stewart-simscape/org/identification.org

7.3 KiB

Identification of the Stewart Platform using Simscape

Introduction   ignore

Modal Analysis of the Stewart Platform

Introduction   ignore

Initialize the Stewart Platform

  stewart = initializeStewartPlatform();
  stewart = initializeFramesPositions(stewart);
  stewart = generateGeneralConfiguration(stewart);
  stewart = computeJointsPose(stewart);
  stewart = initializeStrutDynamics(stewart);
  stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
  stewart = initializeCylindricalPlatforms(stewart);
  stewart = initializeCylindricalStruts(stewart);
  stewart = computeJacobian(stewart);
  stewart = initializeStewartPose(stewart);
  stewart = initializeInertialSensor(stewart);
  ground = initializeGround('type', 'none');
  payload = initializePayload('type', 'none');

Identification

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],              1, 'openinput');  io_i = io_i + 1; % Actuator Force Inputs [N]
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  2, 'openoutput'); io_i = io_i + 1; % Velocity of {B} w.r.t. {A}

  %% Run the linearization
  G = linearize(mdl, io);
  % G.InputName  = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};
  % G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};

Let's check the size of G:

  size(G)
size(G)
State-space model with 12 outputs, 6 inputs, and 18 states.
'org_babel_eoe'
ans =
    'org_babel_eoe'

We expect to have only 12 states (corresponding to the 6dof of the mobile platform).

  Gm = minreal(G);
Gm = minreal(G);
6 states removed.

And indeed, we obtain 12 states.

Coordinate transformation

We can perform the following transformation using the ss2ss command.

  Gt = ss2ss(Gm, Gm.C);

Then, the C matrix of Gt is the unity matrix which means that the states of the state space model are equal to the measurements $\bm{Y}$.

The measurements are the 6 displacement and 6 velocities of mobile platform with respect to $\{B\}$.

We could perform the transformation by hand:

  At = Gm.C*Gm.A*pinv(Gm.C);

  Bt = Gm.C*Gm.B;

  Ct = eye(12);
  Dt = zeros(12, 6);

  Gt = ss(At, Bt, Ct, Dt);

Analysis

  [V,D] = eig(Gt.A);
Mode Number Resonance Frequency [Hz] Damping Ratio [%]
1.0 780.6 0.4
2.0 780.6 0.3
3.0 903.9 0.3
4.0 1061.4 0.3
5.0 1061.4 0.2
6.0 1269.6 0.2

Visualizing the modes

To visualize the i'th mode, we may excite the system using the inputs $U_i$ such that $B U_i$ is co-linear to $\xi_i$ (the mode we want to excite).

\[ U(t) = e^{\alpha t} ( ) \]

Let's first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part.

  ws = imag(diag(D));
  [ws,I] = sort(ws)
  ws = ws(7:end); I = I(7:end);
  for i = 1:length(ws)
  i_mode = I(i); % the argument is the i'th mode
  lambda_i = D(i_mode, i_mode);
  xi_i = V(:,i_mode);

  a_i = real(lambda_i);
  b_i = imag(lambda_i);

Let do 10 periods of the mode.

  t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000);
  U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t)));
  U = timeseries(U_i, t);

Simulation:

  load('mat/conf_simscape.mat');
  set_param(conf_simscape, 'StopTime', num2str(t(end)));
  sim(mdl);

Save the movie of the mode shape.

  smwritevideo(mdl, sprintf('figs/mode%i', i), ...
               'PlaybackSpeedRatio', 1/(b_i/2/pi), ...
               'FrameRate', 30, ...
               'FrameSize', [800, 400]);
  end
/tdehaeze/stewart-simscape/media/commit/1321d12e4df70ed720dd0a9699ac73ea5f5a1dbe/org/figs/mode1.gif
Identified mode - 1
/tdehaeze/stewart-simscape/media/commit/1321d12e4df70ed720dd0a9699ac73ea5f5a1dbe/org/figs/mode3.gif
Identified mode - 3
/tdehaeze/stewart-simscape/media/commit/1321d12e4df70ed720dd0a9699ac73ea5f5a1dbe/org/figs/mode5.gif
Identified mode - 5