1809 lines
65 KiB
Org Mode
1809 lines
65 KiB
Org Mode
#+TITLE: Stewart Platform - Tracking Control
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ./index.html
|
|
#+HTML_LINK_UP: ./index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
Let's suppose the control objective is to position $\bm{\mathcal{X}}$ of the mobile platform of the Stewart platform such that it is following some reference position $\bm{r}_\mathcal{X}$.
|
|
|
|
In order to compute the pose error $\bm{\epsilon}_\mathcal{X}$ from the actual pose $\bm{\mathcal{X}}$ and the reference position $\bm{r}_\mathcal{X}$, some computation is required and explained in section [[sec:compute_pose_error]].
|
|
|
|
Depending of the measured quantity, different control architectures can be used:
|
|
- If the struts length $\bm{\mathcal{L}}$ is measured, a decentralized control architecture can be used (Section [[sec:decentralized]])
|
|
- If the pose of the mobile platform $\bm{\mathcal{X}}$ is directly measured, a centralized control architecture can be used (Section [[sec:centralized]])
|
|
- If both $\bm{\mathcal{L}}$ and $\bm{\mathcal{X}}$ are measured, we can use an hybrid control architecture (Section [[sec:hybrid]])
|
|
|
|
The control configuration are compare in section [[sec:comparison]].
|
|
|
|
* Decentralized Control Architecture using Strut Length
|
|
<<sec:decentralized>>
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx');
|
|
#+end_src
|
|
|
|
** Control Schematic
|
|
The control architecture is shown in Figure [[fig:decentralized_reference_tracking_L]].
|
|
|
|
The required leg length $\bm{r}_\mathcal{L}$ is computed from the reference path $\bm{r}_\mathcal{X}$ using the inverse kinematics.
|
|
|
|
Then, a diagonal (decentralized) controller $\bm{K}_\mathcal{L}$ is used such that each leg lengths stays close to its required length.
|
|
|
|
#+begin_src latex :file decentralized_reference_tracking_L.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block, align=center] (J) at (0, 0) {Inverse\\Kinematics};
|
|
\node[addb={+}{}{}{}{-}, right=1 of J] (subr) {};
|
|
\node[block, right=0.8 of subr] (K) {$\bm{K}_\mathcal{L}$};
|
|
\node[block, right=1 of K] (G) {$\bm{G}_\mathcal{L}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{\mathcal{L}}$};
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_\mathcal{L}$};
|
|
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{L}}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_reference_tracking_L
|
|
#+caption: Decentralized control for reference tracking
|
|
#+RESULTS:
|
|
[[file:figs/decentralized_reference_tracking_L.png]]
|
|
|
|
** Initialize the Stewart platform
|
|
#+begin_src matlab :noweb yes
|
|
<<init-sim>>
|
|
#+end_src
|
|
|
|
** Identification of the plant
|
|
Let's identify the transfer function from $\bm{\tau}$ to $\bm{\mathcal{L}}$.
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
|
|
#+end_src
|
|
|
|
** Plant Analysis
|
|
The diagonal and off-diagonal terms of the plant are shown in Figure [[fig:plant_decentralized_L]].
|
|
|
|
All the diagonal terms are equal.
|
|
We see that the plant is decoupled at low frequency which indicate that decentralized control may be a good idea.
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/plant_decentralized_L.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:plant_decentralized_L
|
|
#+caption: Obtain Diagonal and off diagonal dynamics ([[./figs/plant_decentralized_L.png][png]], [[./figs/plant_decentralized_L.pdf][pdf]])
|
|
[[file:figs/plant_decentralized_L.png]]
|
|
|
|
** Controller Design
|
|
The controller consists of:
|
|
- A pure integrator
|
|
- A low pass filter with a cut-off frequency 3 times the crossover to increase the gain margin
|
|
|
|
The obtained loop gains corresponding to the diagonal elements are shown in Figure [[fig:loop_gain_decentralized_L]].
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*30;
|
|
Kl = diag(1./diag(abs(freqresp(G, wc)))) * wc/s * 1/(1 + s/3/wc);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Kl(i, i)*G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/loop_gain_decentralized_L.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:loop_gain_decentralized_L
|
|
#+caption: Loop Gain of the diagonal elements ([[./figs/loop_gain_decentralized_L.png][png]], [[./figs/loop_gain_decentralized_L.pdf][pdf]])
|
|
[[file:figs/loop_gain_decentralized_L.png]]
|
|
|
|
** Simulation
|
|
Let's define some reference path to follow.
|
|
#+begin_src matlab :noweb yes
|
|
<<init-ref>>
|
|
#+end_src
|
|
|
|
The reference path is shown in Figure [[fig:tracking_control_reference_path]].
|
|
|
|
#+begin_src matlab :export none
|
|
figure;
|
|
plot3(squeeze(references.r.Data(1,1,:)), squeeze(references.r.Data(2,1,:)), squeeze(references.r.Data(3,1,:)));
|
|
xlabel('X [m]');
|
|
ylabel('Y [m]');
|
|
zlabel('Z [m]');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/tracking_control_reference_path.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:tracking_control_reference_path
|
|
#+caption: Reference path used for Tracking control ([[./figs/tracking_control_reference_path.png][png]], [[./figs/tracking_control_reference_path.pdf][pdf]])
|
|
[[file:figs/tracking_control_reference_path.png]]
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'ref-track-L');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
set_param('stewart_platform_model', 'StopTime', '10')
|
|
sim('stewart_platform_model');
|
|
simout_D = simout;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
save('./mat/control_tracking.mat', 'simout_D', '-append');
|
|
#+end_src
|
|
|
|
** Results
|
|
The reference path and the position of the mobile platform are shown in Figure [[fig:decentralized_control_3d_pos]].
|
|
|
|
#+begin_src matlab :export none
|
|
figure;
|
|
hold on;
|
|
plot3(simout_D.x.Xr.Data(:, 1), simout_D.x.Xr.Data(:, 2), simout_D.x.Xr.Data(:, 3), 'k-');
|
|
plot3(squeeze(references.r.Data(1,1,:)), squeeze(references.r.Data(2,1,:)), squeeze(references.r.Data(3,1,:)), '--');
|
|
hold off;
|
|
xlabel('X [m]'); ylabel('Y [m]'); zlabel('Z [m]');
|
|
view([1,1,1])
|
|
zlim([0, inf]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/decentralized_control_3d_pos.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_control_3d_pos
|
|
#+caption: Reference path and Obtained Position ([[./figs/decentralized_control_3d_pos.png][png]], [[./figs/decentralized_control_3d_pos.pdf][pdf]])
|
|
[[file:figs/decentralized_control_3d_pos.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
subplot(2, 3, 1);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(1, 1, :))-simout_D.x.Xr.Data(:, 1), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dx [m]');
|
|
|
|
subplot(2, 3, 2);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(2, 1, :))-simout_D.x.Xr.Data(:, 2), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dy [m]');
|
|
|
|
subplot(2, 3, 3);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(3, 1, :))-simout_D.x.Xr.Data(:, 3), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dz [m]');
|
|
|
|
subplot(2, 3, 4);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(4, 1, :))-simout_D.x.Xr.Data(:, 4), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rx [rad]');
|
|
|
|
subplot(2, 3, 5);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(5, 1, :))-simout_D.x.Xr.Data(:, 5), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Ry [rad]');
|
|
|
|
subplot(2, 3, 6);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(6, 1, :))-simout_D.x.Xr.Data(:, 6), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rz [rad]');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/decentralized_control_Ex.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_control_Ex
|
|
#+caption: Position error $\bm{\epsilon}_\mathcal{X}$ ([[./figs/decentralized_control_Ex.png][png]], [[./figs/decentralized_control_Ex.pdf][pdf]])
|
|
[[file:figs/decentralized_control_Ex.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
subplot(2, 3, 1);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.rL.Data(1, 1, :))-simout_D.y.dLm.Data(:, 1), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('L1 [m]');
|
|
|
|
subplot(2, 3, 2);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.rL.Data(2, 1, :))-simout_D.y.dLm.Data(:, 2), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('L1 [m]');
|
|
|
|
subplot(2, 3, 3);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.rL.Data(3, 1, :))-simout_D.y.dLm.Data(:, 3), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('L1 [m]');
|
|
|
|
subplot(2, 3, 4);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.rL.Data(4, 1, :))-simout_D.y.dLm.Data(:, 4), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('L4 [m]');
|
|
|
|
subplot(2, 3, 5);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.rL.Data(5, 1, :))-simout_D.y.dLm.Data(:, 5), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('L5 [m]');
|
|
|
|
subplot(2, 3, 6);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.rL.Data(6, 1, :))-simout_D.y.dLm.Data(:, 6), 'k-')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('L6 [m]');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/decentralized_control_El.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_control_El
|
|
#+caption: Position error $\bm{\epsilon}_\mathcal{L}$ ([[./figs/decentralized_control_El.png][png]], [[./figs/decentralized_control_El.pdf][pdf]])
|
|
[[file:figs/decentralized_control_El.png]]
|
|
|
|
** Conclusion
|
|
Such control architecture is easy to implement and give good results.
|
|
The inverse kinematics is easy to compute.
|
|
|
|
However, as $\mathcal{X}$ is not directly measured, it is possible that important positioning errors are due to finite stiffness of the joints and other imperfections.
|
|
|
|
* Centralized Control Architecture using Pose Measurement
|
|
<<sec:centralized>>
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx');
|
|
#+end_src
|
|
|
|
** Control Schematic
|
|
The centralized controller takes the position error $\bm{\epsilon}_\mathcal{X}$ as an inputs and generate actuator forces $\bm{\tau}$ (see Figure [[fig:centralized_reference_tracking]]).
|
|
The signals are:
|
|
- reference path $\bm{r}_\mathcal{X} = \begin{bmatrix} \epsilon_x & \epsilon_y & \epsilon_z & \epsilon_{R_x} & \epsilon_{R_y} & \epsilon_{R_z} \end{bmatrix}$
|
|
- tracking error $\bm{\epsilon}_\mathcal{X} = \begin{bmatrix} \epsilon_x & \epsilon_y & \epsilon_z & \epsilon_{R_x} & \epsilon_{R_y} & \epsilon_{R_z} \end{bmatrix}$
|
|
- actuator forces $\bm{\tau} = \begin{bmatrix} \tau_1 & \tau_2 & \tau_3 & \tau_4 & \tau_5 & \tau_6 \end{bmatrix}$
|
|
- payload pose $\bm{\mathcal{X}} = \begin{bmatrix} x & y & z & R_x & R_y & R_z \end{bmatrix}$
|
|
|
|
#+begin_src latex :file centralized_reference_tracking.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[addb={+}{}{}{}{-}] (subr) at (0, 0) {};
|
|
\node[block, right=0.8 of subr] (K) {$K$};
|
|
\node[block, right=1 of K] (G) {$G$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
|
|
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_reference_tracking
|
|
#+caption: Centralized Controller
|
|
#+RESULTS:
|
|
[[file:figs/centralized_reference_tracking.png]]
|
|
|
|
Instead of designing a full MIMO controller $K$, we first try to make the plant more diagonal by pre- or post-multiplying some constant matrix, then we design a diagonal controller.
|
|
|
|
We can think of two ways to make the plant more diagonal that are described in sections [[sec:diagonal_control_L]] and [[sec:diagonal_control_X]].
|
|
|
|
#+begin_important
|
|
Note here that the subtraction shown in Figure [[fig:centralized_reference_tracking]] is not a real subtraction.
|
|
It is indeed a more complex computation explained in section [[sec:compute_pose_error]].
|
|
#+end_important
|
|
|
|
** Initialize the Stewart platform
|
|
#+begin_src matlab :noweb yes
|
|
<<init-sim>>
|
|
#+end_src
|
|
|
|
** Identification of the plant
|
|
Let's identify the transfer function from $\bm{\tau}$ to $\bm{\mathcal{X}}$.
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
** Diagonal Control - Leg's Frame
|
|
<<sec:diagonal_control_L>>
|
|
*** Control Architecture
|
|
The pose error $\bm{\epsilon}_\mathcal{X}$ is first converted in the frame of the leg by using the Jacobian matrix.
|
|
Then a diagonal controller $\bm{K}_\mathcal{L}$ is designed.
|
|
The final implemented controller is $\bm{K} = \bm{K}_\mathcal{L} \cdot \bm{J}$ as shown in Figure [[fig:centralized_reference_tracking_L]]
|
|
|
|
Note here that the transformation from the pose error $\bm{\epsilon}_\mathcal{X}$ to the leg's length errors by using the Jacobian matrix is only valid for small errors.
|
|
|
|
#+begin_src latex :file centralized_reference_tracking_L.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[addb={+}{}{}{}{-}] (subr) at (0, 0) {};
|
|
\node[block, right= 1 of subr] (J) {$\bm{J}$};
|
|
\node[block, right=0.8 of J] (K) {$\bm{K}_{\mathcal{L}}$};
|
|
\node[block, right=1 of K] (G) {$\bm{G}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\draw[->] (subr.east) -- (J.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
|
|
\draw[->] (J.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{L}}$};
|
|
\draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(J.south west) (K.north east)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {};
|
|
\node[above] at (Ktot.north) {$\bm{K}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_reference_tracking_L
|
|
#+caption: Controller in the frame of the legs
|
|
#+RESULTS:
|
|
[[file:figs/centralized_reference_tracking_L.png]]
|
|
|
|
*** Plant Analysis
|
|
We now multiply the plant by the Jacobian matrix as shown in Figure [[fig:centralized_reference_tracking_L]] to obtain a more diagonal plant.
|
|
|
|
#+begin_src matlab
|
|
Gl = stewart.kinematics.J*G;
|
|
Gl.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
|
|
#+end_src
|
|
|
|
The bode plot of the plant is shown in Figure [[fig:plant_centralized_L]].
|
|
We can see that the diagonal elements are identical.
|
|
This will simplify the design of the controller as all the elements of the diagonal controller can be made identical.
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$\\epsilon_{\\mathcal{L}_%i}/\\tau_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/plant_centralized_L.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:plant_centralized_L
|
|
#+caption: Diagonal and off-diagonal elements of the plant $\bm{J}\bm{G}$ ([[./figs/plant_centralized_L.png][png]], [[./figs/plant_centralized_L.pdf][pdf]])
|
|
[[file:figs/plant_centralized_L.png]]
|
|
|
|
We can see that this *totally decouples the system at low frequency*.
|
|
|
|
This was expected since:
|
|
\[ \bm{G}(\omega = 0) = \frac{\delta\bm{\mathcal{X}}}{\delta\bm{\tau}}(\omega = 0) = \bm{J}^{-1} \frac{\delta\bm{\mathcal{L}}}{\delta\bm{\tau}}(\omega = 0) = \bm{J}^{-1} \text{diag}(\mathcal{K}_1^{-1} \ \dots \ \mathcal{K}_6^{-1}) \]
|
|
|
|
Thus $J \cdot G(\omega = 0) = J \cdot \frac{\delta\bm{\mathcal{X}}}{\delta\bm{\tau}}(\omega = 0)$ is a diagonal matrix containing the inverse of the joint's stiffness.
|
|
|
|
*** Controller Design
|
|
The controller consists of:
|
|
- A pure integrator
|
|
- A low pass filter with a cut-off frequency 3 times the crossover to increase the gain margin
|
|
|
|
The obtained loop gains corresponding to the diagonal elements are shown in Figure [[fig:loop_gain_centralized_L]].
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*30;
|
|
Kl = diag(1./diag(abs(freqresp(Gl, wc)))) * wc/s * 1/(1 + s/3/wc);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Kl(i, i)*Gl(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*Gl(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/loop_gain_centralized_L.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:loop_gain_centralized_L
|
|
#+caption: Loop Gain of the diagonal elements ([[./figs/loop_gain_centralized_L.png][png]], [[./figs/loop_gain_centralized_L.pdf][pdf]])
|
|
[[file:figs/loop_gain_centralized_L.png]]
|
|
|
|
The controller $\bm{K} = \bm{K}_\mathcal{L} \bm{J}$ is computed.
|
|
#+begin_src matlab
|
|
K = Kl*stewart.kinematics.J;
|
|
#+end_src
|
|
|
|
*** Simulation
|
|
We specify the reference path to follow.
|
|
#+begin_src matlab :noweb yes
|
|
<<init-ref>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'ref-track-X');
|
|
#+end_src
|
|
|
|
We run the simulation and we save the results.
|
|
#+begin_src matlab
|
|
set_param('stewart_platform_model', 'StopTime', '10')
|
|
sim('stewart_platform_model')
|
|
simout_L = simout;
|
|
save('./mat/control_tracking.mat', 'simout_L', '-append');
|
|
#+end_src
|
|
|
|
** Diagonal Control - Cartesian Frame
|
|
<<sec:diagonal_control_X>>
|
|
*** Control Architecture
|
|
A diagonal controller $\bm{K}_\mathcal{X}$ take the pose error $\bm{\epsilon}_\mathcal{X}$ and generate cartesian forces $\bm{\mathcal{F}}$ that are then converted to actuators forces using the Jacobian as shown in Figure e [[fig:centralized_reference_tracking_X]].
|
|
|
|
The final implemented controller is $\bm{K} = \bm{J}^{-T} \cdot \bm{K}_\mathcal{X}$.
|
|
|
|
#+begin_src latex :file centralized_reference_tracking_X.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[addb={+}{}{}{}{-}] (subr) at (0, 0) {};
|
|
\node[block, right= of subr] (K) {$\bm{K}_{\mathcal{X}}$};
|
|
\node[block, right= of K] (J) {$\bm{J}^{-T}$};
|
|
\node[block, right= of J] (G) {$\bm{G}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
|
|
\draw[->] (K.east) -- (J.west) node[above left]{$\bm{\mathcal{F}}$};
|
|
\draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(K.south west) (J.north east)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {};
|
|
\node[above] at (Ktot.north) {$\bm{K}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_reference_tracking_X
|
|
#+caption: Controller in the cartesian frame
|
|
#+RESULTS:
|
|
[[file:figs/centralized_reference_tracking_X.png]]
|
|
|
|
*** Plant Analysis
|
|
We now multiply the plant by the Jacobian matrix as shown in Figure [[fig:centralized_reference_tracking_X]] to obtain a more diagonal plant.
|
|
|
|
#+begin_src matlab
|
|
Gx = G*inv(stewart.kinematics.J');
|
|
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'};
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i});
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/plant_centralized_X.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:plant_centralized_X
|
|
#+caption: Diagonal and off-diagonal elements of the plant $\bm{G} \bm{J}^{-T}$ ([[./figs/plant_centralized_X.png][png]], [[./figs/plant_centralized_X.pdf][pdf]])
|
|
[[file:figs/plant_centralized_X.png]]
|
|
|
|
The diagonal terms are not the same.
|
|
The resonances of the system are "decoupled".
|
|
For instance, the vertical resonance of the system is only present on the diagonal term corresponding to $D_z/\mathcal{F}_z$.
|
|
|
|
Here the system is almost decoupled at all frequencies except for the transfer functions $\frac{R_y}{\mathcal{F}_x}$ and $\frac{R_x}{\mathcal{F}_y}$.
|
|
|
|
This is due to the fact that the compliance matrix of the Stewart platform is not diagonal.
|
|
#+begin_src matlab :exports results :results value table replace :tangle no
|
|
inv(stewart.kinematics.K)
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| 4.75e-08 | -1.9751e-24 | 7.3536e-25 | 5.915e-23 | 3.2093e-07 | 5.8696e-24 |
|
|
| -7.1302e-25 | 4.75e-08 | 2.8866e-25 | -3.2093e-07 | -5.38e-24 | -3.2725e-23 |
|
|
| 7.9012e-26 | -6.3991e-25 | 2.099e-08 | 1.9073e-23 | 5.3384e-25 | -6.4867e-40 |
|
|
| 1.3724e-23 | -3.2093e-07 | 1.2799e-23 | 5.1863e-06 | 4.9412e-22 | -3.8269e-24 |
|
|
| 3.2093e-07 | 7.6013e-24 | 1.2239e-23 | 6.8886e-22 | 5.1863e-06 | -2.6025e-22 |
|
|
| 7.337e-24 | -3.2395e-23 | -1.571e-39 | 9.927e-23 | -3.2531e-22 | 1.7073e-06 |
|
|
|
|
One way to have this compliance matrix diagonal (and thus having a decoupled plant at DC) is to use a *cubic architecture* with the center of the cube's coincident with frame $\{A\}$.
|
|
|
|
This control architecture can also give a dynamically decoupled plant if the Center of mass of the payload is also coincident with frame $\{A\}$.
|
|
|
|
*** Controller Design
|
|
The controller consists of:
|
|
- A pure integrator
|
|
- A low pass filter with a cut-off frequency 3 times the crossover to increase the gain margin
|
|
|
|
The obtained loop gains corresponding to the diagonal elements are shown in Figure [[fig:loop_gain_centralized_X]].
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*30;
|
|
Kx = diag(1./diag(abs(freqresp(Gx, wc)))) * wc/s * 1/(1 + s/3/wc);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Kx(i,i)*Gx(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kx(i,i)*Gx(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/loop_gain_centralized_X.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:loop_gain_centralized_X
|
|
#+caption: Loop Gain of the diagonal elements ([[./figs/loop_gain_centralized_X.png][png]], [[./figs/loop_gain_centralized_X.pdf][pdf]])
|
|
[[file:figs/loop_gain_centralized_X.png]]
|
|
|
|
The controller $\bm{K} = \bm{J}^{-T} \bm{K}_\mathcal{X}$ is computed.
|
|
#+begin_src matlab
|
|
K = inv(stewart.kinematics.J')*Kx;
|
|
#+end_src
|
|
|
|
*** Simulation
|
|
We specify the reference path to follow.
|
|
#+begin_src matlab :noweb yes
|
|
<<init-ref>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
controller = initializeController('type', 'ref-track-X');
|
|
#+end_src
|
|
|
|
We run the simulation and we save the results.
|
|
#+begin_src matlab
|
|
set_param('stewart_platform_model', 'StopTime', '10')
|
|
sim('stewart_platform_model')
|
|
simout_X = simout;
|
|
save('./mat/control_tracking.mat', 'simout_X', '-append');
|
|
#+end_src
|
|
|
|
** Diagonal Control - Steady State Decoupling
|
|
<<sec:diagonal_control_SD>>
|
|
*** Control Architecture
|
|
The plant $\bm{G}$ is pre-multiply by $\bm{G}^{-1}(\omega = 0)$ such that the "shaped plant" $\bm{G}_0 = \bm{G} \bm{G}^{-1}(\omega = 0)$ is diagonal at low frequency.
|
|
|
|
Then a diagonal controller $\bm{K}_0$ is designed.
|
|
|
|
The control architecture is shown in Figure [[fig:centralized_reference_tracking_S]].
|
|
|
|
#+begin_src latex :file centralized_reference_tracking_S.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[addb={+}{}{}{}{-}] (subr) at (0, 0) {};
|
|
\node[block, right=0.8 of subr] (K) {$\bm{K}_{0}$};
|
|
\node[block, right= 1 of K] (J) {$\bm{G}^{-1}(\omega=0)$};
|
|
\node[block, right=1 of J] (G) {$\bm{G}$};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
|
|
\draw[->] (K.east) -- (J.west);
|
|
\draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ($(G.east)+(1, -1)$) -| (subr.south);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(K.south west) (J.north east)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {};
|
|
\node[above] at (Ktot.north) {$\bm{K}$};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_reference_tracking_S
|
|
#+caption: Static Decoupling of the Plant
|
|
#+RESULTS:
|
|
[[file:figs/centralized_reference_tracking_S.png]]
|
|
|
|
*** Plant Analysis
|
|
The plant is pre-multiplied by $\bm{G}^{-1}(\omega = 0)$.
|
|
The diagonal and off-diagonal elements of the shaped plant are shown in Figure [[fig:plant_centralized_SD]].
|
|
|
|
#+begin_src matlab
|
|
G0 = G*inv(freqresp(G, 0));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(G0(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G0(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$G_0(%i,%i)$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(G0(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G0(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G0(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G0(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/plant_centralized_SD.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:plant_centralized_SD
|
|
#+caption: Diagonal and off-diagonal elements of the plant $\bm{G} \bm{G}^{-1}(\omega = 0)$ ([[./figs/plant_centralized_SD.png][png]], [[./figs/plant_centralized_SD.pdf][pdf]])
|
|
[[file:figs/plant_centralized_SD.png]]
|
|
|
|
*** Controller Design
|
|
We have that:
|
|
\[ \bm{G}^{-1}(\omega = 0) = \left(\frac{\delta\bm{\mathcal{X}}}{\delta\bm{\tau}}(\omega = 0)\right)^{-1} = \left( \bm{J}^{-1} \frac{\delta\bm{\mathcal{L}}}{\delta\bm{\tau}}(\omega = 0) \right)^{-1} = \text{diag}(\mathcal{K}_1^{-1} \ \dots \ \mathcal{K}_6^{-1}) \bm{J} \]
|
|
|
|
And because:
|
|
- all the leg stiffness are equal
|
|
- the controller equal to a $\bm{K}_0(s) = k(s) \bm{I}_6$
|
|
We have that $\bm{K}_0(s)$ commutes with $\bm{G}^{-1}(\omega = 0)$ and thus the overall controller $\bm{K}$ is the same as the one obtain in section [[sec:diagonal_control_L]].
|
|
|
|
** Comparison
|
|
*** Obtained MIMO Controllers
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
bode(inv(stewart.kinematics.J')*Kx, Kl*stewart.kinematics.J)
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/centralized_control_comp_K.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_control_comp_K
|
|
#+caption: Comparison of the MIMO controller $\bm{K}$ for both centralized architectures ([[./figs/centralized_control_comp_K.png][png]], [[./figs/centralized_control_comp_K.pdf][pdf]])
|
|
[[file:figs/centralized_control_comp_K.png]]
|
|
|
|
*** Simulation Results
|
|
The position error $\bm{\epsilon}_\mathcal{X}$ for both centralized architecture are shown in Figure [[fig:centralized_control_comp_Ex]].
|
|
|
|
Based on Figure [[fig:centralized_control_comp_Ex]], we can see that:
|
|
- There is some tracking error $\epsilon_x$
|
|
- The errors $\epsilon_y$, $\epsilon_{R_x}$ and $\epsilon_{R_z}$ are quite negligible
|
|
- There is some error in the vertical position $\epsilon_z$.
|
|
The frequency of the error $\epsilon_z$ is twice the frequency of the reference path $r_x$.
|
|
- There is some error $\epsilon_{R_y}$.
|
|
This error is much lower when using the diagonal control in the frame of the leg instead of the cartesian frame.
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
subplot(2, 3, 1);
|
|
hold on;
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(1, 1, :))-simout_L.x.Xr.Data(:, 1))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(1, 1, :))-simout_X.x.Xr.Data(:, 1))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dx [m]');
|
|
|
|
subplot(2, 3, 2);
|
|
hold on;
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(2, 1, :))-simout_L.x.Xr.Data(:, 2))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(2, 1, :))-simout_X.x.Xr.Data(:, 2))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dy [m]');
|
|
|
|
subplot(2, 3, 3);
|
|
hold on;
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(3, 1, :))-simout_L.x.Xr.Data(:, 3))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(3, 1, :))-simout_X.x.Xr.Data(:, 3))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dz [m]');
|
|
|
|
subplot(2, 3, 4);
|
|
hold on;
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(4, 1, :))-simout_L.x.Xr.Data(:, 4))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(4, 1, :))-simout_X.x.Xr.Data(:, 4))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rx [rad]');
|
|
|
|
subplot(2, 3, 5);
|
|
hold on;
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(5, 1, :))-simout_L.x.Xr.Data(:, 5))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(5, 1, :))-simout_X.x.Xr.Data(:, 5))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Ry [rad]');
|
|
|
|
subplot(2, 3, 6);
|
|
hold on;
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(6, 1, :))-simout_L.x.Xr.Data(:, 6), 'DisplayName', '$K_\mathcal{L}$')
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(6, 1, :))-simout_X.x.Xr.Data(:, 6), 'DisplayName', '$K_\mathcal{X}$')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rz [rad]');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/centralized_control_comp_Ex.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:centralized_control_comp_Ex
|
|
#+caption: Comparison of the position error $\bm{\epsilon}_\mathcal{X}$ for both centralized controllers ([[./figs/centralized_control_comp_Ex.png][png]], [[./figs/centralized_control_comp_Ex.pdf][pdf]])
|
|
[[file:figs/centralized_control_comp_Ex.png]]
|
|
|
|
** Conclusion
|
|
Both control architecture gives similar results even tough the control in the Leg's frame gives slightly better results.
|
|
|
|
The main differences between the control architectures used in sections [[sec:diagonal_control_L]] and [[sec:diagonal_control_X]] are summarized in Table [[tab:centralized_control_comp]].
|
|
|
|
#+name: tab:centralized_control_comp
|
|
#+caption: Comparison of the two centralized control architectures
|
|
| | *Leg's Frame* | *Cartesian Frame* | *Static Decoupling* |
|
|
|-----------------------------+-----------------------------------+---------------------------------------+--------------------------------|
|
|
| *Plant Meaning* | $\delta\mathcal{L}_i/\tau_i$ | $\delta\mathcal{X}_i/\mathcal{F}_i$ | No physical meaning |
|
|
| *Obtained Decoupling* | Decoupled at DC | Dynamical decoupling except few terms | Decoupled at DC |
|
|
| *Diagonal Elements* | Identical with all the Resonances | Different, resonances are cancel out | No Alternating poles and zeros |
|
|
| *Mechanical Architecture* | Architecture Independent | Better with Cubic Architecture | |
|
|
| *Robustness to Uncertainty* | Good (only depends on $J$) | Good (only depends on $J$) | Bad (depends on the mass) |
|
|
|
|
These decoupling methods only uses the Jacobian matrix which only depends on the Stewart platform geometry.
|
|
Thus, this method should be quite robust against parameter variation (e.g. the payload mass).
|
|
|
|
* Hybrid Control Architecture - HAC-LAC with relative DVF
|
|
<<sec:hybrid>>
|
|
** Introduction :ignore:
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('stewart_platform_model.slx');
|
|
#+end_src
|
|
|
|
** Control Schematic
|
|
Let's consider the control schematic shown in Figure [[fig:hybrid_reference_tracking]].
|
|
|
|
The first loop containing $\bm{K}_\mathcal{L}$ is a Decentralized Direct (Relative) Velocity Feedback.
|
|
|
|
A reference $\bm{r}_\mathcal{L}$ is computed using the inverse kinematics and corresponds to the wanted motion of each leg.
|
|
The actual length of each leg $\bm{\mathcal{L}}$ is subtracted and then passed trough the controller $\bm{K}_\mathcal{L}$.
|
|
|
|
The controller is a diagonal controller with pure derivative action on the diagonal.
|
|
|
|
The effect of this loop is:
|
|
- it adds damping to the system (the force applied in each actuator is proportional to the relative velocity of the strut)
|
|
- it however does not go "against" the reference path $\bm{r}_\mathcal{X}$ thanks to the use of the inverse kinematics
|
|
|
|
Then, the second loop containing $\bm{K}_\mathcal{X}$ is designed based on the already damped plant (represented by the gray area).
|
|
This second loop is responsible for the reference tracking.
|
|
|
|
#+begin_src latex :file hybrid_reference_tracking.pdf
|
|
\begin{tikzpicture}
|
|
\node[block={3.0cm}{3.0cm}] (G) {$G$};
|
|
|
|
% Input and outputs coordinates
|
|
\coordinate[] (outputX) at ($(G.south east)!0.25!(G.north east)$);
|
|
\coordinate[] (outputL) at ($(G.south east)!0.75!(G.north east)$);
|
|
|
|
\draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$};
|
|
\draw[->] (outputL) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{L}}$};
|
|
|
|
% Blocs
|
|
\node[addb, left= of G] (addF) {};
|
|
\node[block, left=1.2 of addF] (Kx) {$\bm{K}_\mathcal{X}$};
|
|
\node[addb={+}{}{}{}{-}, left= of Kx] (subx) {};
|
|
|
|
\node[block, above= of addF] (Kl) {$\bm{K}_\mathcal{L}$};
|
|
\node[addb={+}{}{}{-}{}, above= of Kl] (subl) {};
|
|
|
|
\node[block, align=center, left= of subl] (invK) {Inverse\\Kinematics};
|
|
|
|
% Connections and labels
|
|
\draw[<-] (subx.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1.2, 0);
|
|
\draw[->] ($(subx.west) + (-0.8, 0)$)node[branch]{} |- (invK.west);
|
|
\draw[->] (invK.east) -- (subl.west) node[above left]{$\bm{r}_\mathcal{L}$};
|
|
\draw[->] (subl.south) -- (Kl.north) node[above right]{$\bm{\epsilon}_\mathcal{L}$};
|
|
\draw[->] (Kl.south) -- (addF.north);
|
|
|
|
\draw[->] (subx.east) -- (Kx.west) node[above left]{$\bm{\epsilon}_\mathcal{X}$};
|
|
\draw[->] (Kx.east) node[above right]{$\bm{\tau}_\mathcal{X}$} -- (addF.west);
|
|
\draw[->] (addF.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
|
|
|
\draw[->] ($(outputL.east) + (0.4, 0)$)node[branch](L){} |- (subl.east);
|
|
\draw[->] ($(outputX.east) + (1.2, 0)$)node[branch]{} -- ++(0, -1.6) -| (subx.south);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(G.south-|Kl.west) (L|-subl.north)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Ktot) {};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:hybrid_reference_tracking
|
|
#+caption: Hybrid Control Architecture
|
|
#+RESULTS:
|
|
[[file:figs/hybrid_reference_tracking.png]]
|
|
|
|
** Initialize the Stewart platform
|
|
#+begin_src matlab :noweb yes
|
|
<<init-sim>>
|
|
#+end_src
|
|
|
|
** First Control Loop - $\bm{K}_\mathcal{L}$
|
|
*** Identification
|
|
Let's identify the transfer function from $\bm{\tau}$ to $\bm{L}$.
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
|
|
|
%% Run the linearization
|
|
Gl = linearize(mdl, io);
|
|
Gl.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
Gl.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};
|
|
#+end_src
|
|
|
|
*** Obtained Plant
|
|
The obtained plant is shown in Figure [[fig:hybrid_control_Kl_plant]].
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$\\epsilon_{\\mathcal{L}_%i}/\\tau_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hybrid_control_Kl_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hybrid_control_Kl_plant
|
|
#+caption: Diagonal and off-diagonal elements of the plant for the design of $\bm{K}_\mathcal{L}$ ([[./figs/hybrid_control_Kl_plant.png][png]], [[./figs/hybrid_control_Kl_plant.pdf][pdf]])
|
|
[[file:figs/hybrid_control_Kl_plant.png]]
|
|
|
|
*** Controller Design
|
|
We apply a decentralized (diagonal) direct velocity feedback.
|
|
Thus, we apply a pure derivative action.
|
|
In order to make the controller realizable, we add a low pass filter at high frequency.
|
|
The gain of the controller is chosen such that the resonances are critically damped.
|
|
|
|
The obtain loop gain is shown in Figure [[fig:hybrid_control_Kl_loop_gain]].
|
|
|
|
#+begin_src matlab
|
|
Kl = 1e4 * s / (1 + s/2/pi/1e4) * eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(Gl(1, 1)*Kl(1,1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(1, 1)*Kl(1,1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hybrid_control_Kl_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hybrid_control_Kl_loop_gain
|
|
#+caption: Obtain Loop Gain for the DVF control loop ([[./figs/hybrid_control_Kl_loop_gain.png][png]], [[./figs/hybrid_control_Kl_loop_gain.pdf][pdf]])
|
|
[[file:figs/hybrid_control_Kl_loop_gain.png]]
|
|
|
|
** Second Control Loop - $\bm{K}_\mathcal{X}$
|
|
*** Identification
|
|
#+begin_src matlab
|
|
Kx = tf(zeros(6));
|
|
|
|
controller = initializeController('type', 'ref-track-hac-dvf');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'stewart_platform_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
|
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Relative Displacement Outputs [m]
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
|
#+end_src
|
|
|
|
*** Obtained Plant
|
|
We use the Jacobian matrix to apply forces in the cartesian frame.
|
|
#+begin_src matlab
|
|
Gx = G*inv(stewart.kinematics.J');
|
|
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
|
#+end_src
|
|
|
|
The obtained plant is shown in Figure [[fig:hybrid_control_Kx_plant]].
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
labels = {'$D_x/\mathcal{F}_x$', '$D_y/\mathcal{F}_y$', '$D_z/\mathcal{F}_z$', '$R_x/\mathcal{M}_x$', '$R_y/\mathcal{M}_y$', '$R_z/\mathcal{M}_z$'};
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i});
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend();
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hybrid_control_Kx_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hybrid_control_Kx_plant
|
|
#+caption: Diagonal and Off-diagonal elements of the plant for the design of $\bm{K}_\mathcal{L}$ ([[./figs/hybrid_control_Kx_plant.png][png]], [[./figs/hybrid_control_Kx_plant.pdf][pdf]])
|
|
[[file:figs/hybrid_control_Kx_plant.png]]
|
|
|
|
*** Controller Design
|
|
The controller consists of:
|
|
- A pure integrator
|
|
- A Second integrator up to half the wanted bandwidth
|
|
- A Lead around the cross-over frequency
|
|
- A low pass filter with a cut-off equal to three times the wanted bandwidth
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*200; % Bandwidth Bandwidth [rad/s]
|
|
|
|
h = 3; % Lead parameter
|
|
|
|
Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s * ((s/wc*2 + 1)/(s/wc*2)) * (1/(1 + s/wc/3));
|
|
|
|
% Normalization of the gain of have a loop gain of 1 at frequency wc
|
|
Kx = Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc))));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Kx(i,i)*Gx(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kx(i,i)*Gx(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hybrid_control_Kx_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hybrid_control_Kx_loop_gain
|
|
#+caption: Obtained Loop Gain for the controller $\bm{K}_\mathcal{X}$ ([[./figs/hybrid_control_Kx_loop_gain.png][png]], [[./figs/hybrid_control_Kx_loop_gain.pdf][pdf]])
|
|
[[file:figs/hybrid_control_Kx_loop_gain.png]]
|
|
|
|
Then we include the Jacobian in the controller matrix.
|
|
#+begin_src matlab
|
|
Kx = inv(stewart.kinematics.J')*Kx;
|
|
#+end_src
|
|
|
|
** Simulations
|
|
We specify the reference path to follow.
|
|
#+begin_src matlab :noweb yes
|
|
<<init-ref>>
|
|
#+end_src
|
|
|
|
We run the simulation and we save the results.
|
|
#+begin_src matlab
|
|
set_param('stewart_platform_model', 'StopTime', '10')
|
|
sim('stewart_platform_model')
|
|
simout_H = simout;
|
|
save('./mat/control_tracking.mat', 'simout_H', '-append');
|
|
#+end_src
|
|
|
|
The obtained position error is shown in Figure [[fig:hybrid_control_Ex]].
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
subplot(2, 3, 1);
|
|
hold on;
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(1, 1, :))-simout_H.x.Xr.Data(:, 1))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dx [m]');
|
|
|
|
subplot(2, 3, 2);
|
|
hold on;
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(2, 1, :))-simout_H.x.Xr.Data(:, 2))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dy [m]');
|
|
|
|
subplot(2, 3, 3);
|
|
hold on;
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(3, 1, :))-simout_H.x.Xr.Data(:, 3))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dz [m]');
|
|
|
|
subplot(2, 3, 4);
|
|
hold on;
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(4, 1, :))-simout_H.x.Xr.Data(:, 4))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rx [rad]');
|
|
|
|
subplot(2, 3, 5);
|
|
hold on;
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(5, 1, :))-simout_H.x.Xr.Data(:, 5))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Ry [rad]');
|
|
|
|
subplot(2, 3, 6);
|
|
hold on;
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(6, 1, :))-simout_H.x.Xr.Data(:, 6))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rz [rad]');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/hybrid_control_Ex.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:hybrid_control_Ex
|
|
#+caption: Obtained position error $\bm{\epsilon}_\mathcal{X}$ ([[./figs/hybrid_control_Ex.png][png]], [[./figs/hybrid_control_Ex.pdf][pdf]])
|
|
[[file:figs/hybrid_control_Ex.png]]
|
|
|
|
** Conclusion
|
|
|
|
* Comparison of all the methods
|
|
<<sec:comparison>>
|
|
|
|
Let's load the simulation results and compare them in Figure [[fig:reference_tracking_performance_comparison]].
|
|
#+begin_src matlab
|
|
load('./mat/control_tracking.mat', 'simout_D', 'simout_L', 'simout_X', 'simout_H');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
subplot(2, 3, 1);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(1, 1, :))-simout_D.x.Xr.Data(:, 1))
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(1, 1, :))-simout_L.x.Xr.Data(:, 1))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(1, 1, :))-simout_X.x.Xr.Data(:, 1))
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(1, 1, :))-simout_H.x.Xr.Data(:, 1))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dx [m]');
|
|
|
|
subplot(2, 3, 2);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(2, 1, :))-simout_D.x.Xr.Data(:, 2))
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(2, 1, :))-simout_L.x.Xr.Data(:, 2))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(2, 1, :))-simout_X.x.Xr.Data(:, 2))
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(2, 1, :))-simout_H.x.Xr.Data(:, 2))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dy [m]');
|
|
|
|
subplot(2, 3, 3);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(3, 1, :))-simout_D.x.Xr.Data(:, 3))
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(3, 1, :))-simout_L.x.Xr.Data(:, 3))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(3, 1, :))-simout_X.x.Xr.Data(:, 3))
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(3, 1, :))-simout_H.x.Xr.Data(:, 3))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dz [m]');
|
|
|
|
subplot(2, 3, 4);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(4, 1, :))-simout_D.x.Xr.Data(:, 4))
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(4, 1, :))-simout_L.x.Xr.Data(:, 4))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(4, 1, :))-simout_X.x.Xr.Data(:, 4))
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(4, 1, :))-simout_H.x.Xr.Data(:, 4))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rx [rad]');
|
|
|
|
subplot(2, 3, 5);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(5, 1, :))-simout_D.x.Xr.Data(:, 5))
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(5, 1, :))-simout_L.x.Xr.Data(:, 5))
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(5, 1, :))-simout_X.x.Xr.Data(:, 5))
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(5, 1, :))-simout_H.x.Xr.Data(:, 5))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Ry [rad]');
|
|
|
|
subplot(2, 3, 6);
|
|
hold on;
|
|
plot(simout_D.r.r.Time, squeeze(simout_D.r.r.Data(6, 1, :))-simout_D.x.Xr.Data(:, 6), 'DisplayName', 'Decentralized - L')
|
|
plot(simout_L.r.r.Time, squeeze(simout_L.r.r.Data(6, 1, :))-simout_L.x.Xr.Data(:, 6), 'DisplayName', 'Centralized - L')
|
|
plot(simout_X.r.r.Time, squeeze(simout_X.r.r.Data(6, 1, :))-simout_X.x.Xr.Data(:, 6), 'DisplayName', 'Centralized - X')
|
|
plot(simout_H.r.r.Time, squeeze(simout_H.r.r.Data(6, 1, :))-simout_H.x.Xr.Data(:, 6), 'DisplayName', 'Hybrid')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rz [rad]');
|
|
legend();
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/reference_tracking_performance_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:reference_tracking_performance_comparison
|
|
#+caption: Comparison of the position errors for all the Control architecture used ([[./figs/reference_tracking_performance_comparison.png][png]], [[./figs/reference_tracking_performance_comparison.pdf][pdf]])
|
|
[[file:figs/reference_tracking_performance_comparison.png]]
|
|
|
|
* Compute the pose error of the Stewart Platform
|
|
<<sec:compute_pose_error>>
|
|
|
|
Let's note:
|
|
- $\{W\}$ the fixed measurement frame (corresponding to the metrology frame / the frame where the wanted displacement are expressed).
|
|
The center of the frame if $O_W$
|
|
- $\{M\}$ is the frame fixed to the measured elements.
|
|
$O_M$ is the point where the pose of the element is measured
|
|
- $\{R\}$ is a virtual frame corresponding to the wanted pose of the element.
|
|
$O_R$ is the origin of this frame where the we want to position the point $O_M$ of the element.
|
|
- $\{V\}$ is a frame which its axes are aligned with $\{W\}$ and its origin $O_V$ is coincident with the $O_M$
|
|
|
|
Reference Position with respect to fixed frame {W}: ${}^WT_R$
|
|
#+begin_src matlab
|
|
Dxr = 0;
|
|
Dyr = 0;
|
|
Dzr = 0.1;
|
|
Rxr = pi;
|
|
Ryr = 0;
|
|
Rzr = 0;
|
|
#+end_src
|
|
|
|
Measured Position with respect to fixed frame {W}: ${}^WT_M$
|
|
#+begin_src matlab
|
|
Dxm = 0;
|
|
Dym = 0;
|
|
Dzm = 0;
|
|
Rxm = pi;
|
|
Rym = 0;
|
|
Rzm = 0;
|
|
#+end_src
|
|
|
|
We measure the position and orientation (pose) of the element represented by the frame $\{M\}$ with respect to frame $\{W\}$.
|
|
Thus we can compute the Homogeneous transformation matrix ${}^WT_M$.
|
|
#+begin_src matlab
|
|
%% Measured Pose
|
|
WTm = zeros(4,4);
|
|
|
|
WTm(1:3, 1:3) = [cos(Rzm) -sin(Rzm) 0;
|
|
sin(Rzm) cos(Rzm) 0;
|
|
0 0 1] * ...
|
|
[cos(Rym) 0 sin(Rym);
|
|
0 1 0;
|
|
-sin(Rym) 0 cos(Rym)] * ...
|
|
[1 0 0;
|
|
0 cos(Rxm) -sin(Rxm);
|
|
0 sin(Rxm) cos(Rxm)];
|
|
WTm(1:4, 4) = [Dxm ; Dym ; Dzm; 1];
|
|
#+end_src
|
|
|
|
We can also compute the Homogeneous transformation matrix ${}^WT_R$ corresponding to the transformation required to go from fixed frame $\{W\}$ to the wanted frame $\{R\}$.
|
|
#+begin_src matlab
|
|
%% Reference Pose
|
|
WTr = zeros(4,4);
|
|
|
|
WTr(1:3, 1:3) = [cos(Rzr) -sin(Rzr) 0;
|
|
sin(Rzr) cos(Rzr) 0;
|
|
0 0 1] * ...
|
|
[cos(Ryr) 0 sin(Ryr);
|
|
0 1 0;
|
|
-sin(Ryr) 0 cos(Ryr)] * ...
|
|
[1 0 0;
|
|
0 cos(Rxr) -sin(Rxr);
|
|
0 sin(Rxr) cos(Rxr)];
|
|
WTr(1:4, 4) = [Dxr ; Dyr ; Dzr; 1];
|
|
#+end_src
|
|
|
|
We can also compute ${}^WT_V$.
|
|
#+begin_src matlab
|
|
WTv = eye(4);
|
|
WTv(1:3, 4) = WTm(1:3, 4);
|
|
#+end_src
|
|
|
|
Now we want to express ${}^MT_R$ which corresponds to the transformation required to go to wanted position expressed in the frame of the measured element.
|
|
This homogeneous transformation can be computed from the previously computed matrices:
|
|
\[ {}^MT_R = ({{}^WT_M}^{-1}) {}^WT_R \]
|
|
|
|
#+begin_src matlab
|
|
%% Wanted pose expressed in a frame corresponding to the actual measured pose
|
|
MTr = [WTm(1:3,1:3)', -WTm(1:3,1:3)'*WTm(1:3,4) ; 0 0 0 1]*WTr;
|
|
#+end_src
|
|
|
|
Now we want to express ${}^VT_R$:
|
|
\[ {}^VT_R = ({{}^WT_V}^{-1}) {}^WT_R \]
|
|
#+begin_src matlab
|
|
%% Wanted pose expressed in a frame coincident with the actual position but with no rotation
|
|
VTr = [WTv(1:3,1:3)', -WTv(1:3,1:3)'*WTv(1:3,4) ; 0 0 0 1] * WTr;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
%% Extract Translations and Rotations from the Homogeneous Matrix
|
|
T = MTr;
|
|
Edx = T(1, 4);
|
|
Edy = T(2, 4);
|
|
Edz = T(3, 4);
|
|
|
|
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
|
|
Ery = atan2( T(1, 3), sqrt(T(1, 1)^2 + T(1, 2)^2));
|
|
Erx = atan2(-T(2, 3)/cos(Ery), T(3, 3)/cos(Ery));
|
|
Erz = atan2(-T(1, 2)/cos(Ery), T(1, 1)/cos(Ery));
|
|
#+end_src
|
|
|
|
* Useful Blocks :noexport:
|
|
** Initialize Simulation
|
|
#+name: init-sim
|
|
#+begin_src matlab
|
|
% Stewart Platform
|
|
stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);
|
|
|
|
% Ground and Payload
|
|
ground = initializeGround('type', 'rigid');
|
|
payload = initializePayload('type', 'none');
|
|
|
|
% Controller
|
|
controller = initializeController('type', 'open-loop');
|
|
|
|
% Disturbances and References
|
|
disturbances = initializeDisturbances();
|
|
references = initializeReferences(stewart);
|
|
#+end_src
|
|
|
|
** Initialize Reference Path
|
|
#+name: init-ref
|
|
#+begin_src matlab
|
|
t = [0:1e-4:10];
|
|
|
|
r = zeros(6, length(t));
|
|
|
|
r(1, :) = 1e-3.*t.*sin(2*pi*t);
|
|
r(2, :) = 1e-3.*t.*cos(2*pi*t);
|
|
r(3, :) = 1e-3.*t;
|
|
|
|
references = initializeReferences(stewart, 't', t, 'r', r);
|
|
#+end_src
|