
|
|
|
for i = 1:3
|
|
Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz')));
|
|
for i_f = 2:length(frf_iff.f)
|
|
Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f)));
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Plot of the eigenvalues of L in the complex plane
|
|
figure;
|
|
hold on;
|
|
for i_mass = 2:3
|
|
plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'DisplayName', sprintf('%i masses', i_mass));
|
|
plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
for i = 1:6
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'.', 'color', colors(i_mass+1, :), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(-1, 0, 'kx', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin');
|
|
xlabel('Real'); ylabel('Imag');
|
|
legend('location', 'southeast');
|
|
xlim([-3, 1]); ylim([-2, 2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/loci_hac_iff_loop_gain_diag_inverse.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:loci_hac_iff_loop_gain_diag_inverse
|
|
#+caption: Locis of $L(j\omega)$ in the complex plane.
|
|
#+RESULTS:
|
|
[[file:figs/loci_hac_iff_loop_gain_diag_inverse.png]]
|
|
|
|
#+begin_important
|
|
Even though the loop gain seems to be fine, the closed-loop system is unstable.
|
|
This might be due to the fact that there is large interaction in the plant.
|
|
We could look at the RGA-number to verify that.
|
|
#+end_important
|
|
|
|
**** Save for further use
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/Khac_iff_struts_diag_inverse.mat', 'Kd')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/Khac_iff_struts_diag_inverse.mat', 'Kd')
|
|
#+end_src
|
|
|
|
*** Closed Loop Stability (Model) :noexport:
|
|
Verify stability using Simscape model
|
|
#+begin_src matlab
|
|
%% Initialize the Simscape model in closed loop
|
|
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ...
|
|
'flex_top_type', '3dof', ...
|
|
'motion_sensor_type', 'plates', ...
|
|
'actuator_type', '2dof', ...
|
|
'controller_type', 'hac-iff-struts');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% IFF Controller
|
|
Kiff = -g_opt*Kiff_g1*eye(6);
|
|
Khac_iff_struts = Kd*eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder)
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
GG_cl = {};
|
|
|
|
for i = i_masses
|
|
payload.type = i;
|
|
GG_cl(i+1) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
for i = i_masses
|
|
isstable(GG_cl{i+1})
|
|
end
|
|
#+end_src
|
|
|
|
MIMO Nyquist
|
|
#+begin_src matlab
|
|
Kdm = Kd*eye(6);
|
|
|
|
Ldet = zeros(3, length(fb(i_lim)));
|
|
|
|
for i = 1:3
|
|
Lmimo = pagemtimes(permute(G_damp_m{i}(i_lim,:,:), [2,3,1]),squeeze(freqresp(Kdm, fb(i_lim), 'Hz')));
|
|
Ldet(i,:) = arrayfun(@(t) det(eye(6) + squeeze(Lmimo(:,:,t))), 1:size(Lmimo,3));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
hold on;
|
|
for i_mass = 3
|
|
for i = 1
|
|
plot(real(Ldet(i_mass,:)), imag(Ldet(i_mass,:)), ...
|
|
'-', 'color', colors(i_mass+1, :));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin');
|
|
xlabel('Real'); ylabel('Imag');
|
|
xlim([-10, 1]); ylim([-4, 4]);
|
|
#+end_src
|
|
|
|
MIMO Nyquist with eigenvalues
|
|
#+begin_src matlab
|
|
Kdm = Kd*eye(6);
|
|
|
|
Ldet = zeros(3, 6, length(fb(i_lim)));
|
|
|
|
for i = 1:3
|
|
Lmimo = pagemtimes(permute(G_damp_m{i}(i_lim,:,:), [2,3,1]),squeeze(freqresp(Kdm, fb(i_lim), 'Hz')));
|
|
for i_f = 1:length(fb(i_lim))
|
|
Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f)));
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
hold on;
|
|
for i_mass = 1
|
|
for i = 1:6
|
|
plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ...
|
|
'-', 'color', colors(i_mass+1, :));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin');
|
|
xlabel('Real'); ylabel('Imag');
|
|
xlim([-10, 1]); ylim([-4, 2]);
|
|
#+end_src
|
|
* Nano-Hexapod fixed on the Spindle
|
|
<<sec:nano_hexapod_spindle>>
|
|
** Introduction :ignore:
|
|
|
|
** Change of dynamics when fixed on the Spindle
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Measured Frequency Response Functions
|
|
The identification only performed without any payload.
|
|
|
|
The following data are loaded:
|
|
- =Va=: the excitation voltage (corresponding to $u_i$)
|
|
- =Vs=: the generated voltage by the 6 force sensors (corresponding to $\bm{\tau}_m$)
|
|
- =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$)
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_added_mass = {};
|
|
|
|
for i_strut = 1:6
|
|
meas_added_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_0m.mat', i_strut), 't', 'Va', 'Vs', 'de')};
|
|
end
|
|
#+end_src
|
|
|
|
The window =win= and the frequency vector =f= are defined.
|
|
#+begin_src matlab
|
|
% Sampling Time [s]
|
|
Ts = (meas_added_mass{1}.t(end) - (meas_added_mass{1}.t(1)))/(length(meas_added_mass{1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_added_mass{1}.Va, meas_added_mass{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified:
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dL = zeros(length(f), 6, 6);
|
|
|
|
for i_strut = 1:6
|
|
G_dL(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.de, win, [], [], 1/Ts);
|
|
end
|
|
|
|
%% IFF Plant (transfer function from u to taum)
|
|
G_tau = zeros(length(f), 6, 6);
|
|
|
|
for i_strut = 1:6
|
|
G_tau(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.Vs, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/frf_spindle_m.mat', 'f', 'Ts', 'G_tau', 'G_dL')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/frf_spindle_m.mat', 'f', 'Ts', 'G_tau', 'G_dL')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
frf_ol = load('frf_spindle_m.mat', 'f', 'Ts', 'G_tau', 'G_dL');
|
|
frf_vib_tab = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL');
|
|
#+end_src
|
|
|
|
*** Transfer function from Actuator to Encoder
|
|
The transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ are shown in Figure [[fig:frf_GdL_spindle_0m]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,%i}/u_%i$', i, i));
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_GdL_spindle_0m.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_GdL_spindle_0m
|
|
#+caption: Measured Frequency Response Functions from $u_i$ to $d\mathcal{L}_{m,i}$ when the nano-hexapod is fixed to the Spindle
|
|
#+RESULTS:
|
|
[[file:figs/frf_GdL_spindle_0m.png]]
|
|
|
|
The dynamics of the nano-hexapod when fixed on the Spindle is compared with the dynamics when the nano-hexapod is fixed on the "vibration table" in Figure [[fig:frf_GdL_comp_spindle_vib_table_0m]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,i,j)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_dL{1}(:,i,j)), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,1,1)), 'color', colors(1,:), ...
|
|
'DisplayName', 'Spindle');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_dL{1}(:,1,1)), 'color', colors(2,:), ...
|
|
'DisplayName', 'Vib. Table');
|
|
for i = 2:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_dL{1}(:,i, i)), 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,1,2)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', 'Spindle - Coupling');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_dL{1}(:,1,2)), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', 'Vib. Table - Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL(:,i, i)));
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(frf_vib_tab.f, 180/pi*angle(frf_vib_tab.G_dL{1}(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_GdL_comp_spindle_vib_table_0m.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_GdL_comp_spindle_vib_table_0m
|
|
#+caption: Comparison of the dynamics from $u$ to $d\mathcal{L}$ when the nano-hexapod is fixed on top of the Spindle and when it is fixed on top of the "Vibration Table".
|
|
#+RESULTS:
|
|
[[file:figs/frf_GdL_comp_spindle_vib_table_0m.png]]
|
|
|
|
*** Transfer function from Actuator to Force Sensor
|
|
The transfer functions from $u_i$ to $\tau_m$ are shown in Figure [[fig:frf_Gtau_spindle_0m]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:, i, j)), 'color', [0, 0, 0, 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',i)
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:,i, i)), ...
|
|
'DisplayName', sprintf('$\\tau_{m,%i}/u_%i$', i, i));
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:, 1, 2)), 'color', [0, 0, 0, 0.2], ...
|
|
'DisplayName', '$\\tau_{m,i}/u_j$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e2]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([20, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_Gtau_spindle_0m.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_Gtau_spindle_0m
|
|
#+caption: Measured Frequency Response Functions from $u_i$ to $\tau_{m,i}$ when the nano-hexapod is fixed to the Spindle
|
|
#+RESULTS:
|
|
[[file:figs/frf_Gtau_spindle_0m.png]]
|
|
|
|
The dynamics of the nano-hexapod when fixed on the Spindle is compared with the dynamics when the nano-hexapod is fixed on the "vibration table" in Figure [[fig:frf_Gtau_comp_spindle_vib_table_0m]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to taum
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:,i,j)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_tau{1}(:,i,j)), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:,1,1)), 'color', colors(1,:), ...
|
|
'DisplayName', 'Spindle');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_tau{1}(:,1,1)), 'color', colors(2,:), ...
|
|
'DisplayName', 'Vib. Table');
|
|
for i = 2:6
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:,i, i)), 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_tau{1}(:,i, i)), 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_tau(:,1,2)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', 'Spindle - Coupling');
|
|
plot(frf_vib_tab.f, abs(frf_vib_tab.G_tau{1}(:,1,2)), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', 'Vib. Table - Coupling');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [-]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-3, 1e2]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau(:,i, i)));
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(frf_vib_tab.f, 180/pi*angle(frf_vib_tab.G_tau{1}(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-180, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_Gtau_comp_spindle_vib_table_0m.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_Gtau_comp_spindle_vib_table_0m
|
|
#+caption: Comparison of the dynamics from $u$ to $d\mathcal{L}$ when the nano-hexapod is fixed on top of the Spindle and when it is fixed on top of the "Vibration Table".
|
|
#+RESULTS:
|
|
[[file:figs/frf_Gtau_comp_spindle_vib_table_0m.png]]
|
|
|
|
*** Conclusion
|
|
#+begin_important
|
|
The dynamics of the nano-hexapod does not change a lot when it is fixed to the Spindle.
|
|
The "suspension" modes are just increased a little bit due to the added stiffness of the spindle as compared to the vibration table.
|
|
#+end_important
|
|
|
|
** Dynamics of the Damped plant
|
|
*** Introduction :ignore:
|
|
As the dynamics is not much changed when the nano-hexapod is fixed on top of the Spindle, the same IFF controller is used to damp the plant.
|
|
|
|
*** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
*** Measured Frequency Response Functions
|
|
The identification is performed without added mass, and with one, two and three layers of added cylinders.
|
|
#+begin_src matlab
|
|
i_masses = 0:3;
|
|
#+end_src
|
|
|
|
The following data are loaded:
|
|
- =Va=: the excitation voltage (corresponding to $u_i$)
|
|
- =Vs=: the generated voltage by the 6 force sensors (corresponding to $\bm{\tau}_m$)
|
|
- =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$)
|
|
#+begin_src matlab
|
|
%% Load Identification Data
|
|
meas_added_mass = {};
|
|
|
|
for i_mass = i_masses
|
|
for i_strut = 1:6
|
|
meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_spindle_%im_iff.mat', i_strut, i_mass), 't', 'Va', 'Vs', 'de')};
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
The window =win= and the frequency vector =f= are defined.
|
|
#+begin_src matlab
|
|
% Sampling Time [s]
|
|
Ts = (meas_added_mass{1,1}.t(end) - (meas_added_mass{1,1}.t(1)))/(length(meas_added_mass{1,1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified:
|
|
#+begin_src matlab
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dL = {};
|
|
|
|
for i_mass = i_masses
|
|
G_dL(i_mass+1) = {zeros(length(f), 6, 6)};
|
|
for i_strut = 1:6
|
|
G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de, win, [], [], 1/Ts);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
The identified dynamics are then saved for further use.
|
|
#+begin_src matlab :exports none :tangle no
|
|
save('matlab/mat/frf_spindle_iff_m.mat', 'f', 'Ts', 'G_dL')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
save('mat/frf_spindle_iff_m.mat', 'f', 'Ts', 'G_dL')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
frf_ol = load('frf_spindle_m.mat', 'f', 'Ts', 'G_tau', 'G_dL');
|
|
frf_iff = load('frf_spindle_iff_m.mat', 'f', 'Ts', 'G_dL');
|
|
#+end_src
|
|
|
|
*** Effect of Integral Force Feedback
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:, i, j)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_ol.f, abs(frf_iff.G_dL{1}(:, i, j)), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,1,1)), 'color', colors(1,:), ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{1}(:,1,1)), 'color', colors(2,:), ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j^\prime$');
|
|
for i = 2:6
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{1}(:,i, i)), 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, 2)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$');
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{1}(:, 1, 2)), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j^\prime$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL(:,i, i)));
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(frf_iff.f, 180/pi*angle(frf_iff.G_dL{1}(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_spindle_comp_ol_iff.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_spindle_comp_ol_iff
|
|
#+caption: Effect of Integral Force Feedback on the transfer function from $u_i$ to $d\mathcal{L}_i$
|
|
#+RESULTS:
|
|
[[file:figs/frf_spindle_comp_ol_iff.png]]
|
|
|
|
*** Effect of the payload
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:, i, j)), 'color', [colors(i_mass+1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,1, 1)), 'color', colors(i_mass+1,:), ...
|
|
'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - %i', i_mass));
|
|
for i = 2:6
|
|
plot(frf_iff.f, abs(frf_iff.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_mass = i_masses
|
|
for i =1:6
|
|
plot(frf_iff.f, 180/pi*angle(frf_iff.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:));
|
|
end
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_important
|
|
From Figure [[fig:frf_spindle_iff_effect_payload]] we can see that the coupling is quite large when payloads are added to the nano-hexapod.
|
|
This was not the case when the nano-hexapod was fixed to the vibration table.
|
|
#+end_important
|
|
|
|
#+begin_question
|
|
What is causing the resonances at 20Hz, 25Hz and 30Hz when there is some added payload?
|
|
Why the coupling is much larger than when the nano-hexapod was on top of the isolation table?
|
|
#+end_question
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_spindle_iff_effect_payload.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_spindle_iff_effect_payload
|
|
#+caption: Effect of the payload on the transfer functions from $u^\prime_i$ to $d\mathcal{L}_i$
|
|
#+RESULTS:
|
|
[[file:figs/frf_spindle_iff_effect_payload.png]]
|
|
|
|
*** Effect of rotation
|
|
#+begin_src matlab :exports none
|
|
%% Load Identification Data
|
|
meas_0rpm = {};
|
|
meas_60rpm = {};
|
|
|
|
for i_strut = 1:6
|
|
meas_0rpm(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_3m_iff.mat', i_strut), 't', 'Va', 'Vs', 'de')};
|
|
meas_60rpm(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_3m_iff_60rpm.mat', i_strut), 't', 'Va', 'Vs', 'de')};
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
% Sampling Time [s]
|
|
Ts = (meas_0rpm{1}.t(end) - (meas_0rpm{1}.t(1)))/(length(meas_0rpm{1}.t)-1);
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(1/Ts));
|
|
|
|
% And we get the frequency vector
|
|
[~, f] = tfestimate(meas_0rpm{1}.Va, meas_0rpm{1}.de, win, [], [], 1/Ts);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% DVF Plant (transfer function from u to dLm)
|
|
G_dL_0rpm = zeros(length(f), 6, 6);
|
|
G_dL_60rpm = zeros(length(f), 6, 6);
|
|
|
|
for i_strut = 1:6
|
|
G_dL_0rpm(:,:,i_strut) = tfestimate(meas_0rpm{i_strut}.Va, meas_0rpm{i_strut}.de, win, [], [], 1/Ts);
|
|
G_dL_60rpm(:,:,i_strut) = tfestimate(meas_60rpm{i_strut}.Va, meas_60rpm{i_strut}.de, win, [], [], 1/Ts);
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_important
|
|
The identified plants with and without spindle's rotation are compared in Figure [[fig:frf_comp_spindle_0rpm_60rpm_3m]].
|
|
It is shown that the rotational speed as little effect on the plant dynamics.
|
|
#+end_important
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot for the transfer function from u to dLm
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(f, abs(G_dL_0rpm(:, i, j)), 'color', [colors(1,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
plot(f, abs(G_dL_60rpm(:, i, j)), 'color', [colors(2,:), 0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(f, abs(G_dL_0rpm(:,1,1)), 'color', colors(1,:), ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - 0rpm');
|
|
plot(f, abs(G_dL_60rpm(:,1,1)), 'color', colors(2,:), ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j^\prime$ - 60rpm');
|
|
for i = 2:6
|
|
plot(f, abs(G_dL_0rpm(:,i, i)), 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off');
|
|
plot(f, abs(G_dL_60rpm(:,i, i)), 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
plot(f, abs(G_dL_0rpm(:, 1, 2)), 'color', [colors(1,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - 0rpm');
|
|
plot(f, abs(G_dL_60rpm(:, 1, 2)), 'color', [colors(2,:), 0.2], ...
|
|
'DisplayName', '$d\mathcal{L}_{m,i}/u_j^\prime$ - 60rpm');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-8, 1e-4]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i =1:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(f, 180/pi*angle(G_dL_0rpm(:,i, i)));
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(f, 180/pi*angle(G_dL_60rpm(:,i, i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-90, 180])
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([10, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/frf_comp_spindle_0rpm_60rpm_3m.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:frf_comp_spindle_0rpm_60rpm_3m
|
|
#+caption: Comparison of the damped plant when the spindle is not rotating and when it is rotating at 60RPM
|
|
#+RESULTS:
|
|
[[file:figs/frf_comp_spindle_0rpm_60rpm_3m.png]]
|
|
|
|
* Feedforward Control :noexport:
|
|
<<sec:feedforward>>
|
|
|
|
** Introduction :ignore:
|
|
|
|
#+begin_src latex :file control_architecture_iff_feedforward.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{3.0cm}] (P) {Plant};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
|
|
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);
|
|
|
|
\node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[addb, left= of inputF] (addF) {};
|
|
\node[block, left= of addF] (Kff) {$\bm{K}_{\mathcal{L},\text{ff}}$};
|
|
\node[block, align=center, left= of Kff] (J) {Inverse\\Kinematics};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.north);
|
|
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{u}$};
|
|
|
|
\draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\draw[->] (outputX) -- ++(1, 0) node[above left]{$\bm{\mathcal{X}}$};
|
|
|
|
\draw[->] (Kff.east) -- (addF.west) node[above left]{$\bm{u}_{\text{ff}}$};
|
|
\draw[->] (J.east) -- (Kff.west) node[above left]{$\bm{r}_{d\mathcal{L}}$};
|
|
\draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_architecture_iff_feedforward
|
|
#+caption: Feedforward control in the frame of the legs
|
|
#+RESULTS:
|
|
[[file:figs/control_architecture_iff_feedforward.png]]
|
|
|
|
Main problems:
|
|
- Non-linearity: Creep, Hysteresis
|
|
- Variability of the plant
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/src/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
addpath('./src/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('damped_plant_enc_plates.mat', 'f', 'Ts', 'G_enc_iff_opt')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
%% Add all useful folders to the path
|
|
addpath('matlab/nass-simscape/matlab/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('matlab/nass-simscape/STEPS/png/')
|
|
addpath('matlab/nass-simscape/src/')
|
|
addpath('matlab/nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
%% Add all useful folders to the path
|
|
addpath('nass-simscape/matlab/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/nano_hexapod/')
|
|
addpath('nass-simscape/STEPS/png/')
|
|
addpath('nass-simscape/src/')
|
|
addpath('nass-simscape/mat/')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Open Simulink Model
|
|
mdl = 'nano_hexapod_simscape';
|
|
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
open(mdl)
|
|
|
|
Rx = zeros(1, 7);
|
|
|
|
colors = colororder;
|
|
#+end_src
|
|
|
|
** Simple Feedforward Controller
|
|
Let's estimate the mean DC gain for the damped plant (diagonal elements:)
|
|
#+begin_src matlab :results value replace :exports results :tangle no
|
|
mean(diag(abs(squeeze(mean(G_enc_iff_opt(f>2 & f<4,:,:))))))
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: 1.773e-05
|
|
|
|
The feedforward controller is then taken as the inverse of this gain (the minus sign is there manually added as it is "removed" by the =abs= function):
|
|
#+begin_src matlab
|
|
Kff_iff_L = -1/mean(diag(abs(squeeze(mean(G_enc_iff_opt(f>2 & f<4,:,:))))));
|
|
#+end_src
|
|
|
|
The open-loop gain (feedforward controller times the damped plant) is shown in Figure [[fig:open_loop_gain_feedforward_iff_struts]].
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Bode plot of the transfer function from u to dLm for tested values of the IFF gain
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(f, abs(Kff_iff_L*G_enc_iff_opt(:,i,i)), 'k-');
|
|
end
|
|
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [-]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-2, 1e1]);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(f, 180/pi*angle(Kff_iff_L*G_enc_iff_opt(:,i,i)), 'k-')
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([1, 2e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/open_loop_gain_feedforward_iff_struts.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:open_loop_gain_feedforward_iff_struts
|
|
#+caption: Diagonal elements of the "open loop gain"
|
|
#+RESULTS:
|
|
[[file:figs/open_loop_gain_feedforward_iff_struts.png]]
|
|
|
|
And save the feedforward controller for further use:
|
|
#+begin_src matlab
|
|
Kff_iff_L = zpk(Kff_iff_L)*eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
save('matlab/mat/feedforward_iff.mat', 'Kff_iff_L')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :eval no
|
|
save('mat/feedforward_iff.mat', 'Kff_iff_L')
|
|
#+end_src
|
|
|
|
** Test with Simscape Model
|
|
#+begin_src matlab
|
|
load('reference_path.mat', 'Rx_yz');
|
|
#+end_src
|
|
|
|
** Feedback/Feedforward control in the frame of the struts
|
|
*** Introduction :ignore:
|
|
|
|
#+begin_src latex :file control_architecture_hac_iff_L_feedforward.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{3.0cm}] (P) {Plant};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
|
|
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);
|
|
|
|
\node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[addb, left= of inputF] (addF) {};
|
|
\node[block, left= of addF] (K) {$\bm{K}_\mathcal{L}$};
|
|
\node[block, above= of K] (Kff) {$\bm{K}_{\mathcal{L},\text{ff}}$};
|
|
\node[addb, left= of K] (subr) {};
|
|
\node[block, align=center, left= of subr] (J) {Inverse\\Kinematics};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.north);
|
|
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{u}$};
|
|
|
|
\draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};
|
|
\draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, -1) -| (subr.south);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$};
|
|
\draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$};
|
|
|
|
\draw[->] (outputX) -- ++(1, 0) node[above left]{$\bm{\mathcal{X}}_n$};
|
|
|
|
\draw[->] (J.east) -- (subr.west);
|
|
\draw[->] ($(J.east) + (0.4, 0)$)node[branch]{} node[below]{$\bm{r}_{d\mathcal{L}}$} |- (Kff.west);
|
|
\draw[->] (Kff.east) -- ++(0.5, 0) -- (addF.north west);
|
|
|
|
\draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:control_architecture_hac_iff_L_feedforward
|
|
#+caption: Feedback/Feedforward control in the frame of the legs
|
|
#+RESULTS:
|
|
[[file:figs/control_architecture_hac_iff_L_feedforward.png]]
|
|
|
|
|
|
|
|
* Functions
|
|
** =generateXYZTrajectory=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/generateXYZTrajectory.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:generateXYZTrajectory>>
|
|
|
|
*** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [ref] = generateXYZTrajectory(args)
|
|
% generateXYZTrajectory -
|
|
%
|
|
% Syntax: [ref] = generateXYZTrajectory(args)
|
|
%
|
|
% Inputs:
|
|
% - args
|
|
%
|
|
% Outputs:
|
|
% - ref - Reference Signal
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
arguments
|
|
args.points double {mustBeNumeric} = zeros(2, 3) % [m]
|
|
|
|
args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % Time to go to first point and after last point [s]
|
|
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.5 % Time wait between each point [s]
|
|
args.tm (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % Motion time between points [s]
|
|
|
|
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Sampling Time [s]
|
|
end
|
|
#+end_src
|
|
|
|
*** Initialize Time Vectors
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
time_i = 0:args.Ts:args.ti;
|
|
time_w = 0:args.Ts:args.tw;
|
|
time_m = 0:args.Ts:args.tm;
|
|
#+end_src
|
|
|
|
*** XYZ Trajectory
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
% Go to initial position
|
|
xyz = (args.points(1,:))'*(time_i/args.ti);
|
|
|
|
% Wait
|
|
xyz = [xyz, xyz(:,end).*ones(size(time_w))];
|
|
|
|
% Scans
|
|
for i = 2:size(args.points, 1)
|
|
% Go to next point
|
|
xyz = [xyz, xyz(:,end) + (args.points(i,:)' - xyz(:,end))*(time_m/args.tm)];
|
|
% Wait a litle bit
|
|
xyz = [xyz, xyz(:,end).*ones(size(time_w))];
|
|
end
|
|
|
|
% End motion
|
|
xyz = [xyz, xyz(:,end) - xyz(:,end)*(time_i/args.ti)];
|
|
#+end_src
|
|
|
|
*** Reference Signal
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
t = 0:args.Ts:args.Ts*(length(xyz) - 1);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
ref = zeros(length(xyz), 7);
|
|
|
|
ref(:, 1) = t;
|
|
ref(:, 2:4) = xyz';
|
|
#+end_src
|
|
|
|
** =generateYZScanTrajectory=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/generateYZScanTrajectory.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:generateYZScanTrajectory>>
|
|
|
|
*** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [ref] = generateYZScanTrajectory(args)
|
|
% generateYZScanTrajectory -
|
|
%
|
|
% Syntax: [ref] = generateYZScanTrajectory(args)
|
|
%
|
|
% Inputs:
|
|
% - args
|
|
%
|
|
% Outputs:
|
|
% - ref - Reference Signal
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
arguments
|
|
args.y_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [m]
|
|
args.z_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [m]
|
|
|
|
args.n (1,1) double {mustBeInteger, mustBePositive} = 10 % [-]
|
|
|
|
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4 % [s]
|
|
|
|
args.ti (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
|
args.tw (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
|
args.ty (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
|
args.tz (1,1) double {mustBeNumeric, mustBeNonnegative} = 1 % [s]
|
|
end
|
|
#+end_src
|
|
|
|
*** Initialize Time Vectors
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
time_i = 0:args.Ts:args.ti;
|
|
time_w = 0:args.Ts:args.tw;
|
|
time_y = 0:args.Ts:args.ty;
|
|
time_z = 0:args.Ts:args.tz;
|
|
#+end_src
|
|
|
|
*** Y and Z vectors
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
% Go to initial position
|
|
y = (time_i/args.ti)*(args.y_tot/2);
|
|
|
|
% Wait
|
|
y = [y, y(end)*ones(size(time_w))];
|
|
|
|
% Scans
|
|
for i = 1:args.n
|
|
if mod(i,2) == 0
|
|
y = [y, -(args.y_tot/2) + (time_y/args.ty)*args.y_tot];
|
|
else
|
|
y = [y, (args.y_tot/2) - (time_y/args.ty)*args.y_tot];
|
|
end
|
|
|
|
if i < args.n
|
|
y = [y, y(end)*ones(size(time_z))];
|
|
end
|
|
end
|
|
|
|
% Wait a litle bit
|
|
y = [y, y(end)*ones(size(time_w))];
|
|
|
|
% End motion
|
|
y = [y, y(end) - y(end)*time_i/args.ti];
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
% Go to initial position
|
|
z = (time_i/args.ti)*(args.z_tot/2);
|
|
|
|
% Wait
|
|
z = [z, z(end)*ones(size(time_w))];
|
|
|
|
% Scans
|
|
for i = 1:args.n
|
|
z = [z, z(end)*ones(size(time_y))];
|
|
|
|
if i < args.n
|
|
z = [z, z(end) - (time_z/args.tz)*args.z_tot/(args.n-1)];
|
|
end
|
|
end
|
|
|
|
% Wait a litle bit
|
|
z = [z, z(end)*ones(size(time_w))];
|
|
|
|
% End motion
|
|
z = [z, z(end) - z(end)*time_i/args.ti];
|
|
#+end_src
|
|
|
|
*** Reference Signal
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
t = 0:args.Ts:args.Ts*(length(y) - 1);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
ref = zeros(length(y), 7);
|
|
|
|
ref(:, 1) = t;
|
|
ref(:, 3) = y;
|
|
ref(:, 4) = z;
|
|
#+end_src
|
|
|
|
** =generateSpiralAngleTrajectory=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/generateSpiralAngleTrajectory.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:generateSpiralAngleTrajectory>>
|
|
|
|
*** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [ref] = generateSpiralAngleTrajectory(args)
|
|
% generateSpiralAngleTrajectory -
|
|
%
|
|
% Syntax: [ref] = generateSpiralAngleTrajectory(args)
|
|
%
|
|
% Inputs:
|
|
% - args
|
|
%
|
|
% Outputs:
|
|
% - ref - Reference Signal
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
arguments
|
|
args.R_tot (1,1) double {mustBeNumeric, mustBePositive} = 10e-6 % [rad]
|
|
args.n_turn (1,1) double {mustBeInteger, mustBePositive} = 5 % [-]
|
|
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [s]
|
|
args.t_turn (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
|
|
args.t_end (1,1) double {mustBeNumeric, mustBePositive} = 1 % [s]
|
|
end
|
|
#+end_src
|
|
|
|
*** Initialize Time Vectors
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
time_s = 0:args.Ts:args.n_turn*args.t_turn;
|
|
time_e = 0:args.Ts:args.t_end;
|
|
#+end_src
|
|
|
|
*** Rx and Ry vectors
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
Rx = sin(2*pi*time_s/args.t_turn).*(args.R_tot*time_s/(args.n_turn*args.t_turn));
|
|
Ry = cos(2*pi*time_s/args.t_turn).*(args.R_tot*time_s/(args.n_turn*args.t_turn));
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
Rx = [Rx, 0*time_e];
|
|
Ry = [Ry, Ry(end) - Ry(end)*time_e/args.t_end];
|
|
#+end_src
|
|
|
|
*** Reference Signal
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
t = 0:args.Ts:args.Ts*(length(Rx) - 1);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
ref = zeros(length(Rx), 7);
|
|
|
|
ref(:, 1) = t;
|
|
ref(:, 5) = Rx;
|
|
ref(:, 6) = Ry;
|
|
#+end_src
|
|
|
|
** =getTransformationMatrixAcc=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/getTransformationMatrixAcc.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:getTransformationMatrixAcc>>
|
|
|
|
*** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [M] = getTransformationMatrixAcc(Opm, Osm)
|
|
% getTransformationMatrixAcc -
|
|
%
|
|
% Syntax: [M] = getTransformationMatrixAcc(Opm, Osm)
|
|
%
|
|
% Inputs:
|
|
% - Opm - Nx3 (N = number of accelerometer measurements) X,Y,Z position of accelerometers
|
|
% - Opm - Nx3 (N = number of accelerometer measurements) Unit vectors representing the accelerometer orientation
|
|
%
|
|
% Outputs:
|
|
% - M - Transformation Matrix
|
|
#+end_src
|
|
|
|
*** Transformation matrix from motion of the solid body to accelerometer measurements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
Let's try to estimate the x-y-z acceleration of any point of the solid body from the acceleration/angular acceleration of the solid body expressed in $\{O\}$.
|
|
For any point $p_i$ of the solid body (corresponding to an accelerometer), we can write:
|
|
\begin{equation}
|
|
\begin{bmatrix}
|
|
a_{i,x} \\ a_{i,y} \\ a_{i,z}
|
|
\end{bmatrix} = \begin{bmatrix}
|
|
\dot{v}_x \\ \dot{v}_y \\ \dot{v}_z
|
|
\end{bmatrix} + p_i \times \begin{bmatrix}
|
|
\dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z
|
|
\end{bmatrix}
|
|
\end{equation}
|
|
|
|
We can write the cross product as a matrix product using the skew-symmetric transformation:
|
|
\begin{equation}
|
|
\begin{bmatrix}
|
|
a_{i,x} \\ a_{i,y} \\ a_{i,z}
|
|
\end{bmatrix} = \begin{bmatrix}
|
|
\dot{v}_x \\ \dot{v}_y \\ \dot{v}_z
|
|
\end{bmatrix} + \underbrace{\begin{bmatrix}
|
|
0 & p_{i,z} & -p_{i,y} \\
|
|
-p_{i,z} & 0 & p_{i,x} \\
|
|
p_{i,y} & -p_{i,x} & 0
|
|
\end{bmatrix}}_{P_{i,[\times]}} \cdot \begin{bmatrix}
|
|
\dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z
|
|
\end{bmatrix}
|
|
\end{equation}
|
|
|
|
If we now want to know the (scalar) acceleration $a_i$ of the point $p_i$ in the direction of the accelerometer direction $\hat{s}_i$, we can just project the 3d acceleration on $\hat{s}_i$:
|
|
\begin{equation}
|
|
a_i = \hat{s}_i^T \cdot \begin{bmatrix}
|
|
a_{i,x} \\ a_{i,y} \\ a_{i,z}
|
|
\end{bmatrix} = \hat{s}_i^T \cdot \begin{bmatrix}
|
|
\dot{v}_x \\ \dot{v}_y \\ \dot{v}_z
|
|
\end{bmatrix} + \left( \hat{s}_i^T \cdot P_{i,[\times]} \right) \cdot \begin{bmatrix}
|
|
\dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z
|
|
\end{bmatrix}
|
|
\end{equation}
|
|
|
|
Which is equivalent as a simple vector multiplication:
|
|
\begin{equation}
|
|
a_i = \begin{bmatrix}
|
|
\hat{s}_i^T & \hat{s}_i^T \cdot P_{i,[\times]}
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
\dot{v}_x \\ \dot{v}_y \\ \dot{v}_z \\ \dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z
|
|
\end{bmatrix} = \begin{bmatrix}
|
|
\hat{s}_i^T & \hat{s}_i^T \cdot P_{i,[\times]}
|
|
\end{bmatrix} {}^O\vec{x}
|
|
\end{equation}
|
|
|
|
And finally we can combine the 6 (line) vectors for the 6 accelerometers to write that in a matrix form.
|
|
We obtain Eq. eqref:eq:M_matrix.
|
|
#+begin_important
|
|
The transformation from solid body acceleration ${}^O\vec{x}$ from sensor measured acceleration $\vec{a}$ is:
|
|
\begin{equation} \label{eq:M_matrix}
|
|
\vec{a} = \underbrace{\begin{bmatrix}
|
|
\hat{s}_1^T & \hat{s}_1^T \cdot P_{1,[\times]} \\
|
|
\vdots & \vdots \\
|
|
\hat{s}_6^T & \hat{s}_6^T \cdot P_{6,[\times]}
|
|
\end{bmatrix}}_{M} {}^O\vec{x}
|
|
\end{equation}
|
|
|
|
with $\hat{s}_i$ the unit vector representing the measured direction of the i'th accelerometer expressed in frame $\{O\}$ and $P_{i,[\times]}$ the skew-symmetric matrix representing the cross product of the position of the i'th accelerometer expressed in frame $\{O\}$.
|
|
#+end_important
|
|
|
|
Let's define such matrix using matlab:
|
|
#+begin_src matlab
|
|
M = zeros(length(Opm), 6);
|
|
|
|
for i = 1:length(Opm)
|
|
Ri = [0, Opm(3,i), -Opm(2,i);
|
|
-Opm(3,i), 0, Opm(1,i);
|
|
Opm(2,i), -Opm(1,i), 0];
|
|
M(i, 1:3) = Osm(:,i)';
|
|
M(i, 4:6) = Osm(:,i)'*Ri;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
end
|
|
#+end_src
|
|
|
|
|
|
** =getJacobianNanoHexapod=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/getJacobianNanoHexapod.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:getJacobianNanoHexapod>>
|
|
|
|
*** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [J] = getJacobianNanoHexapod(Hbm)
|
|
% getJacobianNanoHexapod -
|
|
%
|
|
% Syntax: [J] = getJacobianNanoHexapod(Hbm)
|
|
%
|
|
% Inputs:
|
|
% - Hbm - Height of {B} w.r.t. {M} [m]
|
|
%
|
|
% Outputs:
|
|
% - J - Jacobian Matrix
|
|
#+end_src
|
|
|
|
*** Transformation matrix from motion of the solid body to accelerometer measurements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
Fa = [[-86.05, -74.78, 22.49],
|
|
[ 86.05, -74.78, 22.49],
|
|
[ 107.79, -37.13, 22.49],
|
|
[ 21.74, 111.91, 22.49],
|
|
[-21.74, 111.91, 22.49],
|
|
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
|
|
|
|
Mb = [[-28.47, -106.25, -22.50],
|
|
[ 28.47, -106.25, -22.50],
|
|
[ 106.25, 28.47, -22.50],
|
|
[ 77.78, 77.78, -22.50],
|
|
[-77.78, 77.78, -22.50],
|
|
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
|
|
|
|
H = 95e-3; % Stewart platform height [m]
|
|
Fb = Mb + [0; 0; H]; % Bi w.r.t. {F} [m]
|
|
|
|
si = Fb - Fa;
|
|
si = si./vecnorm(si); % Normalize
|
|
|
|
Bb = Mb - [0; 0; Hbm];
|
|
|
|
J = [si', cross(Bb, si)'];
|
|
#+end_src
|
|
|
|
* Bibliography :ignore:
|
|
#+latex: \printbibliography
|