38 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	SVD Control
Gravimeter - Simscape Model
Simulink
  open('gravimeter.slx')  %% Name of the Simulink File
  mdl = 'gravimeter';
  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
  G = linearize(mdl, io);
  G.InputName  = {'F1', 'F2', 'F3'};
  G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};The plant as 6 states as expected (2 translations + 1 rotation)
  size(G)State-space model with 4 outputs, 3 inputs, and 6 states.
Stewart Platform - Simscape Model
Jacobian
First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
  open('stewart_platform/drone_platform_jacobian.slx');  sim('drone_platform_jacobian');  Aa = [a1.Data(1,:);
        a2.Data(1,:);
        a3.Data(1,:);
        a4.Data(1,:);
        a5.Data(1,:);
        a6.Data(1,:)]';
  Ab = [b1.Data(1,:);
        b2.Data(1,:);
        b3.Data(1,:);
        b4.Data(1,:);
        b5.Data(1,:);
        b6.Data(1,:)]';
  As = (Ab - Aa)./vecnorm(Ab - Aa);
  l = vecnorm(Ab - Aa)';
  J = [As' , cross(Ab, As)'];
  save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');Simscape Model
  open('stewart_platform/drone_platform.slx');Definition of spring parameters
  kx = 50; % [N/m]
  ky = 50;
  kz = 50;
  cx = 0.025; % [Nm/rad]
  cy = 0.025;
  cz = 0.025;We load the Jacobian.
  load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');Identification of the plant
The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.
  %% Name of the Simulink File
  mdl = 'drone_platform';
  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Dw'],              1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/u'],               1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;
  G = linearize(mdl, io);
  G.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
                  'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
  G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};There are 24 states (6dof for the bottom platform + 6dof for the top platform).
  size(G)State-space model with 6 outputs, 12 inputs, and 24 states.
  % G = G*blkdiag(inv(J), eye(6));
  % G.InputName  = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
  %                 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.
  Gx = G*blkdiag(eye(6), inv(J'));
  Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
                   'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
  Gl = J*G;
  Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};Obtained Dynamics
Real Approximation of $G$ at the decoupling frequency
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
  wc = 2*pi*20; % Decoupling frequency [rad/s]
  Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
         {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
  H1 = evalfr(Gc, j*wc);The real approximation is computed as follows:
  D = pinv(real(H1'*H1));
  H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));Verification of the decoupling using the "Gershgorin Radii"
First, the Singular Value Decomposition of $H_1$ is performed: \[ H_1 = U \Sigma V^H \]
  [U,S,V] = svd(H1);Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$: \[ G_d(s) = U^T G_c(s) V \]
This is computed over the following frequencies.
  freqs = logspace(-2, 2, 1000); % [Hz]Gershgorin Radii for the coupled plant:
  Gr_coupled = zeros(length(freqs), size(Gc,2));
  H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
  for out_i = 1:size(Gc,2)
      Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
  endGershgorin Radii for the decoupled plant using SVD:
  Gd = U'*Gc*V;
  Gr_decoupled = zeros(length(freqs), size(Gd,2));
  H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
  for out_i = 1:size(Gd,2)
      Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
  endGershgorin Radii for the decoupled plant using the Jacobian:
  Gj = Gc*inv(J');
  Gr_jacobian = zeros(length(freqs), size(Gj,2));
  H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
  for out_i = 1:size(Gj,2)
      Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
  endDecoupled Plant
Diagonal Controller
The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$.
  wc = 2*pi*0.1; % Crossover Frequency [rad/s]
  C_g = 50; % DC Gain
  K = eye(6)*C_g/(s+wc);Centralized Control
The control diagram for the centralized control is shown below.
The controller $K_c$ is "working" in an cartesian frame. The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
  \begin{tikzpicture}
    \node[block={2cm}{1.5cm}] (G) {$G$};
    \node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
    \node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
    % Inputs of the controllers
    \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
    \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
    % Connections and labels
    \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
    \draw[->] (G.east) -- ++(2.0, 0)  node[above left]{$a$};
    \draw[->] ($(G.east)+(1.4, 0)$)node[branch]{} |- (K.east);
    \draw[->] (K.west) -- (J.east) node[above right]{$\mathcal{F}$};
    \draw[->] (J.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
  \end{tikzpicture}  G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);SVD Control
The SVD control architecture is shown below. The matrices $U$ and $V$ are used to decoupled the plant $G$.
  \begin{tikzpicture}
    \node[block={2cm}{1.5cm}] (G) {$G$};
    \node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
    \node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$};
    \node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$};
    % Inputs of the controllers
    \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
    \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
    % Connections and labels
    \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
    \draw[->] (G.east) -- ++(2.5, 0) node[above left]{$a$};
    \draw[->] ($(G.east)+(2.0, 0)$) node[branch]{} |- (U.east);
    \draw[->] (U.west) -- (K.east);
    \draw[->] (K.west) -- (V.east);
    \draw[->] (V.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
  \end{tikzpicture}SVD Control
  G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]);Results
Let's first verify the stability of the closed-loop systems:
  isstable(G_cen)ans = logical 1
  isstable(G_svd)ans = logical 1
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure fig:stewart_platform_simscape_cl_transmissibility.
Stewart Platform - Analytical Model
Characteristics
  L  = 0.055;
  Zc = 0;
  m  = 0.2;
  k  = 1e3;
  c  = 2*0.1*sqrt(k*m);
  Rx = 0.04;
  Rz = 0.04;
  Ix = m*Rx^2;
  Iy = m*Rx^2;
  Iz = m*Rz^2;Mass Matrix
  M = m*[1 0 0 0 Zc 0;
         0 1 0 -Zc 0 0;
         0 0 1 0 0 0;
         0 -Zc 0 Rx^2+Zc^2 0 0;
         Zc 0 0 0 Rx^2+Zc^2 0;
         0 0 0 0 0 Rz^2];Jacobian Matrix
  Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2;
                 sqrt(3) -sqrt(3) 0 sqrt(3) -sqrt(3) 0;
                 sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2);
                 0 0 L L -L -L;
                 -L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3);
                 L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)];Stifnness matrix and Damping matrix
  kv = k/3; % [N/m]
  kh = 0.5*k/3; % [N/m]
  K = diag([3*kh,3*kh,3*kv,3*kv*Rx^2/2,3*kv*Rx^2/2,3*kh*Rx^2]); % Stiffness Matrix
  C = c*K/100000; % Damping MatrixState Space System
  A  = [zeros(6) eye(6); -M\K -M\C];
  Bw = [zeros(6); -eye(6)];
  Bu = [zeros(6); M\Bj];
  Co = [-M\K -M\C];
  D  = [zeros(6) M\Bj];
 
  ST = ss(A,[Bw Bu],Co,D);- OUT 1-6: 6 dof
- IN 1-6 : ground displacement in the directions of the legs
- IN 7-12: forces in the actuators.
  ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';...
                  'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'};
  ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';...
                  'u1';'u2';'u3';'u4';'u5';'u6'};
  ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};Transmissibility
Real approximation of $G(j\omega)$ at decoupling frequency
  sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs
  dec_fr = 20;
  H1 = evalfr(sys1,j*2*pi*dec_fr);
  H2 = H1;
  D = pinv(real(H2'*H2));
  H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ;
  [U,S,V] = svd(H1);
  wf = logspace(-1,2,1000);
  for i  = 1:length(wf)
      H = abs(evalfr(sys1,j*2*pi*wf(i)));
      H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i)));
      for j = 1:size(H,2)
          g_r1(i,j) =  (sum(H(j,:))-H(j,j))/H(j,j);
          g_r2(i,j) =  (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j);
          %     keyboard
      end
      g_lim(i) = 0.5;
  endCoupled and Decoupled Plant "Gershgorin Radii"
  figure;
  title('Coupled plant')
  loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--');
  legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit');
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')  figure;
  title('Decoupled plant (10 Hz)')
  loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--');
  legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit');
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')Controller
  fc = 2*pi*0.1; % Crossover Frequency [rad/s]
  c_gain = 50; %
  cont = eye(6)*c_gain/(s+fc);Closed Loop System
  FEEDIN  = [7:12]; % Input of controller
  FEEDOUT = [1:6]; % Output of controllerCentralized Control
  STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT);
  TRcen = STcen*[eye(6); zeros(6)];SVD Control
  STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT);
  TRsvd = STsvd*[eye(6); zeros(6)];Results
  figure
  subplot(231)
  bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts)
  legend('OL','Centralized','SVD')
  subplot(232)
  bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts)
  legend('OL','Centralized','SVD')
  subplot(233)
  bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts)
  legend('OL','Centralized','SVD')
  subplot(234)
  bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts)
  legend('OL','Centralized','SVD')
  subplot(235)
  bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts)
  legend('OL','Centralized','SVD')
  subplot(236)
  bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts)
  legend('OL','Centralized','SVD')














