stewart-simscape/org/identification.org

242 lines
7.3 KiB
Org Mode

#+TITLE: Identification of the Stewart Platform using Simscape
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports results
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* Introduction :ignore:
* Modal Analysis of the Stewart Platform
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :results none :exports none
simulinkproject('../');
#+end_src
#+begin_src matlab
open('stewart_platform_model.slx')
#+end_src
** Initialize the Stewart Platform
#+begin_src matlab
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart);
#+end_src
#+begin_src matlab
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
#+end_src
** Identification
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 2, 'openoutput'); io_i = io_i + 1; % Velocity of {B} w.r.t. {A}
%% Run the linearization
G = linearize(mdl, io);
% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};
% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};
#+end_src
Let's check the size of =G=:
#+begin_src matlab :results replace output
size(G)
#+end_src
#+RESULTS:
: size(G)
: State-space model with 12 outputs, 6 inputs, and 18 states.
: 'org_babel_eoe'
: ans =
: 'org_babel_eoe'
We expect to have only 12 states (corresponding to the 6dof of the mobile platform).
#+begin_src matlab :results replace output
Gm = minreal(G);
#+end_src
#+RESULTS:
: Gm = minreal(G);
: 6 states removed.
And indeed, we obtain 12 states.
** Coordinate transformation
We can perform the following transformation using the =ss2ss= command.
#+begin_src matlab
Gt = ss2ss(Gm, Gm.C);
#+end_src
Then, the =C= matrix of =Gt= is the unity matrix which means that the states of the state space model are equal to the measurements $\bm{Y}$.
The measurements are the 6 displacement and 6 velocities of mobile platform with respect to $\{B\}$.
We could perform the transformation by hand:
#+begin_src matlab
At = Gm.C*Gm.A*pinv(Gm.C);
Bt = Gm.C*Gm.B;
Ct = eye(12);
Dt = zeros(12, 6);
Gt = ss(At, Bt, Ct, Dt);
#+end_src
** Analysis
#+begin_src matlab
[V,D] = eig(Gt.A);
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
ws = imag(diag(D))/2/pi;
[ws,I] = sort(ws)
xi = 100*real(diag(D))./imag(diag(D));
xi = xi(I);
data2orgtable([[1:length(ws(ws>0))]', ws(ws>0), xi(xi>0)], {}, {'Mode Number', 'Resonance Frequency [Hz]', 'Damping Ratio [%]'}, ' %.1f ');
#+end_src
#+RESULTS:
| Mode Number | Resonance Frequency [Hz] | Damping Ratio [%] |
|-------------+--------------------------+-------------------|
| 1.0 | 780.6 | 0.4 |
| 2.0 | 780.6 | 0.3 |
| 3.0 | 903.9 | 0.3 |
| 4.0 | 1061.4 | 0.3 |
| 5.0 | 1061.4 | 0.2 |
| 6.0 | 1269.6 | 0.2 |
** Visualizing the modes
To visualize the i'th mode, we may excite the system using the inputs $U_i$ such that $B U_i$ is co-linear to $\xi_i$ (the mode we want to excite).
\[ U(t) = e^{\alpha t} ( ) \]
Let's first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part.
#+begin_src matlab
ws = imag(diag(D));
[ws,I] = sort(ws)
ws = ws(7:end); I = I(7:end);
#+end_src
#+begin_src matlab
for i = 1:length(ws)
#+end_src
#+begin_src matlab
i_mode = I(i); % the argument is the i'th mode
#+end_src
#+begin_src matlab
lambda_i = D(i_mode, i_mode);
xi_i = V(:,i_mode);
a_i = real(lambda_i);
b_i = imag(lambda_i);
#+end_src
Let do 10 periods of the mode.
#+begin_src matlab
t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000);
U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t)));
#+end_src
#+begin_src matlab
U = timeseries(U_i, t);
#+end_src
Simulation:
#+begin_src matlab
load('mat/conf_simscape.mat');
set_param(conf_simscape, 'StopTime', num2str(t(end)));
sim(mdl);
#+end_src
Save the movie of the mode shape.
#+begin_src matlab
smwritevideo(mdl, sprintf('figs/mode%i', i), ...
'PlaybackSpeedRatio', 1/(b_i/2/pi), ...
'FrameRate', 30, ...
'FrameSize', [800, 400]);
#+end_src
#+begin_src matlab
end
#+end_src
#+name: fig:mode1
#+caption: Identified mode - 1
[[file:figs/mode1.gif]]
#+name: fig:mode3
#+caption: Identified mode - 3
[[file:figs/mode3.gif]]
#+name: fig:mode5
#+caption: Identified mode - 5
[[file:figs/mode5.gif]]