Update stewart platform after discus. with mohit
This commit is contained in:
		
							
								
								
									
										36
									
								
								index.org
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								index.org
									
									
									
									
									
								
							@@ -758,7 +758,7 @@ Definition of spring parameters
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  g = 9.8;
 | 
			
		||||
  g = 0;
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
We load the Jacobian.
 | 
			
		||||
@@ -804,8 +804,8 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
			
		||||
  Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
			
		||||
                   'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
			
		||||
 | 
			
		||||
  Gl = J*G;
 | 
			
		||||
  Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
			
		||||
  % Gl = J*G;
 | 
			
		||||
  % Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Obtained Dynamics
 | 
			
		||||
@@ -934,13 +934,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
			
		||||
 | 
			
		||||
  ax1 = subplot(2, 1, 1);
 | 
			
		||||
  hold on;
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
			
		||||
  % set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('Transmissibility - Translations');  xlabel('Frequency [Hz]');
 | 
			
		||||
@@ -948,13 +948,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
			
		||||
 | 
			
		||||
  ax2 = subplot(2, 1, 2);
 | 
			
		||||
  hold on;
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
			
		||||
  % set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  % plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
			
		||||
  hold off;
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  ylabel('Transmissibility - Rotations');  xlabel('Frequency [Hz]');
 | 
			
		||||
@@ -975,7 +975,7 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
			
		||||
** Real Approximation of $G$ at the decoupling frequency
 | 
			
		||||
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  wc = 2*pi*20; % Decoupling frequency [rad/s]
 | 
			
		||||
  wc = 2*pi*30; % Decoupling frequency [rad/s]
 | 
			
		||||
 | 
			
		||||
  Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
 | 
			
		||||
         {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user