1725 lines
57 KiB
Org Mode
1725 lines
57 KiB
Org Mode
#+TITLE: SVD Control
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/custom.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
|
|
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
|
|
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
|
#+HTML_HEAD: <script type="text/javascript" src="./js/readtheorg.js"></script>
|
|
|
|
#+HTML_MATHJAX: align: center tagside: right font: TeX
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
#+PROPERTY: header-args:matlab+ :tangle no
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
|
|
#+PROPERTY: header-args:shell :eval no-export
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Gravimeter - Simscape Model
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle gravimeter/script.m
|
|
:END:
|
|
** Introduction
|
|
|
|
#+name: fig:gravimeter_model
|
|
#+caption: Model of the gravimeter
|
|
[[file:figs/gravimeter_model.png]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
addpath('gravimeter');
|
|
#+end_src
|
|
|
|
** Simscape Model - Parameters
|
|
#+begin_src matlab
|
|
open('gravimeter.slx')
|
|
#+end_src
|
|
|
|
Parameters
|
|
#+begin_src matlab
|
|
l = 1.0; % Length of the mass [m]
|
|
la = 0.5; % Position of Act. [m]
|
|
|
|
h = 3.4; % Height of the mass [m]
|
|
ha = 1.7; % Position of Act. [m]
|
|
|
|
m = 400; % Mass [kg]
|
|
I = 115; % Inertia [kg m^2]
|
|
|
|
k = 15e3; % Actuator Stiffness [N/m]
|
|
c = 0.03; % Actuator Damping [N/(m/s)]
|
|
|
|
deq = 0.2; % Length of the actuators [m]
|
|
|
|
g = 0; % Gravity [m/s2]
|
|
#+end_src
|
|
|
|
** System Identification - Without Gravity
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'gravimeter';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
|
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
|
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'F1', 'F2', 'F3'};
|
|
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab :results output replace :exports results
|
|
pole(G)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
pole(G)
|
|
ans =
|
|
-0.000473481142385795 + 21.7596190728632i
|
|
-0.000473481142385795 - 21.7596190728632i
|
|
-7.49842879459172e-05 + 8.6593576906982i
|
|
-7.49842879459172e-05 - 8.6593576906982i
|
|
-5.1538686792578e-06 + 2.27025295182756i
|
|
-5.1538686792578e-06 - 2.27025295182756i
|
|
#+end_example
|
|
|
|
The plant as 6 states as expected (2 translations + 1 rotation)
|
|
#+begin_src matlab :results output replace
|
|
size(G)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: State-space model with 4 outputs, 3 inputs, and 6 states.
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-2, 2, 1000);
|
|
|
|
figure;
|
|
for in_i = 1:3
|
|
for out_i = 1:4
|
|
subplot(4, 3, 3*(out_i-1)+in_i);
|
|
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/open_loop_tf.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:open_loop_tf
|
|
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers
|
|
#+RESULTS:
|
|
[[file:figs/open_loop_tf.png]]
|
|
|
|
** System Identification - With Gravity
|
|
#+begin_src matlab
|
|
g = 9.80665; % Gravity [m/s2]
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
Gg = linearize(mdl, io);
|
|
Gg.InputName = {'F1', 'F2', 'F3'};
|
|
Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
|
|
#+end_src
|
|
|
|
We can now see that the system is unstable due to gravity.
|
|
#+begin_src matlab :results output replace :exports results
|
|
pole(Gg)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
pole(Gg)
|
|
ans =
|
|
-10.9848275341252 + 0i
|
|
10.9838836405201 + 0i
|
|
-7.49855379478109e-05 + 8.65962885770051i
|
|
-7.49855379478109e-05 - 8.65962885770051i
|
|
-6.68819548733559e-06 + 0.832960422243848i
|
|
-6.68819548733559e-06 - 0.832960422243848i
|
|
#+end_example
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-2, 2, 1000);
|
|
|
|
figure;
|
|
for in_i = 1:3
|
|
for out_i = 1:4
|
|
subplot(4, 3, 3*(out_i-1)+in_i);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
|
plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:open_loop_tf_g
|
|
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity
|
|
#+RESULTS:
|
|
[[file:figs/open_loop_tf_g.png]]
|
|
|
|
** Analytical Model
|
|
*** Parameters
|
|
Bode options.
|
|
#+begin_src matlab
|
|
P = bodeoptions;
|
|
P.FreqUnits = 'Hz';
|
|
P.MagUnits = 'abs';
|
|
P.MagScale = 'log';
|
|
P.Grid = 'on';
|
|
P.PhaseWrapping = 'on';
|
|
P.Title.FontSize = 14;
|
|
P.XLabel.FontSize = 14;
|
|
P.YLabel.FontSize = 14;
|
|
P.TickLabel.FontSize = 12;
|
|
P.Xlim = [1e-1,1e2];
|
|
P.MagLowerLimMode = 'manual';
|
|
P.MagLowerLim= 1e-3;
|
|
#+end_src
|
|
|
|
Frequency vector.
|
|
#+begin_src matlab
|
|
w = 2*pi*logspace(-1,2,1000); % [rad/s]
|
|
#+end_src
|
|
|
|
*** Generation of the State Space Model
|
|
Mass matrix
|
|
#+begin_src matlab
|
|
M = [m 0 0
|
|
0 m 0
|
|
0 0 I];
|
|
#+end_src
|
|
|
|
Jacobian of the bottom sensor
|
|
#+begin_src matlab
|
|
Js1 = [1 0 h/2
|
|
0 1 -l/2];
|
|
#+end_src
|
|
|
|
Jacobian of the top sensor
|
|
#+begin_src matlab
|
|
Js2 = [1 0 -h/2
|
|
0 1 0];
|
|
#+end_src
|
|
|
|
Jacobian of the actuators
|
|
#+begin_src matlab
|
|
Ja = [1 0 ha % Left horizontal actuator
|
|
0 1 -la % Left vertical actuator
|
|
0 1 la]; % Right vertical actuator
|
|
Jta = Ja';
|
|
#+end_src
|
|
|
|
Stiffness and Damping matrices
|
|
#+begin_src matlab
|
|
K = k*Jta*Ja;
|
|
C = c*Jta*Ja;
|
|
#+end_src
|
|
|
|
State Space Matrices
|
|
#+begin_src matlab
|
|
E = [1 0 0
|
|
0 1 0
|
|
0 0 1]; %projecting ground motion in the directions of the legs
|
|
|
|
AA = [zeros(3) eye(3)
|
|
-M\K -M\C];
|
|
|
|
BB = [zeros(3,6)
|
|
M\Jta M\(k*Jta*E)];
|
|
|
|
CC = [[Js1;Js2] zeros(4,3);
|
|
zeros(2,6)
|
|
(Js1+Js2)./2 zeros(2,3)
|
|
(Js1-Js2)./2 zeros(2,3)
|
|
(Js1-Js2)./(2*h) zeros(2,3)];
|
|
|
|
DD = [zeros(4,6)
|
|
zeros(2,3) eye(2,3)
|
|
zeros(6,6)];
|
|
#+end_src
|
|
|
|
State Space model:
|
|
- Input = three actuators and three ground motions
|
|
- Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
|
|
|
|
#+begin_src matlab
|
|
system_dec = ss(AA,BB,CC,DD);
|
|
#+end_src
|
|
|
|
|
|
#+begin_src matlab :results output replace
|
|
size(system_dec)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: State-space model with 12 outputs, 6 inputs, and 6 states.
|
|
|
|
*** Comparison with the Simscape Model
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-2, 2, 1000);
|
|
|
|
figure;
|
|
for in_i = 1:3
|
|
for out_i = 1:4
|
|
subplot(4, 3, 3*(out_i-1)+in_i);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
|
|
plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:gravimeter_analytical_system_open_loop_models
|
|
#+caption: Comparison of the analytical and the Simscape models
|
|
#+RESULTS:
|
|
[[file:figs/gravimeter_analytical_system_open_loop_models.png]]
|
|
|
|
*** Analysis
|
|
#+begin_src matlab
|
|
% figure
|
|
% bode(system_dec,P);
|
|
% return
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% svd decomposition
|
|
% system_dec_freq = freqresp(system_dec,w);
|
|
% S = zeros(3,length(w));
|
|
% for m = 1:length(w)
|
|
% S(:,m) = svd(system_dec_freq(1:4,1:3,m));
|
|
% end
|
|
% figure
|
|
% loglog(w./(2*pi), S);hold on;
|
|
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
|
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
|
% legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
|
% ylim([1e-8 1e-2]);
|
|
%
|
|
% %condition number
|
|
% figure
|
|
% loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
|
|
% % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
|
|
% xlabel('Frequency [Hz]');ylabel('Condition number [-]');
|
|
% % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
|
|
%
|
|
% %performance indicator
|
|
% system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
|
|
% [U,S,V] = svd(system_dec_svd);
|
|
% H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
|
% H_svd = pinv(V')*H_svd_OL*pinv(U);
|
|
% % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
|
|
%
|
|
% OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
|
|
% OL_freq = freqresp(OL_dec,w); % OL = G*H
|
|
% CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
|
|
% CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
|
|
% % CL_system_2 = feedback(system_dec,H);
|
|
% % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
|
|
% for i = 1:size(w,2)
|
|
% OL(:,i) = svd(OL_freq(:,:,i));
|
|
% CL (:,i) = svd(CL_freq(:,:,i));
|
|
% %CL2 (:,i) = svd(CL_freq_2(:,:,i));
|
|
% end
|
|
%
|
|
% un = ones(1,length(w));
|
|
% figure
|
|
% loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
|
|
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
|
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
|
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
|
% legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
|
|
%
|
|
% figure
|
|
% loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
|
|
% % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
|
|
% % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
|
|
% xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
|
|
% legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
|
|
#+end_src
|
|
|
|
*** Control Section
|
|
#+begin_src matlab
|
|
system_dec_10Hz = freqresp(system_dec,2*pi*10);
|
|
system_dec_0Hz = freqresp(system_dec,0);
|
|
|
|
system_decReal_10Hz = pinv(align(system_dec_10Hz));
|
|
[Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
|
|
normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
|
|
|
|
[U,S,V] = svd(system_dec_10Hz(1:4,1:3));
|
|
normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
|
|
|
|
H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
|
|
0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
|
|
0 0 0 zpk(-2*pi,-2*pi*10,10)]);
|
|
H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
|
|
0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
|
|
H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
|
|
% H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
|
|
% 0 1/normalizationMatrix(2,2) 0 0
|
|
% 0 0 1/normalizationMatrix(3,3) 0];
|
|
% H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
|
|
% 0 1/normalizationMatrixReal(2,2) 0 0
|
|
% 0 0 1/normalizationMatrixReal(3,3) 0];
|
|
H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
|
0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
|
0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
|
H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
|
|
0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
|
|
0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
|
|
% H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
|
|
% H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
|
|
H_svd = pinv(V')*H_svd_OL*pinv(U);
|
|
H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
|
|
|
|
OL_dec = g*H_dec*system_dec(1:4,1:3);
|
|
OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
|
|
OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
|
|
OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
% figure
|
|
% bode(OL_dec,w,P);title('OL Decentralized');
|
|
% figure
|
|
% bode(OL_cen,w,P);title('OL Centralized');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
bode(g*system_dec(1:4,1:3),w,P);
|
|
title('gain * Plant');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
bode(OL_svd,OL_svd_real,w,P);
|
|
title('OL SVD');
|
|
legend('SVD of Complex plant','SVD of real approximation of the complex plant')
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
|
|
CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
|
|
CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
|
|
CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
|
|
title('Decentralized control');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
|
|
title('Centralized control');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
|
|
title('SVD control');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
|
|
title('Real approximation SVD control');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
P.Ylim = [1e-8 1e-3];
|
|
figure
|
|
bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
|
|
title('Motion/actuator')
|
|
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
P.Ylim = [1e-5 1e1];
|
|
figure
|
|
bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
|
|
title('Transmissibility');
|
|
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
|
|
title('Transmissibility from half sum and half difference in the X direction');
|
|
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
|
|
title('Transmissibility from half sum and half difference in the Z direction');
|
|
legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
|
|
#+end_src
|
|
|
|
*** Greshgorin radius
|
|
#+begin_src matlab
|
|
system_dec_freq = freqresp(system_dec,w);
|
|
x1 = zeros(1,length(w));
|
|
z1 = zeros(1,length(w));
|
|
x2 = zeros(1,length(w));
|
|
S1 = zeros(1,length(w));
|
|
S2 = zeros(1,length(w));
|
|
S3 = zeros(1,length(w));
|
|
|
|
for t = 1:length(w)
|
|
x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
|
|
z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
|
|
x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
|
|
system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
|
|
S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
|
|
S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
|
|
S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
|
|
end
|
|
|
|
limit = 0.5*ones(1,length(w));
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
|
|
legend('x_1','z_1','x_2','Limit');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Greshgorin radius [-]');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
|
|
legend('S1','S2','S3','Limit');
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('Greshgorin radius [-]');
|
|
% set(gcf,'color','w')
|
|
#+end_src
|
|
|
|
*** Injecting ground motion in the system to have the output
|
|
#+begin_src matlab
|
|
Fr = logspace(-2,3,1e3);
|
|
w=2*pi*Fr*1i;
|
|
%fit of the ground motion data in m/s^2/rtHz
|
|
Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
|
|
n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
|
|
Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
|
|
n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];
|
|
|
|
n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
|
|
n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
|
|
% figure
|
|
% loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
|
|
% xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
|
|
% return
|
|
|
|
%converting into PSD
|
|
n_ground_x = (n_ground_x).^2;
|
|
n_ground_v = (n_ground_v).^2;
|
|
|
|
%Injecting ground motion in the system and getting the outputs
|
|
system_dec_f = (freqresp(system_dec,abs(w)));
|
|
PHI = zeros(size(Fr,2),12,12);
|
|
for p = 1:size(Fr,2)
|
|
Sw=zeros(6,6);
|
|
Iact = zeros(3,3);
|
|
Sw(4,4) = n_ground_x(p);
|
|
Sw(5,5) = n_ground_v(p);
|
|
Sw(6,6) = n_ground_v(p);
|
|
Sw(1:3,1:3) = Iact;
|
|
PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
|
|
end
|
|
x1 = PHI(:,1,1);
|
|
z1 = PHI(:,2,2);
|
|
x2 = PHI(:,3,3);
|
|
z2 = PHI(:,4,4);
|
|
wx = PHI(:,5,5);
|
|
wz = PHI(:,6,6);
|
|
x12 = PHI(:,1,3);
|
|
z12 = PHI(:,2,4);
|
|
PHIwx = PHI(:,1,5);
|
|
PHIwz = PHI(:,2,6);
|
|
xsum = PHI(:,7,7);
|
|
zsum = PHI(:,8,8);
|
|
xdelta = PHI(:,9,9);
|
|
zdelta = PHI(:,10,10);
|
|
rot = PHI(:,11,11);
|
|
#+end_src
|
|
|
|
* Gravimeter - Functions
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
** =align=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle gravimeter/align.m
|
|
:END:
|
|
<<sec:align>>
|
|
|
|
This Matlab function is accessible [[file:gravimeter/align.m][here]].
|
|
|
|
#+begin_src matlab
|
|
function [A] = align(V)
|
|
%A!ALIGN(V) returns a constat matrix A which is the real alignment of the
|
|
%INVERSE of the complex input matrix V
|
|
%from Mohit slides
|
|
|
|
if (nargin ==0) || (nargin > 1)
|
|
disp('usage: mat_inv_real = align(mat)')
|
|
return
|
|
end
|
|
|
|
D = pinv(real(V'*V));
|
|
A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
|
|
|
|
|
|
end
|
|
#+end_src
|
|
|
|
|
|
** =pzmap_testCL=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle gravimeter/pzmap_testCL.m
|
|
:END:
|
|
<<sec:pzmap_testCL>>
|
|
|
|
This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
|
|
|
|
#+begin_src matlab
|
|
function [] = pzmap_testCL(system,H,gain,feedin,feedout)
|
|
% evaluate and plot the pole-zero map for the closed loop system for
|
|
% different values of the gain
|
|
|
|
[~, n] = size(gain);
|
|
[m1, n1, ~] = size(H);
|
|
[~,n2] = size(feedin);
|
|
|
|
figure
|
|
for i = 1:n
|
|
% if n1 == n2
|
|
system_CL = feedback(system,gain(i)*H,feedin,feedout);
|
|
|
|
[P,Z] = pzmap(system_CL);
|
|
plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
|
|
xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
|
|
% clear P Z
|
|
% else
|
|
% system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
|
|
%
|
|
% [P,Z] = pzmap(system_CL);
|
|
% plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
|
|
% xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
|
|
% clear P Z
|
|
% end
|
|
end
|
|
str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output
|
|
str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
|
|
for i = 2:n
|
|
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
|
|
str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
|
|
end
|
|
legend(str{:})
|
|
end
|
|
|
|
#+end_src
|
|
|
|
* Stewart Platform - Simscape Model
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle stewart_platform/simscape_model.m
|
|
:END:
|
|
** Introduction :ignore:
|
|
|
|
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]].
|
|
|
|
Some notes about the system:
|
|
- 6 voice coils actuators are used to control the motion of the top platform.
|
|
- the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular accelerations)
|
|
- the control objective is to isolate the top platform from vibrations coming from the bottom platform
|
|
|
|
#+name: fig:SP_assembly
|
|
#+caption: Stewart Platform CAD View
|
|
[[file:figs/SP_assembly.png]]
|
|
|
|
The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
|
|
- Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined
|
|
- Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the system coupling is shown
|
|
- Section [[sec:stewart_jacobian_decoupling]]: The plant is first decoupled using the Jacobian
|
|
- Section [[sec:stewart_real_approx]]: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)
|
|
- Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD
|
|
- Section [[sec:comp_decoupling]]: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii
|
|
- Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plants are shown
|
|
- Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant
|
|
- Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('stewart_platform');
|
|
addpath('stewart_platform/STEP');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('STEP');
|
|
#+end_src
|
|
|
|
** Jacobian :noexport:
|
|
First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
|
|
#+begin_src matlab :tangle no
|
|
open('drone_platform_jacobian.slx');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
sim('drone_platform_jacobian');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
Aa = [a1.Data(1,:);
|
|
a2.Data(1,:);
|
|
a3.Data(1,:);
|
|
a4.Data(1,:);
|
|
a5.Data(1,:);
|
|
a6.Data(1,:)]';
|
|
|
|
Ab = [b1.Data(1,:);
|
|
b2.Data(1,:);
|
|
b3.Data(1,:);
|
|
b4.Data(1,:);
|
|
b5.Data(1,:);
|
|
b6.Data(1,:)]';
|
|
|
|
As = (Ab - Aa)./vecnorm(Ab - Aa);
|
|
|
|
l = vecnorm(Ab - Aa)';
|
|
|
|
J = [As' , cross(Ab, As)'];
|
|
|
|
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
|
|
#+end_src
|
|
|
|
** Simscape Model - Parameters
|
|
<<sec:stewart_simscape>>
|
|
#+begin_src matlab
|
|
open('drone_platform.slx');
|
|
#+end_src
|
|
|
|
Definition of spring parameters:
|
|
#+begin_src matlab
|
|
kx = 0.5*1e3/3; % [N/m]
|
|
ky = 0.5*1e3/3;
|
|
kz = 1e3/3;
|
|
|
|
cx = 0.025; % [Nm/rad]
|
|
cy = 0.025;
|
|
cz = 0.025;
|
|
#+end_src
|
|
|
|
Gravity:
|
|
#+begin_src matlab
|
|
g = 0;
|
|
#+end_src
|
|
|
|
We load the Jacobian (previously computed from the geometry):
|
|
#+begin_src matlab
|
|
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
|
|
#+end_src
|
|
|
|
We initialize other parameters:
|
|
#+begin_src matlab
|
|
U = eye(6);
|
|
V = eye(6);
|
|
Kc = tf(zeros(6));
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_simscape
|
|
#+caption: General view of the Simscape Model
|
|
[[file:figs/stewart_simscape.png]]
|
|
|
|
#+name: fig:stewart_platform_details
|
|
#+caption: Simscape model of the Stewart platform
|
|
[[file:figs/stewart_platform_details.png]]
|
|
|
|
** Identification of the plant
|
|
<<sec:stewart_identification>>
|
|
|
|
The plant shown in Figure [[fig:stewart_platform_plant]] is identified from the Simscape model.
|
|
|
|
The inputs are:
|
|
- $D_w$ translation and rotation of the bottom platform (with respect to the center of mass of the top platform)
|
|
- $\tau$ the 6 forces applied by the voice coils
|
|
|
|
The outputs are the 6 accelerations measured by the inertial unit.
|
|
|
|
#+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results
|
|
\begin{tikzpicture}
|
|
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
|
|
\node[above] at (G.north) {$\bm{G}$};
|
|
|
|
% Inputs of the controllers
|
|
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
|
|
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
|
|
% Connections and labels
|
|
|
|
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
|
|
\draw[<-] (inputu) -- ++(-0.8, 0) node[above right]{$\tau$};
|
|
\draw[->] (G.east) -- ++(0.8, 0) node[above left]{$a$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_platform_plant
|
|
#+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
|
|
#+RESULTS:
|
|
[[file:figs/stewart_platform_plant.png]]
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'drone_platform';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
|
|
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
|
|
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
|
|
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
|
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
|
|
#+end_src
|
|
|
|
There are 24 states (6dof for the bottom platform + 6dof for the top platform).
|
|
#+begin_src matlab :results output replace
|
|
size(G)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: State-space model with 6 outputs, 12 inputs, and 24 states.
|
|
|
|
The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]].
|
|
|
|
One can easily see that the system is strongly coupled.
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
figure;
|
|
|
|
% Magnitude
|
|
hold on;
|
|
for i_in = 1:6
|
|
for i_out = [1:i_in-1, i_in+1:6]
|
|
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
'DisplayName', '$G(i,j)\ i \neq j$');
|
|
set(gca,'ColorOrderIndex',1)
|
|
for i_in_out = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i_in_out, 6+i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G(%d,%d)$', i_in_out, i_in_out));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
|
ylim([1e-2, 1e5]);
|
|
legend('location', 'northwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/stewart_platform_coupled_plant.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_platform_coupled_plant
|
|
#+caption: Magnitude of all 36 elements of the transfer function matrix $\bm{G}$
|
|
#+RESULTS:
|
|
[[file:figs/stewart_platform_coupled_plant.png]]
|
|
|
|
** Physical Decoupling using the Jacobian
|
|
<<sec:stewart_jacobian_decoupling>>
|
|
Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]].
|
|
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
|
|
|
|
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
|
|
\begin{tikzpicture}
|
|
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
|
|
|
|
% Inputs of the controllers
|
|
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
|
|
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
|
|
|
|
\node[block, left=0.6 of inputu] (J) {$J^{-T}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
|
|
\draw[->] (G.east) -- ++( 0.8, 0) node[above left]{$a$};
|
|
\draw[->] (J.east) -- (inputu) node[above left]{$\tau$};
|
|
\draw[<-] (J.west) -- ++(-0.8, 0) node[above right]{$\mathcal{F}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gx) {};
|
|
\node[below right] at (Gx.north west) {$\bm{G}_x$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:plant_decouple_jacobian
|
|
#+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
|
|
#+RESULTS:
|
|
[[file:figs/plant_decouple_jacobian.png]]
|
|
|
|
We define a new plant:
|
|
\[ G_x(s) = G(s) J^{-T} \]
|
|
|
|
$G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
|
|
|
|
#+begin_src matlab
|
|
Gx = G*blkdiag(eye(6), inv(J'));
|
|
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
|
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
** Real Approximation of $G$ at the decoupling frequency
|
|
<<sec:stewart_real_approx>>
|
|
|
|
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
|
|
#+begin_src matlab
|
|
wc = 2*pi*30; % Decoupling frequency [rad/s]
|
|
|
|
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
|
|
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
|
|
|
|
H1 = evalfr(Gc, j*wc);
|
|
#+end_src
|
|
|
|
The real approximation is computed as follows:
|
|
#+begin_src matlab
|
|
D = pinv(real(H1'*H1));
|
|
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
|
data2orgtable(H1, {}, {}, ' %.1f ');
|
|
#+end_src
|
|
|
|
#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$
|
|
#+RESULTS:
|
|
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
|
|
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
|
|
| 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
|
|
| -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 |
|
|
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
|
|
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
|
|
|
|
|
|
Note that the plant $G$ at $\omega_c$ is already an almost real matrix.
|
|
This can be seen on the Bode plots where the phase is close to 1.
|
|
This can be verified below where only the real value of $G(\omega_c)$ is shown
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
|
data2orgtable(real(evalfr(Gc, j*wc)), {}, {}, ' %.1f ');
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
|
|
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
|
|
| 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
|
|
| -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 |
|
|
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
|
|
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
|
|
|
|
** SVD Decoupling
|
|
<<sec:stewart_svd_decoupling>>
|
|
|
|
First, the Singular Value Decomposition of $H_1$ is performed:
|
|
\[ H_1 = U \Sigma V^H \]
|
|
|
|
#+begin_src matlab
|
|
[U,S,V] = svd(H1);
|
|
#+end_src
|
|
|
|
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
|
|
|
|
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
|
|
\begin{tikzpicture}
|
|
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
|
|
|
|
% Inputs of the controllers
|
|
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
|
|
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
|
|
|
|
\node[block, left=0.6 of inputu] (V) {$V^{-T}$};
|
|
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
|
|
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
|
|
\draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$};
|
|
\draw[->] (V.east) -- (inputu) node[above left]{$\tau$};
|
|
\draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gsvd) {};
|
|
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:plant_decouple_svd
|
|
#+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
|
|
#+RESULTS:
|
|
[[file:figs/plant_decouple_svd.png]]
|
|
|
|
The decoupled plant is then:
|
|
\[ G_{SVD}(s) = U^{-1} G(s) V^{-H} \]
|
|
|
|
** Verification of the decoupling using the "Gershgorin Radii"
|
|
<<sec:comp_decoupling>>
|
|
|
|
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
|
|
|
|
This is computed over the following frequencies.
|
|
#+begin_src matlab
|
|
freqs = logspace(-2, 2, 1000); % [Hz]
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
% Gershgorin Radii for the coupled plant:
|
|
Gr_coupled = zeros(length(freqs), size(Gc,2));
|
|
|
|
H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
|
|
for out_i = 1:size(Gc,2)
|
|
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
|
end
|
|
|
|
% Gershgorin Radii for the decoupled plant using SVD:
|
|
Gd = inv(U)*Gc*inv(V');
|
|
Gr_decoupled = zeros(length(freqs), size(Gd,2));
|
|
|
|
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
|
|
for out_i = 1:size(Gd,2)
|
|
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
|
end
|
|
|
|
% Gershgorin Radii for the decoupled plant using the Jacobian:
|
|
Gj = Gc*inv(J');
|
|
Gr_jacobian = zeros(length(freqs), size(Gj,2));
|
|
|
|
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
|
|
|
|
for out_i = 1:size(Gj,2)
|
|
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports results
|
|
figure;
|
|
hold on;
|
|
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
|
|
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
|
|
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
|
|
for in_i = 2:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
|
|
set(gca,'ColorOrderIndex',3)
|
|
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
hold off;
|
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
|
legend('location', 'northwest');
|
|
ylim([1e-3, 1e3]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/simscape_model_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:simscape_model_gershgorin_radii
|
|
#+caption: Gershgorin Radii of the Coupled and Decoupled plants
|
|
#+RESULTS:
|
|
[[file:figs/simscape_model_gershgorin_radii.png]]
|
|
|
|
** Obtained Decoupled Plants
|
|
<<sec:stewart_decoupled_plant>>
|
|
|
|
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
% Magnitude
|
|
ax1 = nexttile([2, 1]);
|
|
hold on;
|
|
for i_in = 1:6
|
|
for i_out = [1:i_in-1, i_in+1:6]
|
|
plot(freqs, abs(squeeze(freqresp(Gd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Gd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
|
|
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
|
|
set(gca,'ColorOrderIndex',1)
|
|
for ch_i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ...
|
|
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northwest');
|
|
ylim([1e-1, 1e5])
|
|
|
|
% Phase
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for ch_i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180:90:360]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:simscape_model_decoupled_plant_svd
|
|
#+caption: Decoupled Plant using SVD
|
|
#+RESULTS:
|
|
[[file:figs/simscape_model_decoupled_plant_svd.png]]
|
|
|
|
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
% Magnitude
|
|
ax1 = nexttile([2, 1]);
|
|
hold on;
|
|
for i_in = 1:6
|
|
for i_out = [1:i_in-1, i_in+1:6]
|
|
plot(freqs, abs(squeeze(freqresp(Gx(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
|
|
'DisplayName', '$G_x(i,j),\ i \neq j$');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northwest');
|
|
ylim([1e-2, 2e6])
|
|
|
|
% Phase
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([0, 180]);
|
|
yticks([0:45:360]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:simscape_model_decoupled_plant_jacobian
|
|
#+caption: Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)
|
|
#+RESULTS:
|
|
[[file:figs/simscape_model_decoupled_plant_jacobian.png]]
|
|
|
|
** Diagonal Controller
|
|
<<sec:stewart_diagonal_control>>
|
|
|
|
#+begin_src matlab :exports none :tangle no
|
|
wc = 2*pi*0.1; % Crossover Frequency [rad/s]
|
|
C_g = 50; % DC Gain
|
|
|
|
Kc = eye(6)*C_g/(s+wc);
|
|
#+end_src
|
|
|
|
The control diagram for the centralized control is shown in Figure [[fig:centralized_control]].
|
|
|
|
The controller $K_c$ is "working" in an cartesian frame.
|
|
The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
|
|
|
|
#+begin_src latex :file centralized_control.pdf :tangle no :exports results
|
|
\begin{tikzpicture}
|
|
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
|
|
\node[above] at (G.north) {$\bm{G}$};
|
|
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
|
|
\node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
|
|
|
|
% Inputs of the controllers
|
|
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
|
|
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
|
|
|
|
% Connections and labels
|
|
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
|
|
\draw[->] (G.east) -- ++(2.0, 0) node[above left]{$a$};
|
|
\draw[->] ($(G.east)+(1.4, 0)$)node[branch]{} |- (K.east);
|
|
\draw[->] (K.west) -- (J.east) node[above right]{$\mathcal{F}$};
|
|
\draw[->] (J.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_control
|
|
#+caption: Control Diagram for the Centralized control
|
|
#+RESULTS:
|
|
[[file:figs/centralized_control.png]]
|
|
|
|
The SVD control architecture is shown in Figure [[fig:svd_control]].
|
|
The matrices $U$ and $V$ are used to decoupled the plant $G$.
|
|
|
|
#+begin_src latex :file svd_control.pdf :tangle no :exports results
|
|
\begin{tikzpicture}
|
|
\node[block={2cm}{1.5cm}] (G) {$G$};
|
|
\node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
|
|
\node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$};
|
|
\node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$};
|
|
|
|
% Inputs of the controllers
|
|
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
|
|
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
|
|
|
|
% Connections and labels
|
|
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
|
|
\draw[->] (G.east) -- ++(2.5, 0) node[above left]{$a$};
|
|
\draw[->] ($(G.east)+(2.0, 0)$) node[branch]{} |- (U.east);
|
|
\draw[->] (U.west) -- (K.east);
|
|
\draw[->] (K.west) -- (V.east);
|
|
\draw[->] (V.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:svd_control
|
|
#+caption: Control Diagram for the SVD control
|
|
#+RESULTS:
|
|
[[file:figs/svd_control.png]]
|
|
|
|
|
|
We choose the controller to be a low pass filter:
|
|
\[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
|
|
|
|
$G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*80;
|
|
w0 = 2*pi*0.1;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
K_cen = diag(1./diag(abs(evalfr(Gx(1:6, 7:12), j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
|
L_cen = K_cen*Gx(1:6, 7:12);
|
|
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
K_svd = diag(1./diag(abs(evalfr(Gd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
|
L_svd = K_svd*Gd;
|
|
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
|
|
#+end_src
|
|
|
|
The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
% Magnitude
|
|
ax1 = nexttile([2, 1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
|
|
for i_in_out = 2:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
end
|
|
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
|
|
'DisplayName', '$L_{J}(i,i)$');
|
|
for i_in_out = 2:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'northwest');
|
|
ylim([5e-2, 2e3])
|
|
|
|
% Phase
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i_in_out = 1:6
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
|
end
|
|
set(gca,'ColorOrderIndex',2)
|
|
for i_in_out = 1:6
|
|
set(gca,'ColorOrderIndex',2)
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180:90:360]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/stewart_comp_loop_gain_diagonal.pdf', 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_comp_loop_gain_diagonal
|
|
#+caption: Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one
|
|
#+RESULTS:
|
|
[[file:figs/stewart_comp_loop_gain_diagonal.png]]
|
|
|
|
** Closed-Loop system Performances
|
|
<<sec:stewart_closed_loop_results>>
|
|
|
|
Let's first verify the stability of the closed-loop systems:
|
|
#+begin_src matlab :results output replace text
|
|
isstable(G_cen)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: ans =
|
|
: logical
|
|
: 1
|
|
|
|
#+begin_src matlab :results output replace text
|
|
isstable(G_svd)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: ans =
|
|
: logical
|
|
: 1
|
|
|
|
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
|
|
|
|
#+begin_src matlab :exports results
|
|
freqs = logspace(-2, 2, 1000);
|
|
|
|
figure;
|
|
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
ax1 = nexttile;
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
|
|
legend('location', 'southwest');
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax3 = nexttile;
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
|
|
set(gca,'ColorOrderIndex',1)
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
|
|
|
|
ax4 = nexttile;
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'xy');
|
|
xlim([freqs(1), freqs(end)]);
|
|
ylim([1e-3, 1e2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/stewart_platform_simscape_cl_transmissibility.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_platform_simscape_cl_transmissibility
|
|
#+caption: Obtained Transmissibility
|
|
#+RESULTS:
|
|
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
|
|
|
|
* Stewart Platform - Analytical Model :noexport:
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle stewart_platform/analytical_model.m
|
|
:END:
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Bode plot options
|
|
opts = bodeoptions('cstprefs');
|
|
opts.FreqUnits = 'Hz';
|
|
opts.MagUnits = 'abs';
|
|
opts.MagScale = 'log';
|
|
opts.PhaseWrapping = 'on';
|
|
opts.xlim = [1 1000];
|
|
#+end_src
|
|
|
|
** Characteristics
|
|
#+begin_src matlab
|
|
L = 0.055; % Leg length [m]
|
|
Zc = 0; % ?
|
|
m = 0.2; % Top platform mass [m]
|
|
k = 1e3; % Total vertical stiffness [N/m]
|
|
c = 2*0.1*sqrt(k*m); % Damping ? [N/(m/s)]
|
|
|
|
Rx = 0.04; % ?
|
|
Rz = 0.04; % ?
|
|
Ix = m*Rx^2; % ?
|
|
Iy = m*Rx^2; % ?
|
|
Iz = m*Rz^2; % ?
|
|
#+end_src
|
|
|
|
** Mass Matrix
|
|
#+begin_src matlab
|
|
M = m*[1 0 0 0 Zc 0;
|
|
0 1 0 -Zc 0 0;
|
|
0 0 1 0 0 0;
|
|
0 -Zc 0 Rx^2+Zc^2 0 0;
|
|
Zc 0 0 0 Rx^2+Zc^2 0;
|
|
0 0 0 0 0 Rz^2];
|
|
#+end_src
|
|
|
|
** Jacobian Matrix
|
|
#+begin_src matlab
|
|
Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2;
|
|
sqrt(3) -sqrt(3) 0 sqrt(3) -sqrt(3) 0;
|
|
sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2);
|
|
0 0 L L -L -L;
|
|
-L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3);
|
|
L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)];
|
|
#+end_src
|
|
|
|
** Stifnness and Damping matrices
|
|
#+begin_src matlab
|
|
kv = k/3; % Vertical Stiffness of the springs [N/m]
|
|
kh = 0.5*k/3; % Horizontal Stiffness of the springs [N/m]
|
|
|
|
K = diag([3*kh, 3*kh, 3*kv, 3*kv*Rx^2/2, 3*kv*Rx^2/2, 3*kh*Rx^2]); % Stiffness Matrix
|
|
C = c*K/100000; % Damping Matrix
|
|
#+end_src
|
|
|
|
** State Space System
|
|
#+begin_src matlab
|
|
A = [ zeros(6) eye(6); ...
|
|
-M\K -M\C];
|
|
Bw = [zeros(6); -eye(6)];
|
|
Bu = [zeros(6); M\Bj];
|
|
|
|
Co = [-M\K -M\C];
|
|
|
|
D = [zeros(6) M\Bj];
|
|
|
|
ST = ss(A,[Bw Bu],Co,D);
|
|
#+end_src
|
|
|
|
- OUT 1-6: 6 dof
|
|
- IN 1-6 : ground displacement in the directions of the legs
|
|
- IN 7-12: forces in the actuators.
|
|
#+begin_src matlab
|
|
ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';...
|
|
'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'};
|
|
|
|
ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';...
|
|
'u1';'u2';'u3';'u4';'u5';'u6'};
|
|
|
|
ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};
|
|
#+end_src
|
|
|
|
** Transmissibility
|
|
#+begin_src matlab
|
|
TR=ST*[eye(6); zeros(6)];
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
figure
|
|
subplot(231)
|
|
bodemag(TR(1,1));
|
|
subplot(232)
|
|
bodemag(TR(2,2));
|
|
subplot(233)
|
|
bodemag(TR(3,3));
|
|
subplot(234)
|
|
bodemag(TR(4,4));
|
|
subplot(235)
|
|
bodemag(TR(5,5));
|
|
subplot(236)
|
|
bodemag(TR(6,6));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/stewart_platform_analytical_transmissibility.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_platform_analytical_transmissibility
|
|
#+caption: Transmissibility
|
|
#+RESULTS:
|
|
[[file:figs/stewart_platform_analytical_transmissibility.png]]
|
|
|
|
** Real approximation of $G(j\omega)$ at decoupling frequency
|
|
#+begin_src matlab
|
|
sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs
|
|
|
|
dec_fr = 20;
|
|
H1 = evalfr(sys1,j*2*pi*dec_fr);
|
|
H2 = H1;
|
|
D = pinv(real(H2'*H2));
|
|
H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ;
|
|
[U,S,V] = svd(H1);
|
|
|
|
wf = logspace(-1,2,1000);
|
|
for i = 1:length(wf)
|
|
H = abs(evalfr(sys1,j*2*pi*wf(i)));
|
|
H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i)));
|
|
for j = 1:size(H,2)
|
|
g_r1(i,j) = (sum(H(j,:))-H(j,j))/H(j,j);
|
|
g_r2(i,j) = (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j);
|
|
% keyboard
|
|
end
|
|
g_lim(i) = 0.5;
|
|
end
|
|
#+end_src
|
|
|
|
** Coupled and Decoupled Plant "Gershgorin Radii"
|
|
#+begin_src matlab
|
|
figure;
|
|
title('Coupled plant')
|
|
loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--');
|
|
legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit');
|
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/gershorin_raddii_coupled_analytical.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:gershorin_raddii_coupled_analytical
|
|
#+caption: Gershorin Raddi for the coupled plant
|
|
#+RESULTS:
|
|
[[file:figs/gershorin_raddii_coupled_analytical.png]]
|
|
|
|
#+begin_src matlab
|
|
figure;
|
|
title('Decoupled plant (10 Hz)')
|
|
loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--');
|
|
legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit');
|
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/gershorin_raddii_decoupled_analytical.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:gershorin_raddii_decoupled_analytical
|
|
#+caption: Gershorin Raddi for the decoupled plant
|
|
#+RESULTS:
|
|
[[file:figs/gershorin_raddii_decoupled_analytical.png]]
|
|
|
|
** Decoupled Plant
|
|
#+begin_src matlab
|
|
figure;
|
|
bodemag(U'*sys1*V,opts)
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/stewart_platform_analytical_decoupled_plant.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_platform_analytical_decoupled_plant
|
|
#+caption: Decoupled Plant
|
|
#+RESULTS:
|
|
[[file:figs/stewart_platform_analytical_decoupled_plant.png]]
|
|
|
|
** Controller
|
|
#+begin_src matlab
|
|
fc = 2*pi*0.1; % Crossover Frequency [rad/s]
|
|
c_gain = 50; %
|
|
|
|
cont = eye(6)*c_gain/(s+fc);
|
|
#+end_src
|
|
|
|
** Closed Loop System
|
|
#+begin_src matlab
|
|
FEEDIN = [7:12]; % Input of controller
|
|
FEEDOUT = [1:6]; % Output of controller
|
|
#+end_src
|
|
|
|
Centralized Control
|
|
#+begin_src matlab
|
|
STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT);
|
|
TRcen = STcen*[eye(6); zeros(6)];
|
|
#+end_src
|
|
|
|
SVD Control
|
|
#+begin_src matlab
|
|
STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT);
|
|
TRsvd = STsvd*[eye(6); zeros(6)];
|
|
#+end_src
|
|
|
|
** Results
|
|
#+begin_src matlab
|
|
figure
|
|
subplot(231)
|
|
bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(232)
|
|
bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(233)
|
|
bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(234)
|
|
bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(235)
|
|
bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts)
|
|
legend('OL','Centralized','SVD')
|
|
subplot(236)
|
|
bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts)
|
|
legend('OL','Centralized','SVD')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/stewart_platform_analytical_svd_cen_comp.pdf', 'width', 'full', 'height', 'full');
|
|
#+end_src
|
|
|
|
#+name: fig:stewart_platform_analytical_svd_cen_comp
|
|
#+caption: Comparison of the obtained transmissibility for the centralized control and the SVD control
|
|
#+RESULTS:
|
|
[[file:figs/stewart_platform_analytical_svd_cen_comp.png]]
|