diff --git a/index.org b/index.org index 760425d..c314118 100644 --- a/index.org +++ b/index.org @@ -758,7 +758,7 @@ Definition of spring parameters #+end_src #+begin_src matlab - g = 9.8; + g = 0; #+end_src We load the Jacobian. @@ -804,8 +804,8 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; - Gl = J*G; - Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'}; + % Gl = J*G; + % Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'}; #+end_src ** Obtained Dynamics @@ -934,13 +934,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le ax1 = subplot(2, 1, 1); hold on; - % plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$'); - % plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$'); - % plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$'); - set(gca,'ColorOrderIndex',1) - plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); - plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); - plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); + plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$'); + plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$'); + plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$'); + % set(gca,'ColorOrderIndex',1) + % plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); + % plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); + % plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]'); @@ -948,13 +948,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le ax2 = subplot(2, 1, 2); hold on; - % plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$'); - % plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$'); - % plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$'); - set(gca,'ColorOrderIndex',1) - plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); - plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); - plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); + plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$'); + plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$'); + plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$'); + % set(gca,'ColorOrderIndex',1) + % plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); + % plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); + % plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]'); @@ -975,7 +975,7 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le ** Real Approximation of $G$ at the decoupling frequency Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. #+begin_src matlab - wc = 2*pi*20; % Decoupling frequency [rad/s] + wc = 2*pi*30; % Decoupling frequency [rad/s] Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ... {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation diff --git a/stewart_platform/drone_platform.slx b/stewart_platform/drone_platform.slx index 82a12a4..e098d54 100644 Binary files a/stewart_platform/drone_platform.slx and b/stewart_platform/drone_platform.slx differ diff --git a/stewart_platform/drone_platform_R2017b.slx b/stewart_platform/drone_platform_R2017b.slx index 7599cdd..f509555 100644 Binary files a/stewart_platform/drone_platform_R2017b.slx and b/stewart_platform/drone_platform_R2017b.slx differ