#+TITLE: Identification of the Stewart Platform using Simscape :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Introduction :ignore: * Modal Analysis of the Stewart Platform ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :results none :exports none simulinkproject('../'); #+end_src #+begin_src matlab open('stewart_platform_model.slx') #+end_src ** Initialize the Stewart Platform #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart); #+end_src #+begin_src matlab ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); #+end_src ** Identification #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A} io(io_i) = linio([mdl, '/Relative Motion Sensor'], 2, 'openoutput'); io_i = io_i + 1; % Velocity of {B} w.r.t. {A} %% Run the linearization G = linearize(mdl, io); % G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'}; % G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; #+end_src Let's check the size of =G=: #+begin_src matlab :results replace output size(G) #+end_src #+RESULTS: : size(G) : State-space model with 12 outputs, 6 inputs, and 18 states. : 'org_babel_eoe' : ans = : 'org_babel_eoe' We expect to have only 12 states (corresponding to the 6dof of the mobile platform). #+begin_src matlab :results replace output Gm = minreal(G); #+end_src #+RESULTS: : Gm = minreal(G); : 6 states removed. And indeed, we obtain 12 states. ** Coordinate transformation We can perform the following transformation using the =ss2ss= command. #+begin_src matlab Gt = ss2ss(Gm, Gm.C); #+end_src Then, the =C= matrix of =Gt= is the unity matrix which means that the states of the state space model are equal to the measurements $\bm{Y}$. The measurements are the 6 displacement and 6 velocities of mobile platform with respect to $\{B\}$. We could perform the transformation by hand: #+begin_src matlab At = Gm.C*Gm.A*pinv(Gm.C); Bt = Gm.C*Gm.B; Ct = eye(12); Dt = zeros(12, 6); Gt = ss(At, Bt, Ct, Dt); #+end_src ** Analysis #+begin_src matlab [V,D] = eig(Gt.A); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) ws = imag(diag(D))/2/pi; [ws,I] = sort(ws) xi = 100*real(diag(D))./imag(diag(D)); xi = xi(I); data2orgtable([[1:length(ws(ws>0))]', ws(ws>0), xi(xi>0)], {}, {'Mode Number', 'Resonance Frequency [Hz]', 'Damping Ratio [%]'}, ' %.1f '); #+end_src #+RESULTS: | Mode Number | Resonance Frequency [Hz] | Damping Ratio [%] | |-------------+--------------------------+-------------------| | 1.0 | 780.6 | 0.4 | | 2.0 | 780.6 | 0.3 | | 3.0 | 903.9 | 0.3 | | 4.0 | 1061.4 | 0.3 | | 5.0 | 1061.4 | 0.2 | | 6.0 | 1269.6 | 0.2 | ** Visualizing the modes To visualize the i'th mode, we may excite the system using the inputs $U_i$ such that $B U_i$ is co-linear to $\xi_i$ (the mode we want to excite). \[ U(t) = e^{\alpha t} ( ) \] Let's first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part. #+begin_src matlab ws = imag(diag(D)); [ws,I] = sort(ws) ws = ws(7:end); I = I(7:end); #+end_src #+begin_src matlab for i = 1:length(ws) #+end_src #+begin_src matlab i_mode = I(i); % the argument is the i'th mode #+end_src #+begin_src matlab lambda_i = D(i_mode, i_mode); xi_i = V(:,i_mode); a_i = real(lambda_i); b_i = imag(lambda_i); #+end_src Let do 10 periods of the mode. #+begin_src matlab t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000); U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t))); #+end_src #+begin_src matlab U = timeseries(U_i, t); #+end_src Simulation: #+begin_src matlab load('mat/conf_simscape.mat'); set_param(conf_simscape, 'StopTime', num2str(t(end))); sim(mdl); #+end_src Save the movie of the mode shape. #+begin_src matlab smwritevideo(mdl, sprintf('figs/mode%i', i), ... 'PlaybackSpeedRatio', 1/(b_i/2/pi), ... 'FrameRate', 30, ... 'FrameSize', [800, 400]); #+end_src #+begin_src matlab end #+end_src #+name: fig:mode1 #+caption: Identified mode - 1 [[file:figs/mode1.gif]] #+name: fig:mode3 #+caption: Identified mode - 3 [[file:figs/mode3.gif]] #+name: fig:mode5 #+caption: Identified mode - 5 [[file:figs/mode5.gif]]