#+TITLE: SVD Control :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Gravimeter - Simscape Model :PROPERTIES: :header-args:matlab+: :tangle gravimeter/script.m :END: ** Introduction #+name: fig:gravimeter_model #+caption: Model of the gravimeter [[file:figs/gravimeter_model.png]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab addpath('gravimeter'); #+end_src ** Simscape Model - Parameters #+begin_src matlab open('gravimeter.slx') #+end_src Parameters #+begin_src matlab l = 1.0; % Length of the mass [m] la = 0.5; % Position of Act. [m] h = 3.4; % Height of the mass [m] ha = 1.7; % Position of Act. [m] m = 400; % Mass [kg] I = 115; % Inertia [kg m^2] k = 15e3; % Actuator Stiffness [N/m] c = 0.03; % Actuator Damping [N/(m/s)] deq = 0.2; % Length of the actuators [m] g = 0; % Gravity [m/s2] #+end_src ** System Identification - Without Gravity #+begin_src matlab %% Name of the Simulink File mdl = 'gravimeter'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); G.InputName = {'F1', 'F2', 'F3'}; G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'}; #+end_src #+begin_src matlab :results output replace :exports results pole(G) #+end_src #+RESULTS: #+begin_example pole(G) ans = -0.000473481142385795 + 21.7596190728632i -0.000473481142385795 - 21.7596190728632i -7.49842879459172e-05 + 8.6593576906982i -7.49842879459172e-05 - 8.6593576906982i -5.1538686792578e-06 + 2.27025295182756i -5.1538686792578e-06 - 2.27025295182756i #+end_example The plant as 6 states as expected (2 translations + 1 rotation) #+begin_src matlab :results output replace size(G) #+end_src #+RESULTS: : State-space model with 4 outputs, 3 inputs, and 6 states. #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; for in_i = 1:3 for out_i = 1:4 subplot(4, 3, 3*(out_i-1)+in_i); plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); end end #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/open_loop_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:open_loop_tf #+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers #+RESULTS: [[file:figs/open_loop_tf.png]] ** System Identification - With Gravity #+begin_src matlab g = 9.80665; % Gravity [m/s2] #+end_src #+begin_src matlab Gg = linearize(mdl, io); Gg.InputName = {'F1', 'F2', 'F3'}; Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'}; #+end_src We can now see that the system is unstable due to gravity. #+begin_src matlab :results output replace :exports results pole(Gg) #+end_src #+RESULTS: #+begin_example pole(Gg) ans = -10.9848275341252 + 0i 10.9838836405201 + 0i -7.49855379478109e-05 + 8.65962885770051i -7.49855379478109e-05 - 8.65962885770051i -6.68819548733559e-06 + 0.832960422243848i -6.68819548733559e-06 - 0.832960422243848i #+end_example #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; for in_i = 1:3 for out_i = 1:4 subplot(4, 3, 3*(out_i-1)+in_i); hold on; plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); end end #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:open_loop_tf_g #+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity #+RESULTS: [[file:figs/open_loop_tf_g.png]] ** Analytical Model *** Parameters Bode options. #+begin_src matlab P = bodeoptions; P.FreqUnits = 'Hz'; P.MagUnits = 'abs'; P.MagScale = 'log'; P.Grid = 'on'; P.PhaseWrapping = 'on'; P.Title.FontSize = 14; P.XLabel.FontSize = 14; P.YLabel.FontSize = 14; P.TickLabel.FontSize = 12; P.Xlim = [1e-1,1e2]; P.MagLowerLimMode = 'manual'; P.MagLowerLim= 1e-3; #+end_src Frequency vector. #+begin_src matlab w = 2*pi*logspace(-1,2,1000); % [rad/s] #+end_src *** Generation of the State Space Model Mass matrix #+begin_src matlab M = [m 0 0 0 m 0 0 0 I]; #+end_src Jacobian of the bottom sensor #+begin_src matlab Js1 = [1 0 h/2 0 1 -l/2]; #+end_src Jacobian of the top sensor #+begin_src matlab Js2 = [1 0 -h/2 0 1 0]; #+end_src Jacobian of the actuators #+begin_src matlab Ja = [1 0 ha % Left horizontal actuator 0 1 -la % Left vertical actuator 0 1 la]; % Right vertical actuator Jta = Ja'; #+end_src Stiffness and Damping matrices #+begin_src matlab K = k*Jta*Ja; C = c*Jta*Ja; #+end_src State Space Matrices #+begin_src matlab E = [1 0 0 0 1 0 0 0 1]; %projecting ground motion in the directions of the legs AA = [zeros(3) eye(3) -M\K -M\C]; BB = [zeros(3,6) M\Jta M\(k*Jta*E)]; CC = [[Js1;Js2] zeros(4,3); zeros(2,6) (Js1+Js2)./2 zeros(2,3) (Js1-Js2)./2 zeros(2,3) (Js1-Js2)./(2*h) zeros(2,3)]; DD = [zeros(4,6) zeros(2,3) eye(2,3) zeros(6,6)]; #+end_src State Space model: - Input = three actuators and three ground motions - Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation #+begin_src matlab system_dec = ss(AA,BB,CC,DD); #+end_src #+begin_src matlab :results output replace size(system_dec) #+end_src #+RESULTS: : State-space model with 12 outputs, 6 inputs, and 6 states. *** Comparison with the Simscape Model #+begin_src matlab :exports none freqs = logspace(-2, 2, 1000); figure; for in_i = 1:3 for out_i = 1:4 subplot(4, 3, 3*(out_i-1)+in_i); hold on; plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); end end #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:gravimeter_analytical_system_open_loop_models #+caption: Comparison of the analytical and the Simscape models #+RESULTS: [[file:figs/gravimeter_analytical_system_open_loop_models.png]] *** Analysis #+begin_src matlab % figure % bode(system_dec,P); % return #+end_src #+begin_src matlab %% svd decomposition % system_dec_freq = freqresp(system_dec,w); % S = zeros(3,length(w)); % for m = 1:length(w) % S(:,m) = svd(system_dec_freq(1:4,1:3,m)); % end % figure % loglog(w./(2*pi), S);hold on; % % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:))); % xlabel('Frequency [Hz]');ylabel('Singular Value [-]'); % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6'); % ylim([1e-8 1e-2]); % % %condition number % figure % loglog(w./(2*pi), S(1,:)./S(3,:));hold on; % % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:))); % xlabel('Frequency [Hz]');ylabel('Condition number [-]'); % % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6'); % % %performance indicator % system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10); % [U,S,V] = svd(system_dec_svd); % H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);% % H_svd = pinv(V')*H_svd_OL*pinv(U); % % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U)); % % OL_dec = g_svd*H_svd*system_dec(1:4,1:3); % OL_freq = freqresp(OL_dec,w); % OL = G*H % CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3)); % CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1 % % CL_system_2 = feedback(system_dec,H); % % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H) % for i = 1:size(w,2) % OL(:,i) = svd(OL_freq(:,:,i)); % CL (:,i) = svd(CL_freq(:,:,i)); % %CL2 (:,i) = svd(CL_freq_2(:,:,i)); % end % % un = ones(1,length(w)); % figure % loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;% % % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:))); % % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:))); % xlabel('Frequency [Hz]');ylabel('Singular Value [-]'); % legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3'); % % figure % loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;% % % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:))); % % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:))); % xlabel('Frequency [Hz]');ylabel('Singular Value [-]'); % legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3'); #+end_src *** Control Section #+begin_src matlab system_dec_10Hz = freqresp(system_dec,2*pi*10); system_dec_0Hz = freqresp(system_dec,0); system_decReal_10Hz = pinv(align(system_dec_10Hz)); [Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3)); normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal')); [U,S,V] = svd(system_dec_10Hz(1:4,1:3)); normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V')); H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0 0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0 0 0 0 zpk(-2*pi,-2*pi*10,10)]); H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0; 0 0 zpk(-2*pi*5,-2*pi*30,30/5)]; H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]); % H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0 % 0 1/normalizationMatrix(2,2) 0 0 % 0 0 1/normalizationMatrix(3,3) 0]; % H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0 % 0 1/normalizationMatrixReal(2,2) 0 0 % 0 0 1/normalizationMatrixReal(3,3) 0]; H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0 0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0]; H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0 0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0]; % H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4); % H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);% H_svd = pinv(V')*H_svd_OL*pinv(U); H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal); OL_dec = g*H_dec*system_dec(1:4,1:3); OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta); OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V'); OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal'); #+end_src #+begin_src matlab % figure % bode(OL_dec,w,P);title('OL Decentralized'); % figure % bode(OL_cen,w,P);title('OL Centralized'); #+end_src #+begin_src matlab figure bode(g*system_dec(1:4,1:3),w,P); title('gain * Plant'); #+end_src #+begin_src matlab figure bode(OL_svd,OL_svd_real,w,P); title('OL SVD'); legend('SVD of Complex plant','SVD of real approximation of the complex plant') #+end_src #+begin_src matlab figure bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P); #+end_src #+begin_src matlab CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]); CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]); CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]); CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]); #+end_src #+begin_src matlab pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4]) title('Decentralized control'); #+end_src #+begin_src matlab pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4]) title('Centralized control'); #+end_src #+begin_src matlab pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4]) title('SVD control'); #+end_src #+begin_src matlab pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4]) title('Real approximation SVD control'); #+end_src #+begin_src matlab P.Ylim = [1e-8 1e-3]; figure bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P); title('Motion/actuator') legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.'); #+end_src #+begin_src matlab P.Ylim = [1e-5 1e1]; figure bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P); title('Transmissibility'); legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.'); #+end_src #+begin_src matlab figure bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P); title('Transmissibility from half sum and half difference in the X direction'); legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.'); #+end_src #+begin_src matlab figure bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P); title('Transmissibility from half sum and half difference in the Z direction'); legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.'); #+end_src *** Greshgorin radius #+begin_src matlab system_dec_freq = freqresp(system_dec,w); x1 = zeros(1,length(w)); z1 = zeros(1,length(w)); x2 = zeros(1,length(w)); S1 = zeros(1,length(w)); S2 = zeros(1,length(w)); S3 = zeros(1,length(w)); for t = 1:length(w) x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t)); z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t)); x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t)); system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal'); S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1)); S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2)); S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3)); end limit = 0.5*ones(1,length(w)); #+end_src #+begin_src matlab figure loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--'); legend('x_1','z_1','x_2','Limit'); xlabel('Frequency [Hz]'); ylabel('Greshgorin radius [-]'); #+end_src #+begin_src matlab figure loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--'); legend('S1','S2','S3','Limit'); xlabel('Frequency [Hz]'); ylabel('Greshgorin radius [-]'); % set(gcf,'color','w') #+end_src *** Injecting ground motion in the system to have the output #+begin_src matlab Fr = logspace(-2,3,1e3); w=2*pi*Fr*1i; %fit of the ground motion data in m/s^2/rtHz Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10]; n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5]; Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10]; n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5]; n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear'); n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear'); % figure % loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*'); % xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]'); % return %converting into PSD n_ground_x = (n_ground_x).^2; n_ground_v = (n_ground_v).^2; %Injecting ground motion in the system and getting the outputs system_dec_f = (freqresp(system_dec,abs(w))); PHI = zeros(size(Fr,2),12,12); for p = 1:size(Fr,2) Sw=zeros(6,6); Iact = zeros(3,3); Sw(4,4) = n_ground_x(p); Sw(5,5) = n_ground_v(p); Sw(6,6) = n_ground_v(p); Sw(1:3,1:3) = Iact; PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))'; end x1 = PHI(:,1,1); z1 = PHI(:,2,2); x2 = PHI(:,3,3); z2 = PHI(:,4,4); wx = PHI(:,5,5); wz = PHI(:,6,6); x12 = PHI(:,1,3); z12 = PHI(:,2,4); PHIwx = PHI(:,1,5); PHIwz = PHI(:,2,6); xsum = PHI(:,7,7); zsum = PHI(:,8,8); xdelta = PHI(:,9,9); zdelta = PHI(:,10,10); rot = PHI(:,11,11); #+end_src * Gravimeter - Functions :PROPERTIES: :header-args:matlab+: :comments none :mkdirp yes :eval no :END: ** =align= :PROPERTIES: :header-args:matlab+: :tangle gravimeter/align.m :END: <> This Matlab function is accessible [[file:gravimeter/align.m][here]]. #+begin_src matlab function [A] = align(V) %A!ALIGN(V) returns a constat matrix A which is the real alignment of the %INVERSE of the complex input matrix V %from Mohit slides if (nargin ==0) || (nargin > 1) disp('usage: mat_inv_real = align(mat)') return end D = pinv(real(V'*V)); A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2))); end #+end_src ** =pzmap_testCL= :PROPERTIES: :header-args:matlab+: :tangle gravimeter/pzmap_testCL.m :END: <> This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]]. #+begin_src matlab function [] = pzmap_testCL(system,H,gain,feedin,feedout) % evaluate and plot the pole-zero map for the closed loop system for % different values of the gain [~, n] = size(gain); [m1, n1, ~] = size(H); [~,n2] = size(feedin); figure for i = 1:n % if n1 == n2 system_CL = feedback(system,gain(i)*H,feedin,feedout); [P,Z] = pzmap(system_CL); plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})'); % clear P Z % else % system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout); % % [P,Z] = pzmap(system_CL); % plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on % xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})'); % clear P Z % end end str = {strcat('gain = ' , num2str(gain(1)))}; % at the end of first loop, z being loop output str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop for i = 2:n str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop end legend(str{:}) end #+end_src * Stewart Platform - Simscape Model :PROPERTIES: :header-args:matlab+: :tangle stewart_platform/simscape_model.m :END: ** Introduction :ignore: In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]]. Some notes about the system: - 6 voice coils actuators are used to control the motion of the top platform. - the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular accelerations) - the control objective is to isolate the top platform from vibrations coming from the bottom platform #+name: fig:SP_assembly #+caption: Stewart Platform CAD View [[file:figs/SP_assembly.png]] The analysis of the SVD control applied to the Stewart platform is performed in the following sections: - Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined - Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the system coupling is shown - Section [[sec:stewart_jacobian_decoupling]]: The plant is first decoupled using the Jacobian - Section [[sec:stewart_real_approx]]: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD) - Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD - Section [[sec:comp_decoupling]]: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii - Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plants are shown - Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant - Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no addpath('stewart_platform'); addpath('stewart_platform/STEP'); #+end_src #+begin_src matlab :eval no addpath('STEP'); #+end_src ** Jacobian :noexport: First, the position of the "joints" (points of force application) are estimated and the Jacobian computed. #+begin_src matlab :tangle no open('drone_platform_jacobian.slx'); #+end_src #+begin_src matlab :tangle no sim('drone_platform_jacobian'); #+end_src #+begin_src matlab :tangle no Aa = [a1.Data(1,:); a2.Data(1,:); a3.Data(1,:); a4.Data(1,:); a5.Data(1,:); a6.Data(1,:)]'; Ab = [b1.Data(1,:); b2.Data(1,:); b3.Data(1,:); b4.Data(1,:); b5.Data(1,:); b6.Data(1,:)]'; As = (Ab - Aa)./vecnorm(Ab - Aa); l = vecnorm(Ab - Aa)'; J = [As' , cross(Ab, As)']; save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); #+end_src ** Simscape Model - Parameters <> #+begin_src matlab open('drone_platform.slx'); #+end_src Definition of spring parameters: #+begin_src matlab kx = 0.5*1e3/3; % [N/m] ky = 0.5*1e3/3; kz = 1e3/3; cx = 0.025; % [Nm/rad] cy = 0.025; cz = 0.025; #+end_src Gravity: #+begin_src matlab g = 0; #+end_src We load the Jacobian (previously computed from the geometry): #+begin_src matlab load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); #+end_src We initialize other parameters: #+begin_src matlab U = eye(6); V = eye(6); Kc = tf(zeros(6)); #+end_src #+name: fig:stewart_simscape #+caption: General view of the Simscape Model [[file:figs/stewart_simscape.png]] #+name: fig:stewart_platform_details #+caption: Simscape model of the Stewart platform [[file:figs/stewart_platform_details.png]] ** Identification of the plant <> The plant shown in Figure [[fig:stewart_platform_plant]] is identified from the Simscape model. The inputs are: - $D_w$ translation and rotation of the bottom platform (with respect to the center of mass of the top platform) - $\tau$ the 6 forces applied by the voice coils The outputs are the 6 accelerations measured by the inertial unit. #+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; \node[above] at (G.north) {$\bm{G}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[<-] (inputu) -- ++(-0.8, 0) node[above right]{$\tau$}; \draw[->] (G.east) -- ++(0.8, 0) node[above left]{$a$}; \end{tikzpicture} #+end_src #+name: fig:stewart_platform_plant #+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform #+RESULTS: [[file:figs/stewart_platform_plant.png]] #+begin_src matlab %% Name of the Simulink File mdl = 'drone_platform'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration G = linearize(mdl, io); G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}; #+end_src There are 24 states (6dof for the bottom platform + 6dof for the top platform). #+begin_src matlab :results output replace size(G) #+end_src #+RESULTS: : State-space model with 6 outputs, 12 inputs, and 24 states. The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]]. One can easily see that the system is strongly coupled. #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; % Magnitude hold on; for i_in = 1:6 for i_out = [1:i_in-1, i_in+1:6] plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... 'DisplayName', '$G(i,j)\ i \neq j$'); set(gca,'ColorOrderIndex',1) for i_in_out = 1:6 plot(freqs, abs(squeeze(freqresp(G(i_in_out, 6+i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G(%d,%d)$', i_in_out, i_in_out)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude'); ylim([1e-2, 1e5]); legend('location', 'northwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_coupled_plant.pdf', 'eps', true, 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:stewart_platform_coupled_plant #+caption: Magnitude of all 36 elements of the transfer function matrix $\bm{G}$ #+RESULTS: [[file:figs/stewart_platform_coupled_plant.png]] ** Physical Decoupling using the Jacobian <> Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]]. The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator. #+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); \node[block, left=0.6 of inputu] (J) {$J^{-T}$}; % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[->] (G.east) -- ++( 0.8, 0) node[above left]{$a$}; \draw[->] (J.east) -- (inputu) node[above left]{$\tau$}; \draw[<-] (J.west) -- ++(-0.8, 0) node[above right]{$\mathcal{F}$}; \begin{scope}[on background layer] \node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gx) {}; \node[below right] at (Gx.north west) {$\bm{G}_x$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:plant_decouple_jacobian #+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$ #+RESULTS: [[file:figs/plant_decouple_jacobian.png]] We define a new plant: \[ G_x(s) = G(s) J^{-T} \] $G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform. #+begin_src matlab Gx = G*blkdiag(eye(6), inv(J')); Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; #+end_src ** Real Approximation of $G$ at the decoupling frequency <> Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. #+begin_src matlab wc = 2*pi*30; % Decoupling frequency [rad/s] Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ... {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation H1 = evalfr(Gc, j*wc); #+end_src The real approximation is computed as follows: #+begin_src matlab D = pinv(real(H1'*H1)); H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(H1, {}, {}, ' %.1f '); #+end_src #+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$ #+RESULTS: | 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 | | -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 | | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | | -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 | | -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 | | 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 | Note that the plant $G$ at $\omega_c$ is already an almost real matrix. This can be seen on the Bode plots where the phase is close to 1. This can be verified below where only the real value of $G(\omega_c)$ is shown #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(real(evalfr(Gc, j*wc)), {}, {}, ' %.1f '); #+end_src #+RESULTS: | 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 | | -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 | | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | | -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 | | -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 | | 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 | ** SVD Decoupling <> First, the Singular Value Decomposition of $H_1$ is performed: \[ H_1 = U \Sigma V^H \] #+begin_src matlab [U,S,V] = svd(H1); #+end_src The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]]. #+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); \node[block, left=0.6 of inputu] (V) {$V^{-T}$}; \node[block, right=0.6 of G.east] (U) {$U^{-1}$}; % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[->] (G.east) -- (U.west) node[above left]{$a$}; \draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$}; \draw[->] (V.east) -- (inputu) node[above left]{$\tau$}; \draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$}; \begin{scope}[on background layer] \node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gsvd) {}; \node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:plant_decouple_svd #+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition #+RESULTS: [[file:figs/plant_decouple_svd.png]] The decoupled plant is then: \[ G_{SVD}(s) = U^{-1} G(s) V^{-H} \] ** Verification of the decoupling using the "Gershgorin Radii" <> The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$: This is computed over the following frequencies. #+begin_src matlab freqs = logspace(-2, 2, 1000); % [Hz] #+end_src #+begin_src matlab :exports none % Gershgorin Radii for the coupled plant: Gr_coupled = zeros(length(freqs), size(Gc,2)); H = abs(squeeze(freqresp(Gc, freqs, 'Hz'))); for out_i = 1:size(Gc,2) Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end % Gershgorin Radii for the decoupled plant using SVD: Gd = inv(U)*Gc*inv(V'); Gr_decoupled = zeros(length(freqs), size(Gd,2)); H = abs(squeeze(freqresp(Gd, freqs, 'Hz'))); for out_i = 1:size(Gd,2) Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end % Gershgorin Radii for the decoupled plant using the Jacobian: Gj = Gc*inv(J'); Gr_jacobian = zeros(length(freqs), size(Gj,2)); H = abs(squeeze(freqresp(Gj, freqs, 'Hz'))); for out_i = 1:size(Gj,2) Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end #+end_src #+begin_src matlab :exports results figure; hold on; plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled'); plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD'); plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian'); for in_i = 2:6 set(gca,'ColorOrderIndex',1) plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',2) plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',3) plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off'); end plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); hold off; xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') legend('location', 'northwest'); ylim([1e-3, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/simscape_model_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:simscape_model_gershgorin_radii #+caption: Gershgorin Radii of the Coupled and Decoupled plants #+RESULTS: [[file:figs/simscape_model_gershgorin_radii.png]] ** Obtained Decoupled Plants <> The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]]. #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; for i_in = 1:6 for i_out = [1:i_in-1, i_in+1:6] plot(freqs, abs(squeeze(freqresp(Gd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(Gd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ... 'DisplayName', '$G_{SVD}(i,j),\ i \neq j$'); set(gca,'ColorOrderIndex',1) for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ... 'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); legend('location', 'northwest'); ylim([1e-1, 1e5]) % Phase ax2 = nexttile; hold on; for ch_i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180:90:360]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:simscape_model_decoupled_plant_svd #+caption: Decoupled Plant using SVD #+RESULTS: [[file:figs/simscape_model_decoupled_plant_svd.png]] Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]]. #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; for i_in = 1:6 for i_out = [1:i_in-1, i_in+1:6] plot(freqs, abs(squeeze(freqresp(Gx(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ... 'DisplayName', '$G_x(i,j),\ i \neq j$'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$'); plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$'); plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$'); plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$'); plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$'); plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); legend('location', 'northwest'); ylim([1e-2, 2e6]) % Phase ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([0, 180]); yticks([0:45:360]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:simscape_model_decoupled_plant_jacobian #+caption: Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix) #+RESULTS: [[file:figs/simscape_model_decoupled_plant_jacobian.png]] ** Diagonal Controller <> #+begin_src matlab :exports none :tangle no wc = 2*pi*0.1; % Crossover Frequency [rad/s] C_g = 50; % DC Gain Kc = eye(6)*C_g/(s+wc); #+end_src The control diagram for the centralized control is shown in Figure [[fig:centralized_control]]. The controller $K_c$ is "working" in an cartesian frame. The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators. #+begin_src latex :file centralized_control.pdf :tangle no :exports results \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; \node[above] at (G.north) {$\bm{G}$}; \node[block, below right=0.6 and -0.5 of G] (K) {$K_c$}; \node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[->] (G.east) -- ++(2.0, 0) node[above left]{$a$}; \draw[->] ($(G.east)+(1.4, 0)$)node[branch]{} |- (K.east); \draw[->] (K.west) -- (J.east) node[above right]{$\mathcal{F}$}; \draw[->] (J.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$}; \end{tikzpicture} #+end_src #+name: fig:centralized_control #+caption: Control Diagram for the Centralized control #+RESULTS: [[file:figs/centralized_control.png]] The SVD control architecture is shown in Figure [[fig:svd_control]]. The matrices $U$ and $V$ are used to decoupled the plant $G$. #+begin_src latex :file svd_control.pdf :tangle no :exports results \begin{tikzpicture} \node[block={2cm}{1.5cm}] (G) {$G$}; \node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$}; \node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$}; \node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$}; % Inputs of the controllers \coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$); \coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$); % Connections and labels \draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[->] (G.east) -- ++(2.5, 0) node[above left]{$a$}; \draw[->] ($(G.east)+(2.0, 0)$) node[branch]{} |- (U.east); \draw[->] (U.west) -- (K.east); \draw[->] (K.west) -- (V.east); \draw[->] (V.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$}; \end{tikzpicture} #+end_src #+name: fig:svd_control #+caption: Control Diagram for the SVD control #+RESULTS: [[file:figs/svd_control.png]] We choose the controller to be a low pass filter: \[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \] $G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$ #+begin_src matlab wc = 2*pi*80; w0 = 2*pi*0.1; #+end_src #+begin_src matlab K_cen = diag(1./diag(abs(evalfr(Gx(1:6, 7:12), j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0); L_cen = K_cen*Gx(1:6, 7:12); G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]); #+end_src #+begin_src matlab K_svd = diag(1./diag(abs(evalfr(Gd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0); L_svd = K_svd*Gd; G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]); #+end_src The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]]. #+begin_src matlab :exports none freqs = logspace(-1, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$'); for i_in_out = 2:6 set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off'); end set(gca,'ColorOrderIndex',2) plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ... 'DisplayName', '$L_{J}(i,i)$'); for i_in_out = 2:6 set(gca,'ColorOrderIndex',2) plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); legend('location', 'northwest'); ylim([5e-2, 2e3]) % Phase ax2 = nexttile; hold on; for i_in_out = 1:6 set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',2) for i_in_out = 1:6 set(gca,'ColorOrderIndex',2) plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180:90:360]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_comp_loop_gain_diagonal.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:stewart_comp_loop_gain_diagonal #+caption: Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one #+RESULTS: [[file:figs/stewart_comp_loop_gain_diagonal.png]] ** Closed-Loop system Performances <> Let's first verify the stability of the closed-loop systems: #+begin_src matlab :results output replace text isstable(G_cen) #+end_src #+RESULTS: : ans = : logical : 1 #+begin_src matlab :results output replace text isstable(G_svd) #+end_src #+RESULTS: : ans = : logical : 1 The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]]. #+begin_src matlab :exports results freqs = logspace(-2, 2, 1000); figure; tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop'); plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized'); plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]); legend('location', 'southwest'); ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]'); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]'); linkaxes([ax1,ax2,ax3,ax4],'xy'); xlim([freqs(1), freqs(end)]); ylim([1e-3, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_simscape_cl_transmissibility.pdf', 'eps', true, 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:stewart_platform_simscape_cl_transmissibility #+caption: Obtained Transmissibility #+RESULTS: [[file:figs/stewart_platform_simscape_cl_transmissibility.png]] * Stewart Platform - Analytical Model :noexport: :PROPERTIES: :header-args:matlab+: :tangle stewart_platform/analytical_model.m :END: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab %% Bode plot options opts = bodeoptions('cstprefs'); opts.FreqUnits = 'Hz'; opts.MagUnits = 'abs'; opts.MagScale = 'log'; opts.PhaseWrapping = 'on'; opts.xlim = [1 1000]; #+end_src ** Characteristics #+begin_src matlab L = 0.055; % Leg length [m] Zc = 0; % ? m = 0.2; % Top platform mass [m] k = 1e3; % Total vertical stiffness [N/m] c = 2*0.1*sqrt(k*m); % Damping ? [N/(m/s)] Rx = 0.04; % ? Rz = 0.04; % ? Ix = m*Rx^2; % ? Iy = m*Rx^2; % ? Iz = m*Rz^2; % ? #+end_src ** Mass Matrix #+begin_src matlab M = m*[1 0 0 0 Zc 0; 0 1 0 -Zc 0 0; 0 0 1 0 0 0; 0 -Zc 0 Rx^2+Zc^2 0 0; Zc 0 0 0 Rx^2+Zc^2 0; 0 0 0 0 0 Rz^2]; #+end_src ** Jacobian Matrix #+begin_src matlab Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2; sqrt(3) -sqrt(3) 0 sqrt(3) -sqrt(3) 0; sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2); 0 0 L L -L -L; -L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3); L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)]; #+end_src ** Stifnness and Damping matrices #+begin_src matlab kv = k/3; % Vertical Stiffness of the springs [N/m] kh = 0.5*k/3; % Horizontal Stiffness of the springs [N/m] K = diag([3*kh, 3*kh, 3*kv, 3*kv*Rx^2/2, 3*kv*Rx^2/2, 3*kh*Rx^2]); % Stiffness Matrix C = c*K/100000; % Damping Matrix #+end_src ** State Space System #+begin_src matlab A = [ zeros(6) eye(6); ... -M\K -M\C]; Bw = [zeros(6); -eye(6)]; Bu = [zeros(6); M\Bj]; Co = [-M\K -M\C]; D = [zeros(6) M\Bj]; ST = ss(A,[Bw Bu],Co,D); #+end_src - OUT 1-6: 6 dof - IN 1-6 : ground displacement in the directions of the legs - IN 7-12: forces in the actuators. #+begin_src matlab ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';... 'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'}; ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';... 'u1';'u2';'u3';'u4';'u5';'u6'}; ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'}; #+end_src ** Transmissibility #+begin_src matlab TR=ST*[eye(6); zeros(6)]; #+end_src #+begin_src matlab figure subplot(231) bodemag(TR(1,1)); subplot(232) bodemag(TR(2,2)); subplot(233) bodemag(TR(3,3)); subplot(234) bodemag(TR(4,4)); subplot(235) bodemag(TR(5,5)); subplot(236) bodemag(TR(6,6)); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_analytical_transmissibility.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_analytical_transmissibility #+caption: Transmissibility #+RESULTS: [[file:figs/stewart_platform_analytical_transmissibility.png]] ** Real approximation of $G(j\omega)$ at decoupling frequency #+begin_src matlab sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs dec_fr = 20; H1 = evalfr(sys1,j*2*pi*dec_fr); H2 = H1; D = pinv(real(H2'*H2)); H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ; [U,S,V] = svd(H1); wf = logspace(-1,2,1000); for i = 1:length(wf) H = abs(evalfr(sys1,j*2*pi*wf(i))); H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i))); for j = 1:size(H,2) g_r1(i,j) = (sum(H(j,:))-H(j,j))/H(j,j); g_r2(i,j) = (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j); % keyboard end g_lim(i) = 0.5; end #+end_src ** Coupled and Decoupled Plant "Gershgorin Radii" #+begin_src matlab figure; title('Coupled plant') loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--'); legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit'); xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/gershorin_raddii_coupled_analytical.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:gershorin_raddii_coupled_analytical #+caption: Gershorin Raddi for the coupled plant #+RESULTS: [[file:figs/gershorin_raddii_coupled_analytical.png]] #+begin_src matlab figure; title('Decoupled plant (10 Hz)') loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--'); legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit'); xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/gershorin_raddii_decoupled_analytical.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:gershorin_raddii_decoupled_analytical #+caption: Gershorin Raddi for the decoupled plant #+RESULTS: [[file:figs/gershorin_raddii_decoupled_analytical.png]] ** Decoupled Plant #+begin_src matlab figure; bodemag(U'*sys1*V,opts) #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_analytical_decoupled_plant.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_analytical_decoupled_plant #+caption: Decoupled Plant #+RESULTS: [[file:figs/stewart_platform_analytical_decoupled_plant.png]] ** Controller #+begin_src matlab fc = 2*pi*0.1; % Crossover Frequency [rad/s] c_gain = 50; % cont = eye(6)*c_gain/(s+fc); #+end_src ** Closed Loop System #+begin_src matlab FEEDIN = [7:12]; % Input of controller FEEDOUT = [1:6]; % Output of controller #+end_src Centralized Control #+begin_src matlab STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT); TRcen = STcen*[eye(6); zeros(6)]; #+end_src SVD Control #+begin_src matlab STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT); TRsvd = STsvd*[eye(6); zeros(6)]; #+end_src ** Results #+begin_src matlab figure subplot(231) bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts) legend('OL','Centralized','SVD') subplot(232) bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts) legend('OL','Centralized','SVD') subplot(233) bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts) legend('OL','Centralized','SVD') subplot(234) bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts) legend('OL','Centralized','SVD') subplot(235) bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts) legend('OL','Centralized','SVD') subplot(236) bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts) legend('OL','Centralized','SVD') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/stewart_platform_analytical_svd_cen_comp.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:stewart_platform_analytical_svd_cen_comp #+caption: Comparison of the obtained transmissibility for the centralized control and the SVD control #+RESULTS: [[file:figs/stewart_platform_analytical_svd_cen_comp.png]]