#+TITLE: SVD Control :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Gravimeter - Simscape Model ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Simulink #+begin_src matlab open('gravimeter.slx') #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'gravimeter'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); G.InputName = {'F1', 'F2', 'F3'}; G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'}; #+end_src The plant as 6 states as expected (2 translations + 1 rotation) #+begin_src matlab :results output replace size(G) #+end_src #+RESULTS: : State-space model with 4 outputs, 3 inputs, and 6 states. #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; for in_i = 1:3 for out_i = 1:4 subplot(4, 3, 3*(out_i-1)+in_i); plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); end end #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/open_loop_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:open_loop_tf #+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers #+RESULTS: [[file:figs/open_loop_tf.png]] ** Matlab Code :noexport: #+begin_src matlab clc; % close all g = 100000; w0 = 2*pi*.5; % MinusK BM1 tablle l = 0.5; %[m] la = 1; %[m] h = 1.7; %[m] ha = 1.7;% %[m] m = 400; %[kg] k = 15e3;%[N/m] kv = k; kh = 15e3; I = 115;%[kg m^2] % c = 0.06; % l = 0.4719; %[m] % la = .477; %[m] % h = 1.8973; %[m] % ha = 1.9060;% %[m] % m = 98.1421; %[kg] % k = 14512;%[N/m] % I = 28.5372;%[kg m^2] cv = 0.03; ch = 0.03; %% System definition [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot]... = modelGeneration(m,I,k,h,ha,l,la,cv,ch,kv,kh); %% Bode options P = bodeoptions; P.FreqUnits = 'Hz'; P.MagUnits = 'abs'; P.MagScale = 'log'; P.Grid = 'on'; P.PhaseWrapping = 'on'; P.Xlim = [1e-1,1e2]; %P.PhaseVisible = 'off'; w = 2*pi*logspace(-1,2,1000); %% curves points % slide 4 F_sl4 = [2e-1 4e-1 7e-1 1 2 3 5]; Amp_sl4 = [ 1 2 4 2.5 1 7e-1 7e-1]; F_sl4_phase = [2e-1 4e-1 7e-1 1 ]; Phase_sl4 = (180/pi).*[0 0 -0.5 -1.7]; %slide 6 F_sl6 = [2e-1 4e-1 1 2 3 5]; Amp_sl6 = [1 1 6e-1 2e-1 3e-1 3e-1]; F_sl6_phase = [2e-1 4e-1 1 ]; Phase_sl6 = (180/pi).*[0 0 0 ]; %slide 9 F_sl9 = [2.5e-1 4e-1 6e-1 1 1.7 2.2 3 5 10]; Amp_sl9 = [3 6 1 5e-1 1 2 7e-1 2.5e-1 7e-2]; Phase_sl9 = (180/pi)*[0 -1 -pi 0 -1 -1.5 -pi -pi -pi]; % slide 14 F_sl14 = [ 2e-1 4e-1 6e-1 8e-1 1 2 3 5 10]; Amp_sl14 = [9e-1 1.5 1.2 0.35 .3 1.2 .3 .1 5e-2]; F_sl14_phase = [ 2e-1 4e-1 6e-1 8e-1 ]; Phase_sl14 = (180/pi).*[0 0 -1.7 -2]; %rotation F_rot = [1e-1 2e-1 4e-1 5e-1 7e-1 1 2 3 6.5 10 20]; Amp_rot = [7e-8 2.2e-7 3e-7 1e-7 2e-8 9e-9 3e-8 9e-9 1e-9 4e-10 8e-11]; %% Plots % %slide 3 % figure % loglog(Fr,abs(x2).^.5,Fr,abs(x1).^.5,Fr,abs(xsum).^.5,Fr,abs(xdelta).^.5) % xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]') % legend('Top sensor','Bottom sensor','Half sum','Half difference'); % title('Horizontal') % xlim([7e-2 1e1]); %slide 4 figure subplot 211 loglog(Fr, abs(x12)./abs(x1));hold on; loglog(F_sl4,Amp_sl4,'*'); xlabel('Frequency [Hz]');ylabel('Amplitude [-]'); title('X direction Top/bottom sensor'); xlim([7e-2 1e1]); subplot 212 semilogx(Fr, (180/pi).*angle(x12./abs(x1)));hold on; loglog(F_sl4_phase,Phase_sl4,'*'); xlabel('Frequency [Hz]');ylabel('Phase [deg]'); xlim([7e-2 1e1]); %slide 6 figure subplot 211 loglog(Fr, abs(z12)./abs(z1));hold on; loglog(F_sl6,Amp_sl6,'*'); xlabel('Frequency [Hz]');ylabel('Amplitude [-]'); title('Z direction Top/bottom sensor'); xlim([7e-2 1e1]); subplot 212 semilogx(Fr, (180/pi).*angle(z12./abs(z1)));hold on; loglog(F_sl6_phase,Phase_sl6,'*'); xlabel('Frequency [Hz]');ylabel('Phase [deg]'); xlim([7e-2 1e1]);ylim([-180 180]); % %slide 6 % figure % loglog(Fr,abs(z2).^.5,Fr,abs(z1).^.5,Fr,abs(zsum).^.5,Fr,abs(zdelta).^.5) % xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]') % legend('Top sensor','Bottom sensor','Half sum','Half difference'); % title('Vertical') % xlim([7e-2 1e1]); %slide 9 figure subplot 211 loglog(Fr, abs(PHIwx)./abs(wx));hold on; loglog(F_sl9,Amp_sl9,'*'); xlabel('Frequency [Hz]');ylabel('Amplitude [-]'); title('X direction bottom/ground sensor'); xlim([7e-2 1e1]); ylim([0.01 10]); subplot 212 semilogx(Fr, (180/pi).*angle(PHIwx./abs(wx)));hold on; loglog(F_sl9,Phase_sl9,'*'); xlabel('Frequency [Hz]');ylabel('Phase [deg]'); xlim([7e-2 1e1]); % %slide 8 % figure % loglog(Fr,abs(wx).^.5,Fr,abs(x1).^.5,'-.',Fr,abs(x2).^.5,'.'); % grid on;xlabel('Frequency [Hz]'); % ylabel('ASD [m/s^2/rtHz]'); % xlim([7e-2 1e1]); % legend('Ground','Bottom sensor','Top sensor'); % title('Horizontal'); % % %slide 13 % figure % loglog(Fr,abs(wz).^.5,Fr,abs(z1).^.5,'-.',Fr,abs(z2).^.5,'.'); % grid on;xlabel('Frequency [Hz]'); % ylabel('ASD [m/s^2/rtHz]'); % xlim([7e-2 1e1]); % legend('Ground','Bottom sensor','Top sensor'); % title('Vertical'); %slide 14 figure subplot 211 loglog(Fr, abs(PHIwz)./abs(wz));hold on; loglog(F_sl14,Amp_sl14,'*'); xlabel('Frequency [Hz]');ylabel('Amplitude [-]'); title('Z direction bottom/ground sensor'); xlim([7e-2 1e1]); ylim([0.01 10]); subplot 212 semilogx(Fr, (180/pi).*angle(PHIwz./abs(wz)));hold on; loglog(F_sl14_phase,Phase_sl14,'*'); xlabel('Frequency [Hz]');ylabel('Phase [deg]'); xlim([7e-2 1e1]); %rotation figure loglog(Fr,abs(rot).^.5./((2*pi*Fr').^2),F_rot,Amp_rot,'*'); xlabel('Frequency [Hz]');ylabel('Rotation [rad/rtHz]') xlim([7e-2 1e1]); #+end_src ** Model Generation :noexport: #+begin_src matlab function [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot] = modelGeneration(m,I,k,h,ha,l,la,dampv,damph,kv,kh) %% generation of the state space model M = [m 0 0 0 m 0 0 0 I]; %Jacobian of the bottom sensor Js1 = [1 0 h/2 0 1 -l/2]; %Jacobian of the top sensor Js2 = [1 0 -h/2 0 1 0]; %Jacobian of the actuators Ja = [1 0 ha/2 %Left horizontal actuator %1 0 h/2 %Right horizontal actuator 0 1 -la/2 %Left vertical actuator 0 1 la/2]; %Right vertical actuator Jah = [1 0 ha/2]; Jav = [0 1 -la/2 %Left vertical actuator 0 1 la/2]; %Right vertical actuator Jta = Ja'; Jtah = Jah'; Jtav = Jav'; K = kv*Jtav*Jav + kh*Jtah*Jah; C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah; E = [1 0 0 0 1 0 0 0 1]; %projecting ground motion in the directions of the legs AA = [zeros(3) eye(3) -M\K -M\C]; BB = [zeros(3,6) M\Jta M\(k*Jta*E)]; CC = [[Js1;Js2] zeros(4,3); zeros(2,6) (Js1+Js2)./2 zeros(2,3) (Js1-Js2)./2 zeros(2,3) (Js1-Js2)./(2*h) zeros(2,3)]; DD = [zeros(4,6) zeros(2,3) eye(2,3) zeros(6,6)]; system_dec = ss(AA,BB,CC,DD); %input = three actuators and three ground motions %output = the bottom sensor; the top sensor; the ground motion; the half %sum; the half difference; the rotation %% Injecting ground motion in the system to have the output Fr = logspace(-2,3,1e3); w=2*pi*Fr*1i; %fit of the ground motion data in m/s^2/rtHz Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10]; n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5]; Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10]; n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5]; n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear'); n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear'); % figure % loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*'); % xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]'); % return %converting into PSD n_ground_x = (n_ground_x).^2; n_ground_v = (n_ground_v).^2; %Injecting ground motion in the system and getting the outputs system_dec_f = (freqresp(system_dec,abs(w))); PHI = zeros(size(Fr,2),12,12); for p = 1:size(Fr,2) Sw=zeros(6,6); Iact = zeros(3,3); Sw(4,4) = n_ground_x(p); Sw(5,5) = n_ground_v(p); Sw(6,6) = n_ground_v(p); Sw(1:3,1:3) = Iact; PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))'; end x1 = PHI(:,1,1); z1 = PHI(:,2,2); x2 = PHI(:,3,3); z2 = PHI(:,4,4); wx = PHI(:,5,5); wz = PHI(:,6,6); x12 = PHI(:,1,3); z12 = PHI(:,2,4); PHIwx = PHI(:,1,5); PHIwz = PHI(:,2,6); xsum = PHI(:,7,7); zsum = PHI(:,8,8); xdelta = PHI(:,9,9); zdelta = PHI(:,10,10); rot = PHI(:,11,11); #+end_src * Stewart Platform - Simscape Model ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Jacobian First, the position of the "joints" (points of force application) are estimated and the Jacobian computed. #+begin_src matlab open('stewart_platform/drone_platform_jacobian.slx'); #+end_src #+begin_src matlab sim('drone_platform_jacobian'); #+end_src #+begin_src matlab Aa = [a1.Data(1,:); a2.Data(1,:); a3.Data(1,:); a4.Data(1,:); a5.Data(1,:); a6.Data(1,:)]'; Ab = [b1.Data(1,:); b2.Data(1,:); b3.Data(1,:); b4.Data(1,:); b5.Data(1,:); b6.Data(1,:)]'; As = (Ab - Aa)./vecnorm(Ab - Aa); l = vecnorm(Ab - Aa)'; J = [As' , cross(Ab, As)']; save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); #+end_src ** Simscape Model #+begin_src matlab open('stewart_platform/drone_platform.slx'); #+end_src Definition of spring parameters #+begin_src matlab kx = 50; % [N/m] ky = 50; kz = 50; cx = 0.025; % [Nm/rad] cy = 0.025; cz = 0.025; #+end_src We load the Jacobian. #+begin_src matlab load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); #+end_src ** Identification of the plant The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform. #+begin_src matlab %% Name of the Simulink File mdl = 'drone_platform'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}; #+end_src There are 24 states (6dof for the bottom platform + 6dof for the top platform). #+begin_src matlab :results output replace size(G) #+end_src #+RESULTS: : State-space model with 6 outputs, 12 inputs, and 24 states. #+begin_src matlab % G = G*blkdiag(inv(J), eye(6)); % G.InputName = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ... % 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; #+end_src Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame. #+begin_src matlab Gx = G*blkdiag(eye(6), inv(J')); Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gl = J*G; Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'}; #+end_src ** Obtained Dynamics #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$'); plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$'); plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast'); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_translations.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_translations #+caption: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform #+RESULTS: [[file:figs/stewart_platform_translations.png]] #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$'); plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$'); plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast'); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_rotations.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_rotations #+caption: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform #+RESULTS: [[file:figs/stewart_platform_rotations.png]] #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz')))); end for out_i = 1:5 for in_i = i+1:6 plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for ch_i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_legs.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_legs #+caption: Stewart Platform Plant from forces applied by the legs to displacement of the legs #+RESULTS: [[file:figs/stewart_platform_legs.png]] #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$'); plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$'); plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); ax2 = subplot(2, 1, 2); hold on; plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$'); plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$'); plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_transmissibility.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_transmissibility #+caption: Transmissibility #+RESULTS: [[file:figs/stewart_platform_transmissibility.png]] ** Real Approximation of $G$ at the decoupling frequency Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. #+begin_src matlab wc = 2*pi*20; % Decoupling frequency [rad/s] Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ... {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation H1 = evalfr(Gc, j*wc); #+end_src The real approximation is computed as follows: #+begin_src matlab D = pinv(real(H1'*H1)); H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); #+end_src ** Verification of the decoupling using the "Gershgorin Radii" First, the Singular Value Decomposition of $H_1$ is performed: \[ H_1 = U \Sigma V^H \] #+begin_src matlab [U,S,V] = svd(H1); #+end_src Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$: \[ G_d(s) = U^T G_c(s) V \] This is computed over the following frequencies. #+begin_src matlab freqs = logspace(-2, 2, 1000); % [Hz] #+end_src Gershgorin Radii for the coupled plant: #+begin_src matlab Gr_coupled = zeros(length(freqs), size(Gc,2)); H = abs(squeeze(freqresp(Gc, freqs, 'Hz'))); for out_i = 1:size(Gc,2) Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end #+end_src Gershgorin Radii for the decoupled plant using SVD: #+begin_src matlab Gd = U'*Gc*V; Gr_decoupled = zeros(length(freqs), size(Gd,2)); H = abs(squeeze(freqresp(Gd, freqs, 'Hz'))); for out_i = 1:size(Gd,2) Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end #+end_src Gershgorin Radii for the decoupled plant using the Jacobian: #+begin_src matlab Gj = Gc*inv(J'); Gr_jacobian = zeros(length(freqs), size(Gj,2)); H = abs(squeeze(freqresp(Gj, freqs, 'Hz'))); for out_i = 1:size(Gj,2) Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end #+end_src #+begin_src matlab :exports results figure; hold on; plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled'); plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD'); plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian'); for in_i = 2:6 set(gca,'ColorOrderIndex',1) plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',2) plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',3) plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off'); end plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); hold off; xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') legend('location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/simscape_model_gershgorin_radii.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:simscape_model_gershgorin_radii #+caption: Gershgorin Radii of the Coupled and Decoupled plants #+RESULTS: [[file:figs/simscape_model_gershgorin_radii.png]] ** Decoupled Plant Let's see the bode plot of the decoupled plant $G_d(s)$. \[ G_d(s) = U^T G_c(s) V \] #+begin_src matlab :exports results freqs = logspace(-1, 2, 1000); figure; hold on; for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ... 'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); end for in_i = 1:5 for out_i = in_i+1:6 plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'southeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:simscape_model_decoupled_plant_svd #+caption: Decoupled Plant using SVD #+RESULTS: [[file:figs/simscape_model_decoupled_plant_svd.png]] #+begin_src matlab :exports results freqs = logspace(-1, 2, 1000); figure; hold on; for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ... 'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); end for in_i = 1:5 for out_i = in_i+1:6 plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'southeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:simscape_model_decoupled_plant_jacobian #+caption: Decoupled Plant using the Jacobian #+RESULTS: [[file:figs/simscape_model_decoupled_plant_jacobian.png]] ** Diagonal Controller The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$. #+begin_src matlab wc = 2*pi*0.1; % Crossover Frequency [rad/s] C_g = 50; % DC Gain K = eye(6)*C_g/(s+wc); #+end_src ** Centralized Control The control diagram for the centralized control is shown below. The controller $K_c$ is "working" in an cartesian frame. The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators. #+begin_src latex :file centralized_control.pdf \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$G$}; \node[block, below right=0.6 and -0.5 of G] (K) {$K_c$}; \node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[->] (G.east) -- ++(2.0, 0) node[above left]{$a$}; \draw[->] ($(G.east)+(1.4, 0)$)node[branch]{} |- (K.east); \draw[->] (K.west) -- (J.east) node[above right]{$\mathcal{F}$}; \draw[->] (J.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$}; \end{tikzpicture} #+end_src #+RESULTS: [[file:figs/centralized_control.png]] #+begin_src matlab G_cen = feedback(G, inv(J')*K, [7:12], [1:6]); #+end_src ** SVD Control The SVD control architecture is shown below. The matrices $U$ and $V$ are used to decoupled the plant $G$. #+begin_src latex :file svd_control.pdf \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$G$}; \node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$}; \node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$}; \node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[->] (G.east) -- ++(2.5, 0) node[above left]{$a$}; \draw[->] ($(G.east)+(2.0, 0)$) node[branch]{} |- (U.east); \draw[->] (U.west) -- (K.east); \draw[->] (K.west) -- (V.east); \draw[->] (V.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$}; \end{tikzpicture} #+end_src #+RESULTS: [[file:figs/svd_control.png]] SVD Control #+begin_src matlab G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]); #+end_src ** Results Let's first verify the stability of the closed-loop systems: #+begin_src matlab :results output replace text isstable(G_cen) #+end_src #+RESULTS: : ans = : logical : 1 #+begin_src matlab :results output replace text isstable(G_svd) #+end_src #+RESULTS: : ans = : logical : 1 The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]]. #+begin_src matlab :exports results freqs = logspace(-3, 3, 1000); figure ax1 = subplot(2, 3, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop'); plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized'); plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $D_x/D_{w,x}$'); xlabel('Frequency [Hz]'); legend('location', 'southwest'); ax2 = subplot(2, 3, 2); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $D_y/D_{w,y}$'); xlabel('Frequency [Hz]'); ax3 = subplot(2, 3, 3); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $D_z/D_{w,z}$'); xlabel('Frequency [Hz]'); ax4 = subplot(2, 3, 4); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $R_x/R_{w,x}$'); xlabel('Frequency [Hz]'); ax5 = subplot(2, 3, 5); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $R_y/R_{w,y}$'); xlabel('Frequency [Hz]'); ax6 = subplot(2, 3, 6); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $R_z/R_{w,z}$'); xlabel('Frequency [Hz]'); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_simscape_cl_transmissibility.pdf', 'width', 1600, 'height', 'full'); #+end_src #+name: fig:stewart_platform_simscape_cl_transmissibility #+caption: Obtained Transmissibility #+RESULTS: [[file:figs/stewart_platform_simscape_cl_transmissibility.png]] * Stewart Platform - Analytical Model ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab %% Bode plot options opts = bodeoptions('cstprefs'); opts.FreqUnits = 'Hz'; opts.MagUnits = 'abs'; opts.MagScale = 'log'; opts.PhaseWrapping = 'on'; opts.xlim = [1 1000]; #+end_src ** Characteristics #+begin_src matlab L = 0.055; Zc = 0; m = 0.2; k = 1e3; c = 2*0.1*sqrt(k*m); Rx = 0.04; Rz = 0.04; Ix = m*Rx^2; Iy = m*Rx^2; Iz = m*Rz^2; #+end_src ** Mass Matrix #+begin_src matlab M = m*[1 0 0 0 Zc 0; 0 1 0 -Zc 0 0; 0 0 1 0 0 0; 0 -Zc 0 Rx^2+Zc^2 0 0; Zc 0 0 0 Rx^2+Zc^2 0; 0 0 0 0 0 Rz^2]; #+end_src ** Jacobian Matrix #+begin_src matlab Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2; sqrt(3) -sqrt(3) 0 sqrt(3) -sqrt(3) 0; sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2); 0 0 L L -L -L; -L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3); L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)]; #+end_src ** Stifnness matrix and Damping matrix #+begin_src matlab kv = k/3; % [N/m] kh = 0.5*k/3; % [N/m] K = diag([3*kh,3*kh,3*kv,3*kv*Rx^2/2,3*kv*Rx^2/2,3*kh*Rx^2]); % Stiffness Matrix C = c*K/100000; % Damping Matrix #+end_src ** State Space System #+begin_src matlab A = [zeros(6) eye(6); -M\K -M\C]; Bw = [zeros(6); -eye(6)]; Bu = [zeros(6); M\Bj]; Co = [-M\K -M\C]; D = [zeros(6) M\Bj]; ST = ss(A,[Bw Bu],Co,D); #+end_src - OUT 1-6: 6 dof - IN 1-6 : ground displacement in the directions of the legs - IN 7-12: forces in the actuators. #+begin_src matlab ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';... 'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'}; ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';... 'u1';'u2';'u3';'u4';'u5';'u6'}; ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'}; #+end_src ** Transmissibility #+begin_src matlab TR=ST*[eye(6); zeros(6)]; #+end_src #+begin_src matlab figure subplot(231) bodemag(TR(1,1),opts); subplot(232) bodemag(TR(2,2),opts); subplot(233) bodemag(TR(3,3),opts); subplot(234) bodemag(TR(4,4),opts); subplot(235) bodemag(TR(5,5),opts); subplot(236) bodemag(TR(6,6),opts); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_analytical_transmissibility.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_analytical_transmissibility #+caption: Transmissibility #+RESULTS: [[file:figs/stewart_platform_analytical_transmissibility.png]] ** Real approximation of $G(j\omega)$ at decoupling frequency #+begin_src matlab sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs dec_fr = 20; H1 = evalfr(sys1,j*2*pi*dec_fr); H2 = H1; D = pinv(real(H2'*H2)); H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ; [U,S,V] = svd(H1); wf = logspace(-1,2,1000); for i = 1:length(wf) H = abs(evalfr(sys1,j*2*pi*wf(i))); H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i))); for j = 1:size(H,2) g_r1(i,j) = (sum(H(j,:))-H(j,j))/H(j,j); g_r2(i,j) = (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j); % keyboard end g_lim(i) = 0.5; end #+end_src ** Coupled and Decoupled Plant "Gershgorin Radii" #+begin_src matlab figure; title('Coupled plant') loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--'); legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit'); xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/gershorin_raddii_coupled_analytical.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:gershorin_raddii_coupled_analytical #+caption: Gershorin Raddi for the coupled plant #+RESULTS: [[file:figs/gershorin_raddii_coupled_analytical.png]] #+begin_src matlab figure; title('Decoupled plant (10 Hz)') loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--'); legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit'); xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/gershorin_raddii_decoupled_analytical.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:gershorin_raddii_decoupled_analytical #+caption: Gershorin Raddi for the decoupled plant #+RESULTS: [[file:figs/gershorin_raddii_decoupled_analytical.png]] ** Decoupled Plant #+begin_src matlab figure; bodemag(U'*sys1*V,opts) #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_analytical_decoupled_plant.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_analytical_decoupled_plant #+caption: Decoupled Plant #+RESULTS: [[file:figs/stewart_platform_analytical_decoupled_plant.png]] ** Controller #+begin_src matlab fc = 2*pi*0.1; % Crossover Frequency [rad/s] c_gain = 50; % cont = eye(6)*c_gain/(s+fc); #+end_src ** Closed Loop System #+begin_src matlab FEEDIN = [7:12]; % Input of controller FEEDOUT = [1:6]; % Output of controller #+end_src Centralized Control #+begin_src matlab STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT); TRcen = STcen*[eye(6); zeros(6)]; #+end_src SVD Control #+begin_src matlab STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT); TRsvd = STsvd*[eye(6); zeros(6)]; #+end_src ** Results #+begin_src matlab figure subplot(231) bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts) legend('OL','Centralized','SVD') subplot(232) bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts) legend('OL','Centralized','SVD') subplot(233) bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts) legend('OL','Centralized','SVD') subplot(234) bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts) legend('OL','Centralized','SVD') subplot(235) bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts) legend('OL','Centralized','SVD') subplot(236) bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts) legend('OL','Centralized','SVD') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_analytical_svd_cen_comp.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_analytical_svd_cen_comp #+caption: Comparison of the obtained transmissibility for the centralized control and the SVD control #+RESULTS: [[file:figs/stewart_platform_analytical_svd_cen_comp.png]]