Rename figures

This commit is contained in:
Thomas Dehaeze 2024-03-25 10:55:31 +01:00
parent d29bb71140
commit b93a482278
39 changed files with 327 additions and 707 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

View File

Before

Width:  |  Height:  |  Size: 731 KiB

After

Width:  |  Height:  |  Size: 731 KiB

View File

Before

Width:  |  Height:  |  Size: 333 KiB

After

Width:  |  Height:  |  Size: 333 KiB

View File

Before

Width:  |  Height:  |  Size: 383 KiB

After

Width:  |  Height:  |  Size: 383 KiB

View File

Before

Width:  |  Height:  |  Size: 484 KiB

After

Width:  |  Height:  |  Size: 484 KiB

View File

Before

Width:  |  Height:  |  Size: 326 KiB

After

Width:  |  Height:  |  Size: 326 KiB

View File

Before

Width:  |  Height:  |  Size: 443 KiB

After

Width:  |  Height:  |  Size: 443 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

View File

Before

Width:  |  Height:  |  Size: 333 KiB

After

Width:  |  Height:  |  Size: 333 KiB

View File

Before

Width:  |  Height:  |  Size: 5.3 MiB

After

Width:  |  Height:  |  Size: 5.3 MiB

View File

Before

Width:  |  Height:  |  Size: 120 KiB

After

Width:  |  Height:  |  Size: 120 KiB

View File

Before

Width:  |  Height:  |  Size: 132 KiB

After

Width:  |  Height:  |  Size: 132 KiB

View File

Before

Width:  |  Height:  |  Size: 4.1 MiB

After

Width:  |  Height:  |  Size: 4.1 MiB

View File

Before

Width:  |  Height:  |  Size: 101 KiB

After

Width:  |  Height:  |  Size: 101 KiB

View File

Before

Width:  |  Height:  |  Size: 5.1 MiB

After

Width:  |  Height:  |  Size: 5.1 MiB

View File

Before

Width:  |  Height:  |  Size: 231 KiB

After

Width:  |  Height:  |  Size: 231 KiB

View File

Before

Width:  |  Height:  |  Size: 4.5 MiB

After

Width:  |  Height:  |  Size: 4.5 MiB

View File

Before

Width:  |  Height:  |  Size: 307 KiB

After

Width:  |  Height:  |  Size: 307 KiB

View File

Before

Width:  |  Height:  |  Size: 4.2 MiB

After

Width:  |  Height:  |  Size: 4.2 MiB

View File

Before

Width:  |  Height:  |  Size: 265 KiB

After

Width:  |  Height:  |  Size: 265 KiB

View File

Before

Width:  |  Height:  |  Size: 5.1 MiB

After

Width:  |  Height:  |  Size: 5.1 MiB

View File

Before

Width:  |  Height:  |  Size: 244 KiB

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2024-03-19 Tue 17:29
% Created 2024-03-25 Mon 10:54
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
@ -24,7 +24,7 @@
\clearpage
In this document, a test-bench is used to characterize the struts of the nano-hexapod.
Each strut includes (Figure \ref{fig:picture_strut_top_view}):
Each strut includes (Figure \ref{fig:test_struts_picture_strut}):
\begin{itemize}
\item 2 flexible joints at each ends.
These flexible joints have been characterized in a separate test bench (see \ldots{}).
@ -35,67 +35,69 @@ Two stacks are used as an actuator and one stack as a (force) sensor.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.8\linewidth]{figs/picture_strut_top_view.jpg}
\caption{\label{fig:picture_strut_top_view}One strut including two flexible joints, an amplified piezoelectric actuator and an encoder}
\includegraphics[scale=1,width=0.8\linewidth]{figs/test_struts_picture_strut.jpg}
\caption{\label{fig:test_struts_picture_strut}One strut including two flexible joints, an amplified piezoelectric actuator and an encoder}
\end{figure}
Then the struts are mounted (procedure described in Section \ref{sec:test_bench_struts_mounting}), and are fixed to the same measurement bench.
Then the struts are mounted (procedure described in Section \ref{sec:test_struts_mounting}), and are fixed to the same measurement bench.
The goals are to:
\begin{itemize}
\item Section \ref{sec:test_bench_struts_dynamical_meas}: Identify the dynamics from the generated DAC voltage to:
\item Section \ref{sec:test_struts_dynamical_meas}: Identify the dynamics from the generated DAC voltage to:
\begin{itemize}
\item the sensors stack generated voltage
\item the measured displacement by the encoder
\item the measured displacement by the interferometer (representing encoders that would be fixed to the nano-hexapod's plates instead of the struts)
\end{itemize}
\item Section \ref{sec:test_bench_struts_simscape}: Compare the measurements with the Simscape model of the struts and tune the models
\item Section \ref{sec:test_struts_simscape}: Compare the measurements with the Simscape model of the struts and tune the models
\end{itemize}
The final goal of the work presented in this document is to have an accurate Simscape model of the struts that can then be included in the Simscape model of the nano-hexapod.
\begin{table}[htbp]
\caption{\label{tab:test_bench_struts_section_matlab_code}Report sections and corresponding Matlab files}
\caption{\label{tab:test_struts_section_matlab_code}Report sections and corresponding Matlab files}
\centering
\begin{tabularx}{0.6\linewidth}{lX}
\toprule
\textbf{Sections} & \textbf{Matlab File}\\
\midrule
Section \ref{sec:test_bench_struts}\_ & \texttt{test\_bench\_struts\_1\_.m}\\
Section \ref{sec:test_struts_flexible_modes} & \texttt{test\_struts\_1\_flexible\_modes.m}\\
Section \ref{sec:test_struts_dynamical_meas} & \texttt{test\_struts\_2\_dynamical\_meas.m}\\
Section \ref{sec:test_struts_mounting} & \texttt{test\_struts\_3\_simscape\_model.m}\\
\bottomrule
\end{tabularx}
\end{table}
\chapter{Mounting Procedure}
\label{sec:test_bench_struts_mounting}
\label{sec:test_struts_mounting}
\section{Mounting Bench}
A mounting bench is used to greatly simply the mounting of the struts as well as ensuring the correct strut length and coaxiality of the flexible joint's interfaces.
This is very important in order to not loose any stroke when the struts will be mounted on the nano-hexapod.
A CAD view of the mounting bench is shown in Figure \ref{fig:strut_mounting_bench_first_concept}.
A CAD view of the mounting bench is shown in Figure \ref{fig:test_struts_mounting_bench_first_concept}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/strut_mounting_bench_first_concept.png}
\caption{\label{fig:strut_mounting_bench_first_concept}CAD view of the mounting bench}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mounting_bench_first_concept.png}
\caption{\label{fig:test_struts_mounting_bench_first_concept}CAD view of the mounting bench}
\end{figure}
The main part of the bench is here to ensure both the correct strut length and strut coaxiality as shown in Figure \ref{fig:strut_mounting_step_0}.
The main part of the bench is here to ensure both the correct strut length and strut coaxiality as shown in Figure \ref{fig:test_struts_mounting_step_0}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/strut_mounting_step_0.jpg}
\caption{\label{fig:strut_mounting_step_0}Useful features of the main mounting element}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mounting_step_0.jpg}
\caption{\label{fig:test_struts_mounting_step_0}Useful features of the main mounting element}
\end{figure}
The tight tolerances of this element has been verified as shown in Figure \ref{fig:strut_mounting_bench_first_concept} and were found to comply with the requirements.
The tight tolerances of this element has been verified as shown in Figure \ref{fig:test_struts_mounting_bench_first_concept} and were found to comply with the requirements.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/check_dimensions_bench.jpg}
\caption{\label{fig:strut_mounting_bench_first_concept}Dimensional verifications of the mounting bench tolerances}
\caption{\label{fig:test_struts_mounting_bench_first_concept}Dimensional verifications of the mounting bench tolerances}
\end{figure}
The flexible joints are rigidly fixed to cylindrical tools shown in Figure \ref{fig:cylindrical_mounting_part} which are then mounted on the mounting tool shown in Figure \ref{fig:strut_mounting_step_0}.
The flexible joints are rigidly fixed to cylindrical tools shown in Figure \ref{fig:cylindrical_mounting_part} which are then mounted on the mounting tool shown in Figure \ref{fig:test_struts_mounting_step_0}.
This cylindrical tool is here to protect the flexible joints when tightening the screws and therefore applying large torque.
\begin{figure}[htbp]
@ -107,61 +109,72 @@ This cylindrical tool is here to protect the flexible joints when tightening the
The mounting procedure is as follows:
\begin{enumerate}
\item Screw flexible joints inside the cylindrical interface element shown in Figure \ref{fig:cylindrical_mounting_part} (Figure \ref{fig:strut_mounting_step_1})
\item Screw flexible joints inside the cylindrical interface element shown in Figure \ref{fig:cylindrical_mounting_part} (Figure \ref{fig:test_struts_mounting_step_1})
\item Fix the two interface elements. One of the two should be clamped, the other one should have its axial rotation free.
Visually align the clamped one horizontally. (Figure \ref{fig:strut_mounting_step_2})
\item Put cylindrical washers, APA and interface pieces on top of the flexible joints (Figure \ref{fig:strut_mounting_step_3})
Visually align the clamped one horizontally. (Figure \ref{fig:test_struts_mounting_step_2})
\item Put cylindrical washers, APA and interface pieces on top of the flexible joints (Figure \ref{fig:test_struts_mounting_step_3})
\item Put the 4 screws just in contact such that everything is correctly positioned and such that the ``free'' flexible joint is correctly oriented
\item Put the 8 lateral screws in contact
\item Tighten the 4 screws to fix the APA on the two flexible joints (using a torque screwdriver)
\item Remove the 4 laterals screws
\item (optional) Put the APA horizontally and fix the encoder and align it to maximize the contrast (Figure \ref{fig:strut_mounting_step_4})
\item (optional) Put the APA horizontally and fix the encoder and align it to maximize the contrast (Figure \ref{fig:test_struts_mounting_step_4})
\end{enumerate}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.5\linewidth]{figs/strut_mounting_step_1.jpg}
\caption{\label{fig:strut_mounting_step_1}Step 1 - Flexible joints fixed on the cylindrical interface elements}
\includegraphics[scale=1,width=0.5\linewidth]{figs/test_struts_mounting_step_1.jpg}
\caption{\label{fig:test_struts_mounting_step_1}Step 1 - Flexible joints fixed on the cylindrical interface elements}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/strut_mounting_step_2.jpg}
\caption{\label{fig:strut_mounting_step_2}Step 2 - Cylindrical elements fixed on the bench}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mounting_step_2.jpg}
\caption{\label{fig:test_struts_mounting_step_2}Step 2 - Cylindrical elements fixed on the bench}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/strut_mounting_step_3.jpg}
\caption{\label{fig:strut_mounting_step_3}Step 3 - Mount the nuts, washers and APA}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mounting_step_3.jpg}
\caption{\label{fig:test_struts_mounting_step_3}Step 3 - Mount the nuts, washers and APA}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/strut_mounting_step_4.jpg}
\caption{\label{fig:strut_mounting_step_4}Last step - Align the encoder on the strut}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mounting_step_4.jpg}
\caption{\label{fig:test_struts_mounting_step_4}Last step - Align the encoder on the strut}
\end{figure}
\section{Mounted Struts}
After removing the strut from the mounting bench, we obtain a strut with ensured coaxiality between the two flexible joint's interfaces (Figure \ref{fig:mounted_strut}).
After removing the strut from the mounting bench, we obtain a strut with ensured coaxiality between the two flexible joint's interfaces (Figure \ref{fig:test_struts_mounted_strut}).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/mounted_strut.jpg}
\caption{\label{fig:mounted_strut}Mounted Strut with ensured coaxiality}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mounted_strut.jpg}
\caption{\label{fig:test_struts_mounted_strut}Mounted Strut with ensured coaxiality}
\end{figure}
\chapter{Spurious resonances}
\label{sec:spurious_resonances_struts}
\label{sec:test_struts_flexible_modes}
\section{Introduction}
Similarly as in Section \ref{sec:spurious_resonances}, the spurious modes of the struts (Figure \ref{fig:apa_mode_shapes_ter}) are measured.
These modes are present when flexible joints are fixed to the ends of the APA300ML.
To experimentally measure the frequency of these modes, the struts are mounted (both with and without the encoder).
Then, each end of the strut is fixed to a vertically guided stage as shown in Figure \ref{fig:meas_spur_res_struts_1_enc}.
Then, each end of the strut is fixed to a vertically guided stage as shown in Figure \ref{fig:test_struts_meas_spur_res_struts_1_enc}.
From a Finite Element Model of the struts, it have been found that three main resonances are foreseen to be problematic for the control of the APA300ML (Figure \ref{fig:test_struts_mode_shapes}):
\begin{itemize}
\item Mode in X-bending at 189Hz
\item Mode in Y-bending at 285Hz
\item Mode in Z-torsion at 400Hz
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_mode_shapes.png}
\caption{\label{fig:test_struts_mode_shapes}Spurious resonances of the struts estimated from a Finite Element Model. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c) Z-torsion mode at 400Hz}
\end{figure}
\section{Measurement Setup}
A Laser vibrometer is measuring the difference of motion between two points (Figure \ref{fig:meas_spur_res_struts_1_enc}).
A Laser vibrometer is measuring the difference of motion between two points (Figure \ref{fig:test_struts_meas_spur_res_struts_1_enc}).
The APA is excited with an instrumented hammer and the transfer function from the hammer to the measured rotation is computed.
\begin{note}
@ -172,54 +185,54 @@ The instrumentation used are:
\end{itemize}
\end{note}
The ``X-bending'' mode is measured as shown in Figure \ref{fig:meas_spur_res_struts_1_enc}.
The ``Y-bending'' mode is measured as shown in Figure \ref{fig:meas_spur_res_struts_2} with the encoder and in Figure \ref{fig:meas_spur_res_struts_2_encoder} with the encoder.
Finally, the ``Z-torsion'' is measured as shown in Figure \ref{fig:meas_spur_res_struts_3}.
The ``X-bending'' mode is measured as shown in Figure \ref{fig:test_struts_meas_spur_res_struts_1_enc}.
The ``Y-bending'' mode is measured as shown in Figure \ref{fig:test_struts_meas_spur_res_struts_2} with the encoder and in Figure \ref{fig:test_struts_meas_spur_res_struts_2_encoder} with the encoder.
Finally, the ``Z-torsion'' is measured as shown in Figure \ref{fig:test_struts_meas_spur_res_struts_3}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/meas_spur_res_struts_1_enc.jpg}
\caption{\label{fig:meas_spur_res_struts_1_enc}Measurement setup for the X-Bending measurement (with the encoder)}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_meas_spur_res_struts_1_enc.jpg}
\caption{\label{fig:test_struts_meas_spur_res_struts_1_enc}Measurement setup for the X-Bending measurement (with the encoder)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/meas_spur_res_struts_2.jpg}
\caption{\label{fig:meas_spur_res_struts_2}Measurement setup for the Y-Bending measurement}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_meas_spur_res_struts_2.jpg}
\caption{\label{fig:test_struts_meas_spur_res_struts_2}Measurement setup for the Y-Bending measurement}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/meas_spur_res_struts_2_encoder.jpg}
\caption{\label{fig:meas_spur_res_struts_2_encoder}Measurement setup for the Y-Bending measurement (with the encoder)}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_meas_spur_res_struts_2_encoder.jpg}
\caption{\label{fig:test_struts_meas_spur_res_struts_2_encoder}Measurement setup for the Y-Bending measurement (with the encoder)}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.8\linewidth]{figs/meas_spur_res_struts_3.jpg}
\caption{\label{fig:meas_spur_res_struts_3}Measurement setup for the Z-Torsion measurement}
\includegraphics[scale=1,width=0.8\linewidth]{figs/test_struts_meas_spur_res_struts_3.jpg}
\caption{\label{fig:test_struts_meas_spur_res_struts_3}Measurement setup for the Z-Torsion measurement}
\end{figure}
\section{Without Encoder}
When the encoder is not fixed to the strut, the obtained FRF are shown in Figure \ref{fig:struts_spur_res_without_enc}.
When the encoder is not fixed to the strut, the obtained FRF are shown in Figure \ref{fig:test_struts_spur_res_frf}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/struts_spur_res_without_enc.png}
\caption{\label{fig:struts_spur_res_without_enc}Obtained FRF for the struts without the encoder}
\includegraphics[scale=1]{figs/test_struts_spur_res_frf.png}
\caption{\label{fig:test_struts_spur_res_frf}Obtained FRF for the struts without the encoder}
\end{figure}
\section{With Encoder}
Then, one encoder is fixed to the strut and the FRF are measured again and shown in Figure \ref{fig:struts_spur_res_with_enc}.
Then, one encoder is fixed to the strut and the FRF are measured again and shown in Figure \ref{fig:test_struts_spur_res_frf_enc}.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/struts_spur_res_with_enc.png}
\caption{\label{fig:struts_spur_res_with_enc}Obtained FRF for the struts with encoder}
\includegraphics[scale=1]{figs/test_struts_spur_res_frf_enc.png}
\caption{\label{fig:test_struts_spur_res_frf_enc}Obtained FRF for the struts with encoder}
\end{figure}
\section{Conclusion}
Table \ref{tab:strut_measured_modes_freq} summarizes the measured resonance frequencies as well as the computed ones using the Finite Element Model.
Table \ref{tab:test_struts_spur_mode_freqs} summarizes the measured resonance frequencies as well as the computed ones using the Finite Element Model.
\begin{important}
From the values in Table \ref{tab:strut_measured_modes_freq}, it is shown that:
From the values in Table \ref{tab:test_struts_spur_mode_freqs}, it is shown that:
\begin{itemize}
\item the resonance frequencies of the 3 modes are only slightly increasing when the encoder is removed
\item the computed resonance frequencies from the FEM are very close to the measured one when the encoder is fixed to the strut
@ -227,7 +240,7 @@ From the values in Table \ref{tab:strut_measured_modes_freq}, it is shown that:
\end{important}
\begin{table}[htbp]
\caption{\label{tab:strut_measured_modes_freq}Measured frequency of the strut spurious modes}
\caption{\label{tab:test_struts_spur_mode_freqs}Measured frequency of the strut spurious modes}
\centering
\begin{tabularx}{0.45\linewidth}{cccc}
\toprule
@ -240,35 +253,35 @@ Z-Torsion & 400Hz & 381Hz & 398Hz\\
\end{tabularx}
\end{table}
\chapter{Dynamical measurements}
\label{sec:test_bench_struts_dynamical_meas}
The same bench used in Section \ref{sec:dynamical_meas_apa} is here used with the strut instead of only the APA.
\label{sec:test_struts_dynamical_meas}
The bench is shown in Figure \ref{fig:test_struts_bench_leg_overview}.
Measurements are performed either when no encoder is fixed to the strut (Figure \ref{fig:test_struts_bench_leg_front}) or when one encoder is fixed to the strut (Figure \ref{fig:test_struts_bench_leg_coder}).
The bench is shown in Figure \ref{fig:test_bench_leg_overview}.
Measurements are performed either when no encoder is fixed to the strut (Figure \ref{fig:test_bench_leg_front}) or when one encoder is fixed to the strut (Figure \ref{fig:test_bench_leg_coder}).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.5\linewidth]{figs/test_bench_leg_overview.jpg}
\caption{\label{fig:test_bench_leg_overview}Test Bench with Strut - Overview}
\begin{figure}
\begin{subfigure}{0.35\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.99\linewidth]{figs/test_struts_bench_leg_overview.jpg}
\end{center}
\subcaption{\label{fig:test_struts_bench_leg_overview}Overview}
\end{subfigure}
\begin{subfigure}{0.31\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.99\linewidth]{figs/test_struts_bench_leg_front.jpg}
\end{center}
\subcaption{\label{fig:test_struts_bench_leg_front}Strut without encoder}
\end{subfigure}
\begin{subfigure}{0.31\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.99\linewidth]{figs/test_struts_bench_leg_coder.jpg}
\end{center}
\subcaption{\label{fig:test_struts_bench_leg_coder}Strut with encoder}
\end{subfigure}
\caption{\label{fig:test_struts_bench_leg}Experimental setup to measured the dynamics of the struts.}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.5\linewidth]{figs/test_bench_leg_front.jpg}
\caption{\label{fig:test_bench_leg_front}Test Bench with Strut - Zoom on the strut}
\end{figure}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.5\linewidth]{figs/test_bench_leg_coder.jpg}
\caption{\label{fig:test_bench_leg_coder}Test Bench with Strut - Zoom on the strut with the encoder}
\end{figure}
Variables are named the same as in Section \ref{sec:dynamical_meas_apa}.
First, only one strut is measured in details (Section \ref{sec:meas_strut_1}), and then all the struts are measured and compared (Section \ref{sec:meas_all_struts}).
First, only one strut is measured in details (Section \ref{ssec:test_struts_meas_strut_1}), and then all the struts are measured and compared (Section \ref{ssec:test_struts_meas_all_struts}).
\section{Measurement on Strut 1}
\label{sec:meas_strut_1}
\label{ssec:test_struts_meas_strut_1}
Measurements are first performed on one of the strut that contains:
\begin{itemize}
\item the Amplified Piezoelectric Actuator (APA) number 1
@ -293,7 +306,6 @@ The noise is band-passed between 300Hz and 2kHz.
Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third identification if used between 350Hz and 2kHz.
The time is the same for all measurements.
Then we defined a ``Hanning'' windows that will be used for the spectral analysis:
We get the frequency vector that will be the same for all the frequency domain analysis.
\paragraph{FRF Identification - Interferometer}
In this section, the dynamics from the excitation voltage \(V_a\) to the interferometer \(d_a\) is identified.
@ -402,21 +414,15 @@ As shown in Figure \ref{fig:strut_1_spurious_resonances}, we can clearly see thr
These resonances correspond to parasitic resonances of the strut itself.
They are very close to what was estimated using a finite element model of the strut (Figure \ref{fig:apa_mode_shapes_bis}):
They are very close to what was estimated using a finite element model of the strut (Figure \ref{fig:test_struts_mode_shapes}):
\begin{itemize}
\item Mode in X-bending at 189Hz
\item Mode in Y-bending at 285Hz
\item Mode in Z-torsion at 400Hz
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/apa_mode_shapes.gif}
\caption{\label{fig:apa_mode_shapes_bis}Spurious resonances. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c) Z-torsion mode at 400Hz}
\end{figure}
\begin{important}
The resonances seen by the encoder in Figure \ref{fig:strut_1_spurious_resonances} are indeed corresponding to the modes of the strut as shown in Figure \ref{fig:apa_mode_shapes_bis}.
The resonances seen by the encoder in Figure \ref{fig:strut_1_spurious_resonances} are indeed corresponding to the modes of the strut as shown in Figure \ref{fig:test_struts_mode_shapes}.
\end{important}
\paragraph{FRF Identification - Force Sensor}
In this section, the dynamics from \(V_a\) to \(V_s\) is identified.
@ -455,7 +461,7 @@ In order to determine if the complex conjugate zero of Figure \ref{fig:strut_1_e
Remove time delay
\section{Comparison of all the Struts}
\label{sec:meas_all_struts}
\label{ssec:test_struts_meas_all_struts}
Now all struts are measured using the same procedure and test bench as in Section \ref{sec:meas_strut_1}.
\subsection{FRF Identification - Setup}
The identification of the struts dynamics is performed in two steps:
@ -610,7 +616,7 @@ However, the dynamics from \(V_a\) to the encoder measurement \(d_e\) is much mo
The measured FRF are now saved for further use.
\section{Comparison of all the (re-aligned) Struts}
\label{sec:meas_all_aligned_struts}
\label{sec:test_struts_meas_all_aligned_struts}
The struts are re-aligned and measured using the same test bench.
\subsection{Measured misalignment of the APA and flexible joints}
The misalignment between the APA and the flexible joints are measured.
@ -731,14 +737,13 @@ Having the struts well aligned does not change significantly the obtained dynami
The measured FRF are now saved for further use.
\chapter{Simscape Model}
\label{sec:test_bench_struts_simscape}
The same simscape model that was presented in Section \ref{sec:simscape_bench_apa} is here used.
However, now the full strut is put instead of only the APA (see Figure \ref{fig:simscape_model_bench_struts}).
\label{sec:test_struts_simscape}
However, now the full strut is put instead of only the APA (see Figure \ref{fig:test_struts_simscape_model}).
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/simscape_model_bench_struts.png}
\caption{\label{fig:simscape_model_bench_struts}Screenshot of the Simscape model of the strut fixed to the bench}
\includegraphics[scale=1,width=\linewidth]{figs/test_struts_simscape_model.png}
\caption{\label{fig:test_struts_simscape_model}Screenshot of the Simscape model of the strut fixed to the bench}
\end{figure}
This Simscape model is used to:
@ -813,13 +818,7 @@ As shown in Figure \ref{fig:struts_frf_dvf_plant_tf}, the dynamics from actuator
This could be explained by a large variability in the alignment of the flexible joints and the APA (at the time, the alignment pins were not used).
Depending on the alignment, the spurious resonances of the struts (Figure \ref{fig:apa_mode_shapes}) can be excited differently.
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/apa_mode_shapes.gif}
\caption{\label{fig:apa_mode_shapes}Spurious resonances. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c) Z-torsion mode at 400Hz}
\end{figure}
Depending on the alignment, the spurious resonances of the struts (Figure \ref{fig:test_struts_mode_shapes}) can be excited differently.
For instance, consider Figure \ref{fig:strut_misalign_schematic} where there is a misalignment in the \(y\) direction.
In such case, the mode at 200Hz is foreseen to be more excited as the misalignment \(d_y\) increases and therefore the dynamics from the actuator to the encoder should also change around 200Hz.
@ -991,6 +990,6 @@ Not sure is would be effect though.
\end{question}
\section{Comparison with identified misalignment}
\chapter{Conclusion}
\label{sec:test_bench_struts_conclusion}
\label{sec:test_struts_conclusion}
\printbibliography[heading=bibintoc,title={Bibliography}]
\end{document}