Update stewart platform after discus. with mohit
This commit is contained in:
parent
0b38138891
commit
2e7aacd9ed
36
index.org
36
index.org
@ -758,7 +758,7 @@ Definition of spring parameters
|
|||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+begin_src matlab
|
#+begin_src matlab
|
||||||
g = 9.8;
|
g = 0;
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
We load the Jacobian.
|
We load the Jacobian.
|
||||||
@ -804,8 +804,8 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
|
|||||||
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
||||||
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
||||||
|
|
||||||
Gl = J*G;
|
% Gl = J*G;
|
||||||
Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
|
% Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
** Obtained Dynamics
|
** Obtained Dynamics
|
||||||
@ -934,13 +934,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
|
|||||||
|
|
||||||
ax1 = subplot(2, 1, 1);
|
ax1 = subplot(2, 1, 1);
|
||||||
hold on;
|
hold on;
|
||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
|
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
|
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
|
||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
|
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
|
||||||
set(gca,'ColorOrderIndex',1)
|
% set(gca,'ColorOrderIndex',1)
|
||||||
plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
% plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
% plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
% plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
hold off;
|
hold off;
|
||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]');
|
ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]');
|
||||||
@ -948,13 +948,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
|
|||||||
|
|
||||||
ax2 = subplot(2, 1, 2);
|
ax2 = subplot(2, 1, 2);
|
||||||
hold on;
|
hold on;
|
||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
|
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
|
||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
|
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
|
||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
|
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
|
||||||
set(gca,'ColorOrderIndex',1)
|
% set(gca,'ColorOrderIndex',1)
|
||||||
plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
% plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
% plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
% plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
|
||||||
hold off;
|
hold off;
|
||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||||
ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]');
|
ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]');
|
||||||
@ -975,7 +975,7 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
|
|||||||
** Real Approximation of $G$ at the decoupling frequency
|
** Real Approximation of $G$ at the decoupling frequency
|
||||||
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
|
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
|
||||||
#+begin_src matlab
|
#+begin_src matlab
|
||||||
wc = 2*pi*20; % Decoupling frequency [rad/s]
|
wc = 2*pi*30; % Decoupling frequency [rad/s]
|
||||||
|
|
||||||
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
|
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
|
||||||
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
|
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
|
||||||
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user