3289 lines
116 KiB
Org Mode
3289 lines
116 KiB
Org Mode
#+TITLE: Simscape Model - Nano Active Stabilization System
|
|
:DRAWER:
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+BIND: org-latex-image-default-option "scale=1"
|
|
#+BIND: org-latex-image-default-width ""
|
|
|
|
#+LaTeX_CLASS: scrreprt
|
|
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
|
|
#+LATEX_HEADER: \input{preamble.tex}
|
|
#+LATEX_HEADER_EXTRA: \input{preamble_extra.tex}
|
|
#+LATEX_HEADER_EXTRA: \bibliography{simscape-nass.bib}
|
|
|
|
#+BIND: org-latex-bib-compiler "biber"
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports none
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
#+PROPERTY: header-args:matlab+ :tangle no
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :tangle no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
#+latex: \clearpage
|
|
|
|
* Build :noexport:
|
|
#+NAME: startblock
|
|
#+BEGIN_SRC emacs-lisp :results none :tangle no
|
|
(add-to-list 'org-latex-classes
|
|
'("scrreprt"
|
|
"\\documentclass{scrreprt}"
|
|
("\\chapter{%s}" . "\\chapter*{%s}")
|
|
("\\section{%s}" . "\\section*{%s}")
|
|
("\\subsection{%s}" . "\\subsection*{%s}")
|
|
("\\paragraph{%s}" . "\\paragraph*{%s}")
|
|
))
|
|
|
|
|
|
;; Remove automatic org heading labels
|
|
(defun my-latex-filter-removeOrgAutoLabels (text backend info)
|
|
"Org-mode automatically generates labels for headings despite explicit use of `#+LABEL`. This filter forcibly removes all automatically generated org-labels in headings."
|
|
(when (org-export-derived-backend-p backend 'latex)
|
|
(replace-regexp-in-string "\\\\label{sec:org[a-f0-9]+}\n" "" text)))
|
|
(add-to-list 'org-export-filter-headline-functions
|
|
'my-latex-filter-removeOrgAutoLabels)
|
|
|
|
;; Remove all org comments in the output LaTeX file
|
|
(defun delete-org-comments (backend)
|
|
(loop for comment in (reverse (org-element-map (org-element-parse-buffer)
|
|
'comment 'identity))
|
|
do
|
|
(setf (buffer-substring (org-element-property :begin comment)
|
|
(org-element-property :end comment))
|
|
"")))
|
|
(add-hook 'org-export-before-processing-hook 'delete-org-comments)
|
|
|
|
;; Use no package by default
|
|
(setq org-latex-packages-alist nil)
|
|
(setq org-latex-default-packages-alist nil)
|
|
|
|
;; Do not include the subtitle inside the title
|
|
(setq org-latex-subtitle-separate t)
|
|
(setq org-latex-subtitle-format "\\subtitle{%s}")
|
|
|
|
(setq org-export-before-parsing-hook '(org-ref-glossary-before-parsing
|
|
org-ref-acronyms-before-parsing))
|
|
#+END_SRC
|
|
|
|
* Notes :noexport:
|
|
** Notes
|
|
Prefix is =nass=
|
|
|
|
The goals of this report are:
|
|
- [X] ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/positioning_error.org][positioning_error]]): Explain how the NASS control is made (computation of the wanted position, measurement of the sample position, computation of the errors)
|
|
- [X] ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_experiment.org][uncertainty_experiment]]): Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc...)
|
|
- [ ] Determination of the *optimal stiffness* for the hexapod actuators:
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_optimal_stiffness.org][uncertainty_optimal_stiffness]]
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/optimal_stiffness_disturbances.org][optimal_stiffness_disturbances]]
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org][state-of-thesis-2020]]
|
|
- [ ] [[file:/home/thomas/Cloud/meetings/group-meetings-me/2020-04-06-NASS-Design/2020-04-06-NASS-Design.org][group-meeting-optimal-stiffness]]
|
|
Should this be in this report? *This should be in chapter 2*
|
|
- [X] Explain why HAC-LAC strategy is nice (*It was already explained in uniaxial model*)
|
|
- [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control.org][different control architectures]]
|
|
- [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-vibration-isolation.org][hexapod - vibration isolation]]
|
|
- [X] How to apply/optimize IFF on an hexapod? ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control_active_damping.org][control_active_damping]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-active-damping.org][active damping for stewart platforms]])
|
|
- [X] ([[file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org][decoupling-strategies]]): Decoupling strategies for HAC? (maybe also in previous report)
|
|
*Will be in chapter 2*
|
|
- [X] Validation of the concept using simulations:
|
|
- [X] Find where this simulation in OL/CL is made (maybe for the conference?)
|
|
It was re-made for micro-station validation. Will just have to do the same simulation but with nano-hexapod in closed-loop
|
|
- Tomography experiment (maybe also Ty scans)
|
|
- Open VS Closed loop results
|
|
- *Conclusion*: concept validation
|
|
nano hexapod architecture with APA
|
|
decentralized IFF + centralized HAC
|
|
|
|
- In this section simple control (in the frame of the struts)
|
|
- Justify future used control architecture (control in the frame of the struts? Need to check what was done in ID31 tests)
|
|
- Table that compares different approaches (specify performances in different DoF, same plans on the diagonal, etc...)
|
|
- Literature review about Stewart platform control?
|
|
*In chapter 2: Special section about MIMO control, complementary filters, etc...*
|
|
|
|
** Outline
|
|
*** Control Kinematics
|
|
|
|
- Explain how the position error can be expressed in the frame of the nano-hexapod
|
|
- ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/positioning_error.org][positioning_error]]): Explain how the NASS control is made (computation of the wanted position, measurement of the sample position, computation of the errors)
|
|
- Control architecture, block diagram
|
|
|
|
*** LAC
|
|
|
|
- How to apply/optimize IFF on an hexapod? ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control_active_damping.org][control_active_damping]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-active-damping.org][active damping for stewart platforms]])
|
|
- Robustness to payload mass
|
|
- Root Locus
|
|
- Damping optimization
|
|
|
|
*** HAC
|
|
|
|
- ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_experiment.org][uncertainty_experiment]]): Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc...)
|
|
- Determination of the *optimal stiffness* for the hexapod actuators:
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_optimal_stiffness.org][uncertainty_optimal_stiffness]]
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/optimal_stiffness_disturbances.org][optimal_stiffness_disturbances]]
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org][state-of-thesis-2020]]
|
|
- [ ] [[file:/home/thomas/Cloud/meetings/group-meetings-me/2020-04-06-NASS-Design/2020-04-06-NASS-Design.org][group-meeting-optimal-stiffness]]
|
|
- Effect of micro-station compliance
|
|
- Effect of IFF
|
|
- Effect of payload mass
|
|
- Decoupled plant
|
|
- Controller design
|
|
|
|
*** Simulations
|
|
|
|
- Take into account disturbances, metrology sensor noise. Maybe say here that we don't take in account other noise sources as they will be optimized latter (detail design phase)
|
|
- Tomography + lateral scans (same as what was done in open loop [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org::*Simulation of Scientific Experiments][here]])
|
|
- Validation of concept
|
|
|
|
** DONE Old Outline
|
|
CLOSED: [2024-11-07 Thu 16:19]
|
|
*** Introduction :ignore:
|
|
|
|
Discussion of:
|
|
- Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
|
|
- Control of parallel architectures
|
|
- Control in the frame of struts or cartesian?
|
|
- Effect of rotation on IFF? => APA
|
|
- HAC-LAC
|
|
- New noise budgeting?
|
|
|
|
*** Control Kinematics
|
|
|
|
- Explain how the position error can be expressed in the frame of the nano-hexapod
|
|
- block diagram
|
|
- Explain how to go from external metrology to the frame of the nano-hexapod
|
|
|
|
*** High Authority Control - Low Authority Control (HAC-LAC)
|
|
|
|
- general idea
|
|
- case for parallel manipulator: decentralized LAC + centralized HAC
|
|
|
|
*** Decoupling Strategies for parallel manipulators
|
|
[[file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org::+TITLE: Diagonal control using the SVD and the Jacobian Matrix][study]]
|
|
|
|
- Jacobian matrices, CoK, CoM, ...
|
|
- Discussion of cubic architecture
|
|
- SVD, Modal, ...
|
|
|
|
*** Decentralized Integral Force Feedback (LAC)
|
|
|
|
- Root Locus
|
|
- Damping optimization
|
|
|
|
*** Decoupled Dynamics
|
|
|
|
- Centralized HAC
|
|
- Control in the frame of the struts
|
|
- Effect of IFF
|
|
|
|
*** Centralized Position Controller (HAC)
|
|
|
|
- Decoupled plant
|
|
- Controller design
|
|
|
|
*** Time domain simulations
|
|
|
|
Goal: validation of the concept
|
|
- Take into account disturbances, sensor noise, etc...
|
|
- Tomography + lateral scans (same as what was done in open loop [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org::*Simulation of Scientific Experiments][here]])
|
|
|
|
** DONE [#A] Merge the micro-station model with the nano-hexapod model
|
|
CLOSED: [2025-02-12 Wed 12:10] SCHEDULED: <2025-02-12 Wed>
|
|
|
|
- [X] *Start from the Simscape model of the ID31 tests*
|
|
=/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C5-test-bench-id31/matlab/nass_model_id31.slx=
|
|
- [X] Remove LION metrology to have perfect measurement
|
|
- [X] Remove nano-hexapod model and add simplified model
|
|
- [ ] Add "cylindrical" payloads (configurable in mass)
|
|
|
|
** DONE [#B] Add payload configurable subsystem
|
|
CLOSED: [2025-02-12 Wed 14:17] SCHEDULED: <2025-02-12 Wed>
|
|
|
|
** TODO [#B] Discuss the necessity of estimated Rz?
|
|
|
|
One big advantage of doing the control in the cartesian plane, is that we don't need the estimation of nano-hexapod Rz, therefore we don't need the encoders anymore!
|
|
|
|
Maybe this should be done *here*.
|
|
Here it can be reminded when doing the control in the cartesian frame.
|
|
|
|
** TODO [#B] Check if things are compatible to results of uniaxial model
|
|
|
|
** TODO [#C] Check if it would be interesting to show soft/stiff nano-hexapod plants
|
|
|
|
- [ ] Would we see u-station dynamics with very stiff nano-hexapod?
|
|
- [ ] Would rotation be difficult to handle with soft nano-hexapod?
|
|
|
|
** DONE [#A] Add possibility to configure the nano-hexapod to be fully rigid
|
|
CLOSED: [2025-02-12 Wed 14:46]
|
|
|
|
- Use to compare TF without the NASS
|
|
|
|
** CANC [#C] What performance metric can we use? :@christophe:
|
|
CLOSED: [2024-11-12 Tue 09:22]
|
|
- State "CANC" from "QUES" [2024-11-12 Tue 09:22]
|
|
This can be nice to have a (scalar) performance metric that can be used for optimization.
|
|
|
|
In cite:hauge04_sensor_contr_space_based_six, a (scalar) performance metric representing the 6dof transmissibility is used.
|
|
|
|
** DONE [#C] Identify the sensibility to disturbances without the nano-hexapod and save the results
|
|
CLOSED: [2024-11-07 Thu 09:20]
|
|
This can then be used to compare with obtained performance with the nano-hexapod.
|
|
|
|
This should be done in the ustation report (A4).
|
|
|
|
* Introduction :ignore:
|
|
|
|
From last sections:
|
|
- Uniaxial: No stiff nano-hexapod (should also demonstrate that here)
|
|
- Rotating: No soft nano-hexapod, Decentralized IFF can be used robustly by adding parallel stiffness
|
|
|
|
In this section:
|
|
- Take the model of the nano-hexapod with stiffness 1um/N
|
|
- Apply decentralized IFF
|
|
- Apply HAC-LAC
|
|
- Check robustness to payload change
|
|
- Simulation of experiments
|
|
|
|
* Control Kinematics
|
|
:PROPERTIES:
|
|
:HEADER-ARGS:matlab+: :tangle matlab/nass_1_kinematics.m
|
|
:END:
|
|
<<sec:nass_kinematics>>
|
|
** Introduction :ignore:
|
|
|
|
- Explained during the last section: HAC-IFF
|
|
Decentralized IFF
|
|
Centralized HAC, control in the frame of the struts
|
|
- To compute the positioning errors in the frame of the struts
|
|
- Compute the wanted pose of the sample with respect to the granite using the micro-station kinematics (Section ref:ssec:nass_ustation_kinematics)
|
|
- Measure the sample pose with respect to the granite using the external metrology and internal metrology for Rz (Section ref:ssec:nass_sample_pose_error)
|
|
- Compute the sample pose error and map these errors in the frame of the struts (Section ref:ssec:nass_error_struts)
|
|
- The complete control architecture is shown in Section ref:ssec:nass_control_architecture
|
|
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/positioning_error.org][positioning_error]]: Explain how the NASS control is made (computation of the wanted position, measurement of the sample position, computation of the errors)
|
|
|
|
- [ ] Schematic with micro-station + nass + metrology + control system => explain what is inside the control system
|
|
#+name: fig:nass_concept_schematic
|
|
#+caption: Figure caption
|
|
[[file:figs/nass_concept_schematic.png]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :noweb yes
|
|
<<m-init-path>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no :noweb yes
|
|
<<m-init-path-tangle>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :noweb yes
|
|
<<m-init-simscape>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :noweb yes
|
|
<<m-init-other>>
|
|
#+end_src
|
|
|
|
** Micro Station Kinematics
|
|
<<ssec:nass_ustation_kinematics>>
|
|
|
|
- from ref:ssec:ustation_kinematics, computation of the wanted sample pose from the setpoint of each stage.
|
|
|
|
wanted pose = Tdy * Try * Trz * Tu
|
|
|
|
|
|
** Computation of the sample's pose error
|
|
<<ssec:nass_sample_pose_error>>
|
|
|
|
From metrology (here supposed to be perfect 6-DoF), compute the sample's pose error.
|
|
Has to invert the homogeneous transformation.
|
|
|
|
In reality, 5DoF metrology => have to estimate the Rz using spindle encoder + nano-hexapod internal metrology (micro-hexapod does not perform Rz rotation).
|
|
|
|
** Position error in the frame of the struts
|
|
<<ssec:nass_error_struts>>
|
|
|
|
Explain how to compute the errors in the frame of the struts (rotating):
|
|
- Errors in the granite frame
|
|
- Errors in the frame of the nano-hexapod
|
|
- Errors in the frame of the struts => used for control
|
|
|
|
** Control Architecture
|
|
<<ssec:nass_control_architecture>>
|
|
|
|
- Say that there are many control strategies.
|
|
It will be the topic of chapter 2.3.
|
|
Here, we start with something simple: control in the frame of the struts
|
|
|
|
#+begin_src latex :file nass_control_architecture.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={2.0cm}{1.0cm}, fill=colorblue!20!white] (metrology) {Metrology};
|
|
\node[block={2.0cm}{2.0cm}, below=0.1 of metrology, align=center, fill=colorblue!20!white] (nhexa) {Nano\\Hexapod};
|
|
\node[block={3.0cm}{1.5cm}, below=0.1 of nhexa, align=center, fill=colorblue!20!white] (ustation) {Micro\\Station};
|
|
|
|
\coordinate[] (inputf) at ($(nhexa.south west)!0.5!(nhexa.north west)$);
|
|
\coordinate[] (outputfn) at ($(nhexa.south east)!0.3!(nhexa.north east)$);
|
|
\coordinate[] (outputde) at ($(nhexa.south east)!0.7!(nhexa.north east)$);
|
|
|
|
\coordinate[] (outputDy) at ($(ustation.south east)!0.1!(ustation.north east)$);
|
|
\coordinate[] (outputRy) at ($(ustation.south east)!0.5!(ustation.north east)$);
|
|
\coordinate[] (outputRz) at ($(ustation.south east)!0.9!(ustation.north east)$);
|
|
|
|
\node[block={1.0cm}{1.0cm}, right=0.5 of outputde, fill=colorred!20!white] (Rz_kinematics) {$\bm{J}_{R_z}^{-1}$};
|
|
\node[block={2.0cm}{2.0cm}, right=2.2 of ustation, align=center, fill=colorred!20!white] (ustation_kinematics) {Compute\\Reference\\Position};
|
|
\node[block={2.0cm}{2.0cm}, right=0.8 of ustation_kinematics, align=center, fill=colorred!20!white] (compute_error) {Compute\\Error\\Position};
|
|
\node[block={2.0cm}{2.0cm}, above=0.8 of compute_error, align=center, fill=colorred!20!white] (compute_pos) {Compute\\Sample\\Position};
|
|
\node[block={1.0cm}{1.0cm}, right=0.8 of compute_error, fill=colorred!20!white] (hexa_jacobian) {$\bm{J}$};
|
|
|
|
\coordinate[] (inputMetrology) at ($(compute_error.north east)!0.3!(compute_error.north west)$);
|
|
\coordinate[] (inputRz) at ($(compute_error.north east)!0.7!(compute_error.north west)$);
|
|
|
|
\node[addb={+}{}{}{}{}, right=0.4 of Rz_kinematics, fill=colorred!20!white] (addRz) {};
|
|
\draw[->] (Rz_kinematics.east) -- (addRz.west);
|
|
\draw[->] (outputRz-|addRz)node[branch]{} -- (addRz.south);
|
|
|
|
\draw[->] (outputDy) node[above right]{$r_{D_y}$} -- (outputDy-|ustation_kinematics.west);
|
|
\draw[->] (outputRy) node[above right]{$r_{R_y}$} -- (outputRy-|ustation_kinematics.west);
|
|
\draw[->] (outputRz) node[above right]{$r_{R_z}$} -- (outputRz-|ustation_kinematics.west);
|
|
|
|
\draw[->] (metrology.east)node[above right]{$[D_x,\,D_y,\,D_z,\,R_x,\,R_y]$} -- (compute_pos.west|-metrology);
|
|
\draw[->] (addRz.east)node[above right]{$R_z$} -- (compute_pos.west|-addRz);
|
|
\draw[->] (compute_pos.south)node -- (compute_error.north)node[above right]{$\bm{y}_{\mathcal{X}}$};
|
|
|
|
\draw[->] (outputde) -- (Rz_kinematics.west) node[above left]{$\bm{\mathcal{L}}$};
|
|
\draw[->] (ustation_kinematics.east) -- (compute_error.west) node[above left]{$\bm{r}_{\mathcal{X}}$};
|
|
\draw[->] (compute_error.east) -- (hexa_jacobian.west) node[above left]{$\bm{\epsilon\mathcal{X}}$};
|
|
\draw[->] (hexa_jacobian.east) -- ++(1.8, 0) node[above left]{$\bm{\epsilon\mathcal{L}}$};
|
|
|
|
\draw[->] (outputfn) -- ($(outputfn-|hexa_jacobian.east) + (1.0, 0)$)coordinate(fn) node[above left]{$\bm{f}_n$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(metrology.north-|ustation.west) (hexa_jacobian.east|-compute_error.south)}, fill=black!10!white, draw, dashed, inner sep=4pt] (plant) {};
|
|
\node[anchor={north east}] at (plant.north east){$\text{Plant}$};
|
|
\end{scope}
|
|
|
|
\node[block, above=0.2 of plant, fill=coloryellow!20!white] (Kiff) {$\bm{K}_{\text{IFF}}$};
|
|
\draw[->] ($(fn)-(0.6,0)$)node[branch]{} |- (Kiff.east);
|
|
|
|
\node[addb={+}{}{}{}{}, left=0.8 of inputf] (addf) {};
|
|
\draw[->] (Kiff.west) -| (addf.north);
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(plant.south-|fn) (addf.west|-Kiff.north)}, fill=black!20!white, draw, dashed, inner sep=4pt] (damped_plant) {};
|
|
\node[anchor={north east}] at (damped_plant.north east){$\text{Damped Plant}$};
|
|
\end{scope}
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(metrology.north-|ustation.west) (hexa_jacobian.east|-compute_error.south)}, fill=black!10!white, draw, dashed, inner sep=4pt] (plant) {};
|
|
\node[anchor={north east}] at (plant.north east){$\text{Plant}$};
|
|
\end{scope}
|
|
|
|
\node[block, left=0.8 of addf, fill=colorgreen!20!white] (Khac) {$\bm{K}_{\text{HAC}}$};
|
|
\draw[->] ($(hexa_jacobian.east)+(1.4,0)$)node[branch]{} |- ($(Khac.west)+(-0.4, -3.4)$) |- (Khac.west);
|
|
\draw[->] (Khac.east) -- node[midway, above]{$\bm{f}^{\prime}$} (addf.west);
|
|
\draw[->] (addf.east) -- (inputf) node[above left]{$\bm{f}$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:nass_control_architecture
|
|
#+caption: The physical systems are shown in blue, the control kinematics in red, the decentralized Integral Force Feedback in yellow and the centralized High Authority Controller in green.
|
|
#+attr_latex: :width \linewidth
|
|
#+RESULTS:
|
|
[[file:figs/nass_control_architecture.png]]
|
|
|
|
* Decentralized Active Damping
|
|
:PROPERTIES:
|
|
:HEADER-ARGS:matlab+: :tangle matlab/nass_2_active_damping.m
|
|
:END:
|
|
<<sec:nass_active_damping>>
|
|
** Introduction :ignore:
|
|
|
|
- How to apply/optimize IFF on an hexapod?
|
|
- Robustness to payload mass
|
|
- Root Locus
|
|
- Damping optimization
|
|
|
|
Explain which samples are tested:
|
|
- 1kg, 25kg, 50kg
|
|
- cylindrical, 200mm height?
|
|
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control_active_damping.org][control_active_damping]]
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-active-damping.org][active damping for stewart platforms]]
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Vibration Control and Active Damping][Vibration Control and Active Damping]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :noweb yes
|
|
<<m-init-path>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no :noweb yes
|
|
<<m-init-path-tangle>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :noweb yes
|
|
<<m-init-simscape>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :noweb yes
|
|
<<m-init-other>>
|
|
#+end_src
|
|
|
|
** IFF Plant
|
|
|
|
- [ ] Show how it changes with the payload mass (1, 25, 50)
|
|
- [ ] Effect of rotation (no rotation - 60rpm)
|
|
- [ ] Added parallel stiffness
|
|
|
|
#+begin_src matlab
|
|
%% Identify the plant dynamics using the Simscape model
|
|
|
|
% Initialize each Simscape model elements
|
|
initializeGround();
|
|
initializeGranite();
|
|
initializeTy();
|
|
initializeRy();
|
|
initializeRz();
|
|
initializeMicroHexapod();
|
|
initializeSimplifiedNanoHexapod();
|
|
initializeSample('type', 'cylindrical');
|
|
|
|
initializeSimscapeConfiguration('gravity', false);
|
|
initializeDisturbances('enable', false);
|
|
initializeLoggingConfiguration('log', 'none');
|
|
initializeController('type', 'open-loop');
|
|
initializeReferences();
|
|
|
|
% Input/Output definition
|
|
% clear io; io_i = 1;
|
|
% io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [V]
|
|
% io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Vs'); io_i = io_i + 1; % Force Sensors voltages [V]
|
|
% io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Position Errors [m]
|
|
|
|
% % With no payload
|
|
% Gm = exp(-1e-4*s)*linearize(mdl, io);
|
|
% Gm.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'};
|
|
% Gm.OutputName = {'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6', ...
|
|
% 'eL1', 'eL2', 'eL3', 'eL4', 'eL5', 'eL6'};
|
|
#+end_src
|
|
|
|
** Controller Design
|
|
|
|
- Use Integral controller (with parallel stiffness)
|
|
- Show Root Locus (show that without parallel stiffness => unstable?)
|
|
- Choose optimal gain.
|
|
Here in MIMO, cannot have optimal damping for all modes. (there is a paper that tries to optimize that)
|
|
- Show robustness to change of payload (loci?) / Change of rotating velocity ?
|
|
- Reference to paper showing stability in MIMO for decentralized IFF
|
|
|
|
** Sensitivity to disturbances
|
|
|
|
Disturbances:
|
|
- floor motion
|
|
- Spindle X and Z
|
|
- Direct forces?
|
|
|
|
- Compute sensitivity to disturbances with and without IFF (and compare without the NASS)
|
|
|
|
- Maybe noise budgeting, but may be complex in MIMO... ?
|
|
|
|
* Centralized Active Vibration Control
|
|
:PROPERTIES:
|
|
:HEADER-ARGS:matlab+: :tangle matlab/nass_3_hac.m
|
|
:END:
|
|
<<sec:nass_hac>>
|
|
** Introduction :ignore:
|
|
|
|
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_experiment.org][uncertainty_experiment]]: Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc...)
|
|
- Effect of micro-station compliance
|
|
- Effect of IFF
|
|
- Effect of payload mass
|
|
- Decoupled plant
|
|
- Controller design
|
|
|
|
From control kinematics:
|
|
- Talk about issue of not estimating Rz from external metrology? (maybe could be nice to discuss that during the experiments!)
|
|
- Show what happens is Rz is not estimated (for instance supposed equaled to zero => increased coupling)
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :noweb yes
|
|
<<m-init-path>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no :noweb yes
|
|
<<m-init-path-tangle>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :noweb yes
|
|
<<m-init-simscape>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :noweb yes
|
|
<<m-init-other>>
|
|
#+end_src
|
|
|
|
** HAC Plant
|
|
|
|
- [ ] Compute transfer function from $\bm{f}$ to $\bm{\epsilon\mathcal{L}}$ (with IFF applied) for all masses
|
|
- [ ] Show effect of rotation
|
|
- [ ] Show effect of payload mass
|
|
- [ ] Compare with undamped plants
|
|
|
|
** Controller design
|
|
|
|
- [ ] Show design HAC with formulas and parameters
|
|
- [ ] Show robustness with Loci for all masses
|
|
|
|
** Sensitivity to disturbances
|
|
|
|
- Compute transfer functions from spindle vertical error to sample vertical error with HAC-IFF
|
|
Compare without the NASS, and with just IFF
|
|
- Same for horizontal
|
|
|
|
** Tomography experiment
|
|
|
|
- With HAC-IFF, perform tomography experiment, and compare with open-loop
|
|
|
|
- Take into account disturbances, metrology sensor noise. Maybe say here that we don't take in account other noise sources as they will be optimized latter (detail design phase)
|
|
- Tomography + lateral scans (same as what was done in open loop [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org::*Simulation of Scientific Experiments][here]])
|
|
- Validation of concept
|
|
|
|
* Conclusion
|
|
<<sec:nass_conclusion>>
|
|
|
|
|
|
* Bibliography :ignore:
|
|
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
|
|
|
|
* Matlab Functions :noexport:
|
|
** =initializeSimscapeConfiguration=: Simscape Configuration
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/initializeSimscapeConfiguration.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
|
|
*** Function description
|
|
#+begin_src matlab
|
|
function [] = initializeSimscapeConfiguration(args)
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
#+begin_src matlab
|
|
arguments
|
|
args.gravity logical {mustBeNumericOrLogical} = true
|
|
end
|
|
#+end_src
|
|
|
|
*** Structure initialization
|
|
#+begin_src matlab
|
|
conf_simscape = struct();
|
|
#+end_src
|
|
|
|
*** Add Type
|
|
#+begin_src matlab
|
|
if args.gravity
|
|
conf_simscape.type = 1;
|
|
else
|
|
conf_simscape.type = 2;
|
|
end
|
|
#+end_src
|
|
|
|
*** Save the Structure
|
|
#+begin_src matlab
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_conf_simscape.mat', 'file')
|
|
save('mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append');
|
|
else
|
|
save('mat/nass_model_conf_simscape.mat', 'conf_simscape');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_conf_simscape.mat', 'file')
|
|
save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape');
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** =initializeLoggingConfiguration=: Logging Configuration
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/initializeLoggingConfiguration.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
|
|
*** Function description
|
|
#+begin_src matlab
|
|
function [] = initializeLoggingConfiguration(args)
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
#+begin_src matlab
|
|
arguments
|
|
args.log char {mustBeMember(args.log,{'none', 'all', 'forces'})} = 'none'
|
|
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
|
end
|
|
#+end_src
|
|
|
|
*** Structure initialization
|
|
#+begin_src matlab
|
|
conf_log = struct();
|
|
#+end_src
|
|
|
|
*** Add Type
|
|
#+begin_src matlab
|
|
switch args.log
|
|
case 'none'
|
|
conf_log.type = 0;
|
|
case 'all'
|
|
conf_log.type = 1;
|
|
case 'forces'
|
|
conf_log.type = 2;
|
|
end
|
|
#+end_src
|
|
|
|
*** Sampling Time
|
|
#+begin_src matlab
|
|
conf_log.Ts = args.Ts;
|
|
#+end_src
|
|
|
|
*** Save the Structure
|
|
#+begin_src matlab
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_conf_log.mat', 'file')
|
|
save('mat/nass_model_conf_log.mat', 'conf_log', '-append');
|
|
else
|
|
save('mat/nass_model_conf_log.mat', 'conf_log');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_conf_log.mat', 'file')
|
|
save('matlab/mat/nass_model_conf_log.mat', 'conf_log', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_conf_log.mat', 'conf_log');
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** =initializeReferences=: Generate Reference Signals
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/initializeReferences.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
|
|
*** Function Declaration and Documentation
|
|
#+begin_src matlab
|
|
function [ref] = initializeReferences(args)
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
#+begin_src matlab
|
|
arguments
|
|
% Sampling Frequency [s]
|
|
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
|
% Maximum simulation time [s]
|
|
args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100
|
|
% Either "constant" / "triangular" / "sinusoidal"
|
|
args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
|
% Amplitude of the displacement [m]
|
|
args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
|
|
% Period of the displacement [s]
|
|
args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
% Either "constant" / "triangular" / "sinusoidal"
|
|
args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
|
% Amplitude [rad]
|
|
args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
|
|
% Period of the displacement [s]
|
|
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
% Either "constant" / "rotating"
|
|
args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating', 'rotating-not-filtered'})} = 'constant'
|
|
% Initial angle [rad]
|
|
args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
|
|
% Period of the rotating [s]
|
|
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
% For now, only constant is implemented
|
|
args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
|
|
% Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
|
args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ...
|
|
% For now, only constant is implemented
|
|
args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
|
|
% Initial position of the two masses
|
|
args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi]
|
|
% For now, only constant is implemented
|
|
args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
|
|
% Initial position [m,m,m,rad,rad,rad] of the top platform
|
|
args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1)
|
|
end
|
|
#+end_src
|
|
|
|
|
|
*** Initialize Parameters
|
|
#+begin_src matlab
|
|
%% Set Sampling Time
|
|
Ts = args.Ts;
|
|
Tmax = args.Tmax;
|
|
|
|
%% Low Pass Filter to filter out the references
|
|
s = zpk('s');
|
|
w0 = 2*pi*10;
|
|
xi = 1;
|
|
H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
|
|
#+end_src
|
|
|
|
*** Translation Stage
|
|
#+begin_src matlab
|
|
%% Translation stage - Dy
|
|
t = 0:Ts:Tmax; % Time Vector [s]
|
|
Dy = zeros(length(t), 1);
|
|
Dyd = zeros(length(t), 1);
|
|
Dydd = zeros(length(t), 1);
|
|
switch args.Dy_type
|
|
case 'constant'
|
|
Dy(:) = args.Dy_amplitude;
|
|
Dyd(:) = 0;
|
|
Dydd(:) = 0;
|
|
case 'triangular'
|
|
% This is done to unsure that we start with no displacement
|
|
Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
|
|
i0 = find(t>=args.Dy_period/4,1);
|
|
Dy(1:end-i0+1) = Dy_raw(i0:end);
|
|
Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value
|
|
|
|
% The signal is filtered out
|
|
Dy = lsim(H_lpf, Dy, t);
|
|
Dyd = lsim(H_lpf*s, Dy, t);
|
|
Dydd = lsim(H_lpf*s^2, Dy, t);
|
|
case 'sinusoidal'
|
|
Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
|
|
Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
|
|
Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
|
|
otherwise
|
|
warning('Dy_type is not set correctly');
|
|
end
|
|
|
|
Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd);
|
|
#+end_src
|
|
|
|
*** Tilt Stage
|
|
#+begin_src matlab
|
|
%% Tilt Stage - Ry
|
|
t = 0:Ts:Tmax; % Time Vector [s]
|
|
Ry = zeros(length(t), 1);
|
|
Ryd = zeros(length(t), 1);
|
|
Rydd = zeros(length(t), 1);
|
|
|
|
switch args.Ry_type
|
|
case 'constant'
|
|
Ry(:) = args.Ry_amplitude;
|
|
Ryd(:) = 0;
|
|
Rydd(:) = 0;
|
|
case 'triangular'
|
|
Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
|
|
i0 = find(t>=args.Ry_period/4,1);
|
|
Ry(1:end-i0+1) = Ry_raw(i0:end);
|
|
Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value
|
|
|
|
% The signal is filtered out
|
|
Ry = lsim(H_lpf, Ry, t);
|
|
Ryd = lsim(H_lpf*s, Ry, t);
|
|
Rydd = lsim(H_lpf*s^2, Ry, t);
|
|
case 'sinusoidal'
|
|
Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);
|
|
|
|
Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
|
|
Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
|
|
otherwise
|
|
warning('Ry_type is not set correctly');
|
|
end
|
|
|
|
Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd);
|
|
#+end_src
|
|
|
|
*** Spindle
|
|
#+begin_src matlab
|
|
%% Spindle - Rz
|
|
t = 0:Ts:Tmax; % Time Vector [s]
|
|
Rz = zeros(length(t), 1);
|
|
Rzd = zeros(length(t), 1);
|
|
Rzdd = zeros(length(t), 1);
|
|
|
|
switch args.Rz_type
|
|
case 'constant'
|
|
Rz(:) = args.Rz_amplitude;
|
|
Rzd(:) = 0;
|
|
Rzdd(:) = 0;
|
|
case 'rotating-not-filtered'
|
|
Rz(:) = 2*pi/args.Rz_period*t;
|
|
|
|
% The signal is filtered out
|
|
Rz(:) = 2*pi/args.Rz_period*t;
|
|
Rzd(:) = 2*pi/args.Rz_period;
|
|
Rzdd(:) = 0;
|
|
|
|
% We add the angle offset
|
|
Rz = Rz + args.Rz_amplitude;
|
|
|
|
case 'rotating'
|
|
Rz(:) = 2*pi/args.Rz_period*t;
|
|
|
|
% The signal is filtered out
|
|
Rz = lsim(H_lpf, Rz, t);
|
|
Rzd = lsim(H_lpf*s, Rz, t);
|
|
Rzdd = lsim(H_lpf*s^2, Rz, t);
|
|
|
|
% We add the angle offset
|
|
Rz = Rz + args.Rz_amplitude;
|
|
otherwise
|
|
warning('Rz_type is not set correctly');
|
|
end
|
|
|
|
Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd);
|
|
#+end_src
|
|
|
|
*** Micro Hexapod
|
|
#+begin_src matlab
|
|
%% Micro-Hexapod
|
|
t = [0, Ts];
|
|
Dh = zeros(length(t), 6);
|
|
Dhl = zeros(length(t), 6);
|
|
|
|
switch args.Dh_type
|
|
case 'constant'
|
|
Dh = [args.Dh_pos, args.Dh_pos];
|
|
|
|
load('nass_model_stages.mat', 'micro_hexapod');
|
|
|
|
AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];
|
|
|
|
tx = args.Dh_pos(4);
|
|
ty = args.Dh_pos(5);
|
|
tz = args.Dh_pos(6);
|
|
|
|
ARB = [cos(tz) -sin(tz) 0;
|
|
sin(tz) cos(tz) 0;
|
|
0 0 1]*...
|
|
[ cos(ty) 0 sin(ty);
|
|
0 1 0;
|
|
-sin(ty) 0 cos(ty)]*...
|
|
[1 0 0;
|
|
0 cos(tx) -sin(tx);
|
|
0 sin(tx) cos(tx)];
|
|
|
|
[~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB);
|
|
Dhl = [Dhl, Dhl];
|
|
otherwise
|
|
warning('Dh_type is not set correctly');
|
|
end
|
|
|
|
Dh = struct('time', t, 'signals', struct('values', Dh));
|
|
Dhl = struct('time', t, 'signals', struct('values', Dhl));
|
|
#+end_src
|
|
|
|
*** Save the Structure
|
|
#+begin_src matlab
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_references.mat', 'file')
|
|
save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append');
|
|
else
|
|
save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_references.mat', 'file')
|
|
save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts');
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** =initializeDisturbances=: Initialize Disturbances
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/initializeDisturbances.m
|
|
:header-args:matlab+: :comments none :mkdirp yes
|
|
:header-args:matlab+: :eval no :results none
|
|
:END:
|
|
|
|
*** Function Declaration and Documentation
|
|
#+begin_src matlab
|
|
function [] = initializeDisturbances(args)
|
|
% initializeDisturbances - Initialize the disturbances
|
|
%
|
|
% Syntax: [] = initializeDisturbances(args)
|
|
%
|
|
% Inputs:
|
|
% - args -
|
|
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
#+begin_src matlab
|
|
arguments
|
|
% Global parameter to enable or disable the disturbances
|
|
args.enable logical {mustBeNumericOrLogical} = true
|
|
% Ground Motion - X direction
|
|
args.Dw_x logical {mustBeNumericOrLogical} = true
|
|
% Ground Motion - Y direction
|
|
args.Dw_y logical {mustBeNumericOrLogical} = true
|
|
% Ground Motion - Z direction
|
|
args.Dw_z logical {mustBeNumericOrLogical} = true
|
|
% Translation Stage - X direction
|
|
args.Fdy_x logical {mustBeNumericOrLogical} = true
|
|
% Translation Stage - Z direction
|
|
args.Fdy_z logical {mustBeNumericOrLogical} = true
|
|
% Spindle - X direction
|
|
args.Frz_x logical {mustBeNumericOrLogical} = true
|
|
% Spindle - Y direction
|
|
args.Frz_y logical {mustBeNumericOrLogical} = true
|
|
% Spindle - Z direction
|
|
args.Frz_z logical {mustBeNumericOrLogical} = true
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
% Initialization of random numbers
|
|
rng("shuffle");
|
|
#+end_src
|
|
|
|
*** Ground Motion
|
|
#+begin_src matlab
|
|
%% Ground Motion
|
|
if args.enable
|
|
% Load the PSD of disturbance
|
|
load('ustation_disturbance_psd.mat', 'gm_dist')
|
|
|
|
% Frequency Data
|
|
Dw.f = gm_dist.f;
|
|
Dw.psd_x = gm_dist.pxx_x;
|
|
Dw.psd_y = gm_dist.pxx_y;
|
|
Dw.psd_z = gm_dist.pxx_z;
|
|
|
|
% Time data
|
|
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
|
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
|
|
T0 = N/Fs; % Signal Duration [s]
|
|
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
|
|
|
|
% ASD representation of the ground motion
|
|
C = zeros(N/2,1);
|
|
for i = 1:N/2
|
|
C(i) = sqrt(Dw.psd_x(i)/T0);
|
|
end
|
|
|
|
if args.Dw_x
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
|
|
else
|
|
Dw.x = zeros(length(Dw.t), 1);
|
|
end
|
|
|
|
if args.Dw_y
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
|
|
else
|
|
Dw.y = zeros(length(Dw.t), 1);
|
|
end
|
|
|
|
if args.Dw_y
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
|
|
else
|
|
Dw.z = zeros(length(Dw.t), 1);
|
|
end
|
|
|
|
else
|
|
Dw.t = [0,1]; % Time Vector [s]
|
|
Dw.x = [0,0]; % Ground Motion - X [m]
|
|
Dw.y = [0,0]; % Ground Motion - Y [m]
|
|
Dw.z = [0,0]; % Ground Motion - Z [m]
|
|
end
|
|
#+end_src
|
|
|
|
*** Translation stage
|
|
#+begin_src matlab
|
|
%% Translation stage
|
|
if args.enable
|
|
% Load the PSD of disturbance
|
|
load('ustation_disturbance_psd.mat', 'dy_dist')
|
|
|
|
% Frequency Data
|
|
Dy.f = dy_dist.f;
|
|
Dy.psd_x = dy_dist.pxx_fx;
|
|
Dy.psd_z = dy_dist.pxx_fz;
|
|
|
|
% Time data
|
|
Fs = 2*Dy.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
|
N = 2*length(Dy.f); % Number of Samples match the one of the wanted PSD
|
|
T0 = N/Fs; % Signal Duration [s]
|
|
Dy.t = linspace(0, T0, N+1)'; % Time Vector [s]
|
|
|
|
% ASD representation of the disturbance voice
|
|
C = zeros(N/2,1);
|
|
for i = 1:N/2
|
|
C(i) = sqrt(Dy.psd_x(i)/T0);
|
|
end
|
|
|
|
if args.Fdy_x
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Dy.x = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - X direction [N]
|
|
else
|
|
Dy.x = zeros(length(Dy.t), 1);
|
|
end
|
|
|
|
if args.Fdy_z
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Dy.z = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - Z direction [N]
|
|
else
|
|
Dy.z = zeros(length(Dy.t), 1);
|
|
end
|
|
|
|
else
|
|
Dy.t = [0,1]; % Time Vector [s]
|
|
Dy.x = [0,0]; % Translation Stage disturbances - X [N]
|
|
Dy.z = [0,0]; % Translation Stage disturbances - Z [N]
|
|
end
|
|
#+end_src
|
|
|
|
*** Spindle
|
|
#+begin_src matlab
|
|
%% Spindle
|
|
if args.enable
|
|
% Load the PSD of disturbance
|
|
load('ustation_disturbance_psd.mat', 'rz_dist')
|
|
|
|
% Frequency Data
|
|
Rz.f = rz_dist.f;
|
|
Rz.psd_x = rz_dist.pxx_fx;
|
|
Rz.psd_y = rz_dist.pxx_fy;
|
|
Rz.psd_z = rz_dist.pxx_fz;
|
|
|
|
% Time data
|
|
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
|
|
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
|
|
T0 = N/Fs; % Signal Duration [s]
|
|
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
|
|
|
|
% ASD representation of the disturbance voice
|
|
C = zeros(N/2,1);
|
|
for i = 1:N/2
|
|
C(i) = sqrt(Rz.psd_x(i)/T0);
|
|
end
|
|
|
|
if args.Frz_x
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Rz.x = N/sqrt(2)*ifft(Cx); % spindle disturbances - X direction [N]
|
|
else
|
|
Rz.x = zeros(length(Rz.t), 1);
|
|
end
|
|
|
|
if args.Frz_y
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Rz.y = N/sqrt(2)*ifft(Cx); % spindle disturbances - Y direction [N]
|
|
else
|
|
Rz.y = zeros(length(Rz.t), 1);
|
|
end
|
|
|
|
if args.Frz_z
|
|
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
|
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
|
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
|
Rz.z = N/sqrt(2)*ifft(Cx); % spindle disturbances - Z direction [N]
|
|
else
|
|
Rz.z = zeros(length(Rz.t), 1);
|
|
end
|
|
|
|
else
|
|
Rz.t = [0,1]; % Time Vector [s]
|
|
Rz.x = [0,0]; % Spindle disturbances - X [N]
|
|
Rz.y = [0,0]; % Spindle disturbances - X [N]
|
|
Rz.z = [0,0]; % Spindle disturbances - Z [N]
|
|
end
|
|
#+end_src
|
|
|
|
*** Direct Forces
|
|
#+begin_src matlab
|
|
u = zeros(100, 6);
|
|
Fd = u;
|
|
#+end_src
|
|
|
|
*** Set initial value to zero
|
|
#+begin_src matlab
|
|
Dw.x = Dw.x - Dw.x(1);
|
|
Dw.y = Dw.y - Dw.y(1);
|
|
Dw.z = Dw.z - Dw.z(1);
|
|
|
|
Dy.x = Dy.x - Dy.x(1);
|
|
Dy.z = Dy.z - Dy.z(1);
|
|
|
|
Rz.x = Rz.x - Rz.x(1);
|
|
Rz.y = Rz.y - Rz.y(1);
|
|
Rz.z = Rz.z - Rz.z(1);
|
|
#+end_src
|
|
|
|
*** Save the Structure
|
|
#+begin_src matlab
|
|
if exist('./mat', 'dir')
|
|
save('mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
|
|
elseif exist('./matlab', 'dir')
|
|
save('matlab/mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
|
|
end
|
|
#+end_src
|
|
|
|
** =initializeController=: Initialize Controller
|
|
#+begin_src matlab :tangle matlab/src/initializeController.m :comments none :mkdirp yes :eval no
|
|
function [] = initializeController(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'open-loop', 'iff', 'dvf', 'hac-dvf', 'ref-track-L', 'ref-track-iff-L', 'cascade-hac-lac', 'hac-iff', 'stabilizing'})} = 'open-loop'
|
|
end
|
|
|
|
controller = struct();
|
|
|
|
switch args.type
|
|
case 'open-loop'
|
|
controller.type = 1;
|
|
controller.name = 'Open-Loop';
|
|
case 'dvf'
|
|
controller.type = 2;
|
|
controller.name = 'Decentralized Direct Velocity Feedback';
|
|
case 'iff'
|
|
controller.type = 3;
|
|
controller.name = 'Decentralized Integral Force Feedback';
|
|
case 'hac-dvf'
|
|
controller.type = 4;
|
|
controller.name = 'HAC-DVF';
|
|
case 'ref-track-L'
|
|
controller.type = 5;
|
|
controller.name = 'Reference Tracking in the frame of the legs';
|
|
case 'ref-track-iff-L'
|
|
controller.type = 6;
|
|
controller.name = 'Reference Tracking in the frame of the legs + IFF';
|
|
case 'cascade-hac-lac'
|
|
controller.type = 7;
|
|
controller.name = 'Cascade Control + HAC-LAC';
|
|
case 'hac-iff'
|
|
controller.type = 8;
|
|
controller.name = 'HAC-IFF';
|
|
case 'stabilizing'
|
|
controller.type = 9;
|
|
controller.name = 'Stabilizing Controller';
|
|
end
|
|
|
|
if exist('./mat', 'dir')
|
|
save('mat/nass_model_controller.mat', 'controller');
|
|
elseif exist('./matlab', 'dir')
|
|
save('matlab/mat/nass_model_controller.mat', 'controller');
|
|
end
|
|
|
|
end
|
|
#+end_src
|
|
|
|
** =describeMicroStationSetup=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/describeMicroStationSetup.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
|
|
*** Function description
|
|
#+begin_src matlab
|
|
function [] = describeMicroStationSetup()
|
|
% describeMicroStationSetup -
|
|
%
|
|
% Syntax: [] = describeMicroStationSetup()
|
|
%
|
|
% Inputs:
|
|
% - -
|
|
%
|
|
% Outputs:
|
|
% - -
|
|
#+end_src
|
|
|
|
*** Simscape Configuration
|
|
#+begin_src matlab
|
|
load('./mat/nass_model_conf_simscape.mat', 'conf_simscape');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
fprintf('Simscape Configuration:\n');
|
|
|
|
if conf_simscape.type == 1
|
|
fprintf('- Gravity is included\n');
|
|
else
|
|
fprintf('- Gravity is not included\n');
|
|
end
|
|
|
|
fprintf('\n');
|
|
#+end_src
|
|
|
|
*** Disturbances
|
|
#+begin_src matlab
|
|
load('./mat/nass_model_disturbances.mat', 'args');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
fprintf('Disturbances:\n');
|
|
if ~args.enable
|
|
fprintf('- No disturbance is included\n');
|
|
else
|
|
if args.Dwx && args.Dwy && args.Dwz
|
|
fprintf('- Ground motion\n');
|
|
end
|
|
if args.Fdy_x && args.Fdy_z
|
|
fprintf('- Vibrations of the Translation Stage\n');
|
|
end
|
|
if args.Frz_z
|
|
fprintf('- Vibrations of the Spindle\n');
|
|
end
|
|
end
|
|
fprintf('\n');
|
|
#+end_src
|
|
|
|
*** References
|
|
#+begin_src matlab
|
|
load('./mat/nass_model_references.mat', 'args');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
fprintf('Reference Tracking:\n');
|
|
fprintf('- Translation Stage:\n');
|
|
switch args.Dy_type
|
|
case 'constant'
|
|
fprintf(' - Constant Position\n');
|
|
fprintf(' - Dy = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
|
case 'triangular'
|
|
fprintf(' - Triangular Path\n');
|
|
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
|
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
|
|
case 'sinusoidal'
|
|
fprintf(' - Sinusoidal Path\n');
|
|
fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3);
|
|
fprintf(' - Period = %.0f [s]\n', args.Dy_period);
|
|
end
|
|
|
|
fprintf('- Tilt Stage:\n');
|
|
switch args.Ry_type
|
|
case 'constant'
|
|
fprintf(' - Constant Position\n');
|
|
fprintf(' - Ry = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
|
case 'triangular'
|
|
fprintf(' - Triangular Path\n');
|
|
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
|
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
|
|
case 'sinusoidal'
|
|
fprintf(' - Sinusoidal Path\n');
|
|
fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3);
|
|
fprintf(' - Period = %.0f [s]\n', args.Ry_period);
|
|
end
|
|
|
|
fprintf('- Spindle:\n');
|
|
switch args.Rz_type
|
|
case 'constant'
|
|
fprintf(' - Constant Position\n');
|
|
fprintf(' - Rz = %.0f [deg]\n', 180/pi*args.Rz_amplitude);
|
|
case { 'rotating', 'rotating-not-filtered' }
|
|
fprintf(' - Rotating\n');
|
|
fprintf(' - Speed = %.0f [rpm]\n', 60/args.Rz_period);
|
|
end
|
|
|
|
|
|
fprintf('- Micro Hexapod:\n');
|
|
switch args.Dh_type
|
|
case 'constant'
|
|
fprintf(' - Constant Position\n');
|
|
fprintf(' - Dh = %.0f, %.0f, %.0f [mm]\n', args.Dh_pos(1), args.Dh_pos(2), args.Dh_pos(3));
|
|
fprintf(' - Rh = %.0f, %.0f, %.0f [deg]\n', args.Dh_pos(4), args.Dh_pos(5), args.Dh_pos(6));
|
|
end
|
|
|
|
fprintf('\n');
|
|
#+end_src
|
|
|
|
*** Micro-Station
|
|
#+begin_src matlab
|
|
load('./mat/nass_model_stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
fprintf('Micro Station:\n');
|
|
|
|
if granite.type == 1 && ...
|
|
ty.type == 1 && ...
|
|
ry.type == 1 && ...
|
|
rz.type == 1 && ...
|
|
micro_hexapod.type == 1;
|
|
fprintf('- All stages are rigid\n');
|
|
elseif granite.type == 2 && ...
|
|
ty.type == 2 && ...
|
|
ry.type == 2 && ...
|
|
rz.type == 2 && ...
|
|
micro_hexapod.type == 2;
|
|
fprintf('- All stages are flexible\n');
|
|
else
|
|
if granite.type == 1 || granite.type == 4
|
|
fprintf('- Granite is rigid\n');
|
|
else
|
|
fprintf('- Granite is flexible\n');
|
|
end
|
|
if ty.type == 1 || ty.type == 4
|
|
fprintf('- Translation Stage is rigid\n');
|
|
else
|
|
fprintf('- Translation Stage is flexible\n');
|
|
end
|
|
if ry.type == 1 || ry.type == 4
|
|
fprintf('- Tilt Stage is rigid\n');
|
|
else
|
|
fprintf('- Tilt Stage is flexible\n');
|
|
end
|
|
if rz.type == 1 || rz.type == 4
|
|
fprintf('- Spindle is rigid\n');
|
|
else
|
|
fprintf('- Spindle is flexible\n');
|
|
end
|
|
if micro_hexapod.type == 1 || micro_hexapod.type == 4
|
|
fprintf('- Micro Hexapod is rigid\n');
|
|
else
|
|
fprintf('- Micro Hexapod is flexible\n');
|
|
end
|
|
|
|
end
|
|
|
|
fprintf('\n');
|
|
#+end_src
|
|
|
|
** =computeReferencePose=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/computeReferencePose.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
|
|
% computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample
|
|
%
|
|
% Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn)
|
|
%
|
|
% Inputs:
|
|
% - Dy - Reference of the Translation Stage [m]
|
|
% - Ry - Reference of the Tilt Stage [rad]
|
|
% - Rz - Reference of the Spindle [rad]
|
|
% - Dh - Reference of the Micro Hexapod (Pitch, Roll, Yaw angles) [m, m, m, rad, rad, rad]
|
|
% - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad]
|
|
%
|
|
% Outputs:
|
|
% - WTr -
|
|
|
|
%% Translation Stage
|
|
Rty = [1 0 0 0;
|
|
0 1 0 Dy;
|
|
0 0 1 0;
|
|
0 0 0 1];
|
|
|
|
%% Tilt Stage - Pure rotating aligned with Ob
|
|
Rry = [ cos(Ry) 0 sin(Ry) 0;
|
|
0 1 0 0;
|
|
-sin(Ry) 0 cos(Ry) 0;
|
|
0 0 0 1];
|
|
|
|
%% Spindle - Rotation along the Z axis
|
|
Rrz = [cos(Rz) -sin(Rz) 0 0 ;
|
|
sin(Rz) cos(Rz) 0 0 ;
|
|
0 0 1 0 ;
|
|
0 0 0 1 ];
|
|
|
|
|
|
%% Micro-Hexapod
|
|
Rhx = [1 0 0;
|
|
0 cos(Dh(4)) -sin(Dh(4));
|
|
0 sin(Dh(4)) cos(Dh(4))];
|
|
|
|
Rhy = [ cos(Dh(5)) 0 sin(Dh(5));
|
|
0 1 0;
|
|
-sin(Dh(5)) 0 cos(Dh(5))];
|
|
|
|
Rhz = [cos(Dh(6)) -sin(Dh(6)) 0;
|
|
sin(Dh(6)) cos(Dh(6)) 0;
|
|
0 0 1];
|
|
|
|
Rh = [1 0 0 Dh(1) ;
|
|
0 1 0 Dh(2) ;
|
|
0 0 1 Dh(3) ;
|
|
0 0 0 1 ];
|
|
|
|
Rh(1:3, 1:3) = Rhz*Rhy*Rhx;
|
|
|
|
%% Nano-Hexapod
|
|
Rnx = [1 0 0;
|
|
0 cos(Dn(4)) -sin(Dn(4));
|
|
0 sin(Dn(4)) cos(Dn(4))];
|
|
|
|
Rny = [ cos(Dn(5)) 0 sin(Dn(5));
|
|
0 1 0;
|
|
-sin(Dn(5)) 0 cos(Dn(5))];
|
|
|
|
Rnz = [cos(Dn(6)) -sin(Dn(6)) 0;
|
|
sin(Dn(6)) cos(Dn(6)) 0;
|
|
0 0 1];
|
|
|
|
Rn = [1 0 0 Dn(1) ;
|
|
0 1 0 Dn(2) ;
|
|
0 0 1 Dn(3) ;
|
|
0 0 0 1 ];
|
|
|
|
Rn(1:3, 1:3) = Rnz*Rny*Rnx;
|
|
|
|
%% Total Homogeneous transformation
|
|
WTr = Rty*Rry*Rrz*Rh*Rn;
|
|
end
|
|
#+end_src
|
|
|
|
** =circlefit=
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/circlefit.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
function [xc,yc,R,a] = circlefit(x,y)
|
|
%
|
|
% [xc yx R] = circfit(x,y)
|
|
%
|
|
% fits a circle in x,y plane in a more accurate
|
|
% (less prone to ill condition )
|
|
% procedure than circfit2 but using more memory
|
|
% x,y are column vector where (x(i),y(i)) is a measured point
|
|
%
|
|
% result is center point (yc,xc) and radius R
|
|
% an optional output is the vector of coeficient a
|
|
% describing the circle's equation
|
|
%
|
|
% x^2+y^2+a(1)*x+a(2)*y+a(3)=0
|
|
%
|
|
% By: Izhak bucher 25/oct /1991,
|
|
x=x(:); y=y(:);
|
|
a=[x y ones(size(x))]\[-(x.^2+y.^2)];
|
|
xc = -.5*a(1);
|
|
yc = -.5*a(2);
|
|
R = sqrt((a(1)^2+a(2)^2)/4-a(3));
|
|
#+end_src
|
|
|
|
** Initialize Micro-Station Stages
|
|
*** =initializeGround=: Ground
|
|
#+begin_src matlab :tangle matlab/src/initializeGround.m :comments none :mkdirp yes :eval no
|
|
function [ground] = initializeGround(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'rigid'})} = 'rigid'
|
|
args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1) % Rotation point for the ground motion [m]
|
|
end
|
|
|
|
ground = struct();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
ground.type = 0;
|
|
case 'rigid'
|
|
ground.type = 1;
|
|
end
|
|
|
|
ground.shape = [2, 2, 0.5]; % [m]
|
|
ground.density = 2800; % [kg/m3]
|
|
|
|
ground.rot_point = args.rot_point;
|
|
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'ground', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'ground');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'ground', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'ground');
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeGranite=: Granite
|
|
#+begin_src matlab :tangle matlab/src/initializeGranite.m :comments none :mkdirp yes :eval no
|
|
function [granite] = initializeGranite(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none'})} = 'flexible'
|
|
args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3]
|
|
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = [5e9; 5e9; 5e9; 2.5e7; 2.5e7; 1e7] % [N/m]
|
|
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = [4.0e5; 1.1e5; 9.0e5; 2e4; 2e4; 1e4] % [N/(m/s)]
|
|
args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m]
|
|
args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m]
|
|
args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m]
|
|
args.sample_pos (1,1) double {mustBeNumeric} = 0.775 % Height of the measurment point [m]
|
|
end
|
|
|
|
granite = struct();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
granite.type = 0;
|
|
case 'rigid'
|
|
granite.type = 1;
|
|
case 'flexible'
|
|
granite.type = 2;
|
|
end
|
|
|
|
granite.density = args.density; % [kg/m3]
|
|
granite.STEP = 'granite.STEP';
|
|
|
|
% Z-offset for the initial position of the sample with respect to the granite top surface.
|
|
granite.sample_pos = args.sample_pos; % [m]
|
|
|
|
granite.K = args.K; % [N/m]
|
|
granite.C = args.C; % [N/(m/s)]
|
|
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'granite', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'granite');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'granite', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'granite');
|
|
end
|
|
end
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeTy=: Translation Stage
|
|
#+begin_src matlab :tangle matlab/src/initializeTy.m :comments none :mkdirp yes :eval no
|
|
function [ty] = initializeTy(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
|
end
|
|
|
|
ty = struct();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
ty.type = 0;
|
|
case 'rigid'
|
|
ty.type = 1;
|
|
case 'flexible'
|
|
ty.type = 2;
|
|
end
|
|
|
|
% Ty Granite frame
|
|
ty.granite_frame.density = 7800; % [kg/m3] => 43kg
|
|
ty.granite_frame.STEP = 'Ty_Granite_Frame.STEP';
|
|
|
|
% Guide Translation Ty
|
|
ty.guide.density = 7800; % [kg/m3] => 76kg
|
|
ty.guide.STEP = 'Ty_Guide.STEP';
|
|
|
|
% Ty - Guide_Translation12
|
|
ty.guide12.density = 7800; % [kg/m3]
|
|
ty.guide12.STEP = 'Ty_Guide_12.STEP';
|
|
|
|
% Ty - Guide_Translation11
|
|
ty.guide11.density = 7800; % [kg/m3]
|
|
ty.guide11.STEP = 'Ty_Guide_11.STEP';
|
|
|
|
% Ty - Guide_Translation22
|
|
ty.guide22.density = 7800; % [kg/m3]
|
|
ty.guide22.STEP = 'Ty_Guide_22.STEP';
|
|
|
|
% Ty - Guide_Translation21
|
|
ty.guide21.density = 7800; % [kg/m3]
|
|
ty.guide21.STEP = 'Ty_Guide_21.STEP';
|
|
|
|
% Ty - Plateau translation
|
|
ty.frame.density = 7800; % [kg/m3]
|
|
ty.frame.STEP = 'Ty_Stage.STEP';
|
|
|
|
% Ty Stator Part
|
|
ty.stator.density = 5400; % [kg/m3]
|
|
ty.stator.STEP = 'Ty_Motor_Stator.STEP';
|
|
|
|
% Ty Rotor Part
|
|
ty.rotor.density = 5400; % [kg/m3]
|
|
ty.rotor.STEP = 'Ty_Motor_Rotor.STEP';
|
|
|
|
ty.K = [2e8; 1e8; 2e8; 6e7; 9e7; 6e7]; % [N/m, N*m/rad]
|
|
ty.C = [8e4; 5e4; 8e4; 2e4; 3e4; 1e4]; % [N/(m/s), N*m/(rad/s)]
|
|
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'ty', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'ty');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'ty', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'ty');
|
|
end
|
|
end
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeRy=: Tilt Stage
|
|
#+begin_src matlab :tangle matlab/src/initializeRy.m :comments none :mkdirp yes :eval no
|
|
function [ry] = initializeRy(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
|
args.Ry_init (1,1) double {mustBeNumeric} = 0
|
|
end
|
|
|
|
ry = struct();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
ry.type = 0;
|
|
case 'rigid'
|
|
ry.type = 1;
|
|
case 'flexible'
|
|
ry.type = 2;
|
|
end
|
|
|
|
% Ry - Guide for the tilt stage
|
|
ry.guide.density = 7800; % [kg/m3]
|
|
ry.guide.STEP = 'Tilt_Guide.STEP';
|
|
|
|
% Ry - Rotor of the motor
|
|
ry.rotor.density = 2400; % [kg/m3]
|
|
ry.rotor.STEP = 'Tilt_Motor_Axis.STEP';
|
|
|
|
% Ry - Motor
|
|
ry.motor.density = 3200; % [kg/m3]
|
|
ry.motor.STEP = 'Tilt_Motor.STEP';
|
|
|
|
% Ry - Plateau Tilt
|
|
ry.stage.density = 7800; % [kg/m3]
|
|
ry.stage.STEP = 'Tilt_Stage.STEP';
|
|
|
|
% Z-Offset so that the center of rotation matches the sample center;
|
|
ry.z_offset = 0.58178; % [m]
|
|
|
|
ry.Ry_init = args.Ry_init; % [rad]
|
|
|
|
ry.K = [3.8e8; 4e8; 3.8e8; 1.2e8; 6e4; 1.2e8];
|
|
ry.C = [1e5; 1e5; 1e5; 3e4; 1e3; 3e4];
|
|
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'ry', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'ry');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'ry', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'ry');
|
|
end
|
|
end
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeRz=: Spindle
|
|
#+begin_src matlab :tangle matlab/src/initializeRz.m :comments none :mkdirp yes :eval no
|
|
function [rz] = initializeRz(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
|
end
|
|
|
|
rz = struct();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
rz.type = 0;
|
|
case 'rigid'
|
|
rz.type = 1;
|
|
case 'flexible'
|
|
rz.type = 2;
|
|
end
|
|
|
|
% Spindle - Slip Ring
|
|
rz.slipring.density = 7800; % [kg/m3]
|
|
rz.slipring.STEP = 'Spindle_Slip_Ring.STEP';
|
|
|
|
% Spindle - Rotor
|
|
rz.rotor.density = 7800; % [kg/m3]
|
|
rz.rotor.STEP = 'Spindle_Rotor.STEP';
|
|
|
|
% Spindle - Stator
|
|
rz.stator.density = 7800; % [kg/m3]
|
|
rz.stator.STEP = 'Spindle_Stator.STEP';
|
|
|
|
rz.K = [7e8; 7e8; 2e9; 1e7; 1e7; 1e7];
|
|
rz.C = [4e4; 4e4; 7e4; 1e4; 1e4; 1e4];
|
|
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'rz', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'rz');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'rz', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'rz');
|
|
end
|
|
end
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeMicroHexapod=: Micro Hexapod
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeMicroHexapod.m :comments none :mkdirp yes :eval no
|
|
function [micro_hexapod] = initializeMicroHexapod(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible'
|
|
% initializeFramesPositions
|
|
args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3
|
|
args.MO_B (1,1) double {mustBeNumeric} = 270e-3
|
|
% generateGeneralConfiguration
|
|
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
|
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3
|
|
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
|
|
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 45e-3
|
|
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 118e-3
|
|
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
|
|
% initializeStrutDynamics
|
|
args.Ki (1,1) double {mustBeNumeric, mustBeNonnegative} = 2e7
|
|
args.Ci (1,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3
|
|
% initializeCylindricalPlatforms
|
|
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10
|
|
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
|
|
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3
|
|
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10
|
|
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
|
|
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
|
|
% initializeCylindricalStruts
|
|
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
|
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
|
|
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
|
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
|
|
% inverseKinematics
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
|
|
stewart = initializeStewartPlatform();
|
|
|
|
stewart = initializeFramesPositions(stewart, ...
|
|
'H', args.H, ...
|
|
'MO_B', args.MO_B);
|
|
|
|
stewart = generateGeneralConfiguration(stewart, ...
|
|
'FH', args.FH, ...
|
|
'FR', args.FR, ...
|
|
'FTh', args.FTh, ...
|
|
'MH', args.MH, ...
|
|
'MR', args.MR, ...
|
|
'MTh', args.MTh);
|
|
|
|
stewart = computeJointsPose(stewart);
|
|
|
|
stewart = initializeStrutDynamics(stewart, ...
|
|
'k', args.Ki, ...
|
|
'c', args.Ci);
|
|
|
|
stewart = initializeJointDynamics(stewart, ...
|
|
'type_F', '2dof', ...
|
|
'type_M', '3dof');
|
|
|
|
stewart = initializeCylindricalPlatforms(stewart, ...
|
|
'Fpm', args.Fpm, ...
|
|
'Fph', args.Fph, ...
|
|
'Fpr', args.Fpr, ...
|
|
'Mpm', args.Mpm, ...
|
|
'Mph', args.Mph, ...
|
|
'Mpr', args.Mpr);
|
|
|
|
stewart = initializeCylindricalStruts(stewart, ...
|
|
'Fsm', args.Fsm, ...
|
|
'Fsh', args.Fsh, ...
|
|
'Fsr', args.Fsr, ...
|
|
'Msm', args.Msm, ...
|
|
'Msh', args.Msh, ...
|
|
'Msr', args.Msr);
|
|
|
|
stewart = computeJacobian(stewart);
|
|
|
|
stewart = initializeStewartPose(stewart, ...
|
|
'AP', args.AP, ...
|
|
'ARB', args.ARB);
|
|
|
|
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
|
|
|
switch args.type
|
|
case 'none'
|
|
stewart.type = 0;
|
|
case 'rigid'
|
|
stewart.type = 1;
|
|
case 'flexible'
|
|
stewart.type = 2;
|
|
end
|
|
|
|
micro_hexapod = stewart;
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'micro_hexapod', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'micro_hexapod');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'micro_hexapod', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'micro_hexapod');
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeSimplifiedNanoHexapod=: Nano Hexapod
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeSimplifiedNanoHexapod.m :comments none :mkdirp yes :eval no
|
|
function [nano_hexapod] = initializeSimplifiedNanoHexapod(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'stewart'})} = 'stewart'
|
|
%% initializeFramesPositions
|
|
args.H (1,1) double {mustBeNumeric, mustBePositive} = 95e-3 % Height of the nano-hexapod [m]
|
|
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
|
%% generateGeneralConfiguration
|
|
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 % Height of fixed joints [m]
|
|
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 120e-3 % Radius of fixed joints [m]
|
|
args.FTh (6,1) double {mustBeNumeric} = [220, 320, 340, 80, 100, 200]*(pi/180) % Angles of fixed joints [rad]
|
|
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 % Height of mobile joints [m]
|
|
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 110e-3 % Radius of mobile joints [m]
|
|
args.MTh (6,1) double {mustBeNumeric} = [255, 285, 15, 45, 135, 165]*(pi/180) % Angles of fixed joints [rad]
|
|
%% Actuators
|
|
args.actuator_type char {mustBeMember(args.actuator_type,{'1dof', '2dof', 'flexible'})} = '1dof'
|
|
args.actuator_k (1,1) double {mustBeNumeric, mustBePositive} = 1e6
|
|
args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e4
|
|
args.actuator_ke (1,1) double {mustBeNumeric, mustBePositive} = 4952605
|
|
args.actuator_ka (1,1) double {mustBeNumeric, mustBePositive} = 2476302
|
|
args.actuator_c (1,1) double {mustBeNumeric, mustBePositive} = 50
|
|
args.actuator_cp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.actuator_ce (1,1) double {mustBeNumeric, mustBePositive} = 100
|
|
args.actuator_ca (1,1) double {mustBeNumeric, mustBePositive} = 50
|
|
%% initializeCylindricalPlatforms
|
|
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 5 % Mass of the fixed plate [kg]
|
|
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 % Thickness of the fixed plate [m]
|
|
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % Radius of the fixed plate [m]
|
|
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 5 % Mass of the mobile plate [kg]
|
|
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 % Thickness of the mobile plate [m]
|
|
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % Radius of the mobile plate [m]
|
|
%% initializeCylindricalStruts
|
|
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Mass of the fixed part of the strut [kg]
|
|
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 60e-3 % Length of the fixed part of the struts [m]
|
|
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % Radius of the fixed part of the struts [m]
|
|
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Mass of the mobile part of the strut [kg]
|
|
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 60e-3 % Length of the mobile part of the struts [m]
|
|
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % Radius of the fixed part of the struts [m]
|
|
%% Bottom and Top Flexible Joints
|
|
args.flex_type_F char {mustBeMember(args.flex_type_F,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '2dof'
|
|
args.flex_type_M char {mustBeMember(args.flex_type_M,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '3dof'
|
|
args.Kf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kt_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ct_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kt_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ct_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ka_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ca_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ka_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ca_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
%% inverseKinematics
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
|
|
stewart = initializeStewartPlatform();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
stewart.type = 0;
|
|
case 'stewart'
|
|
stewart.type = 1;
|
|
end
|
|
|
|
stewart = initializeFramesPositions(stewart, ...
|
|
'H', args.H, ...
|
|
'MO_B', args.MO_B);
|
|
|
|
stewart = generateGeneralConfiguration(stewart, ...
|
|
'FH', args.FH, ...
|
|
'FR', args.FR, ...
|
|
'FTh', args.FTh, ...
|
|
'MH', args.MH, ...
|
|
'MR', args.MR, ...
|
|
'MTh', args.MTh);
|
|
|
|
stewart = computeJointsPose(stewart);
|
|
|
|
stewart = initializeStrutDynamics(stewart, ...
|
|
'type', args.actuator_type, ...
|
|
'k', args.actuator_k, ...
|
|
'kp', args.actuator_kp, ...
|
|
'ke', args.actuator_ke, ...
|
|
'ka', args.actuator_ka, ...
|
|
'c', args.actuator_c, ...
|
|
'cp', args.actuator_cp, ...
|
|
'ce', args.actuator_ce, ...
|
|
'ca', args.actuator_ca);
|
|
|
|
stewart = initializeJointDynamics(stewart, ...
|
|
'type_F', args.flex_type_F, ...
|
|
'type_M', args.flex_type_M, ...
|
|
'Kf_M', args.Kf_M, ...
|
|
'Cf_M', args.Cf_M, ...
|
|
'Kt_M', args.Kt_M, ...
|
|
'Ct_M', args.Ct_M, ...
|
|
'Kf_F', args.Kf_F, ...
|
|
'Cf_F', args.Cf_F, ...
|
|
'Kt_F', args.Kt_F, ...
|
|
'Ct_F', args.Ct_F, ...
|
|
'Ka_F', args.Ka_F, ...
|
|
'Ca_F', args.Ca_F, ...
|
|
'Kr_F', args.Kr_F, ...
|
|
'Cr_F', args.Cr_F, ...
|
|
'Ka_M', args.Ka_M, ...
|
|
'Ca_M', args.Ca_M, ...
|
|
'Kr_M', args.Kr_M, ...
|
|
'Cr_M', args.Cr_M);
|
|
|
|
stewart = initializeCylindricalPlatforms(stewart, ...
|
|
'Fpm', args.Fpm, ...
|
|
'Fph', args.Fph, ...
|
|
'Fpr', args.Fpr, ...
|
|
'Mpm', args.Mpm, ...
|
|
'Mph', args.Mph, ...
|
|
'Mpr', args.Mpr);
|
|
|
|
stewart = initializeCylindricalStruts(stewart, ...
|
|
'Fsm', args.Fsm, ...
|
|
'Fsh', args.Fsh, ...
|
|
'Fsr', args.Fsr, ...
|
|
'Msm', args.Msm, ...
|
|
'Msh', args.Msh, ...
|
|
'Msr', args.Msr);
|
|
|
|
stewart = computeJacobian(stewart);
|
|
|
|
stewart = initializeStewartPose(stewart, ...
|
|
'AP', args.AP, ...
|
|
'ARB', args.ARB);
|
|
|
|
nano_hexapod = stewart;
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'nano_hexapod', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'nano_hexapod');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'nano_hexapod', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'nano_hexapod');
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeSample=: Sample
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeSample.m :comments none :mkdirp yes :eval no
|
|
function [sample] = initializeSample(args)
|
|
|
|
arguments
|
|
args.type char {mustBeMember(args.type,{'none', 'cylindrical'})} = 'none'
|
|
args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3 % Height [m]
|
|
args.R (1,1) double {mustBeNumeric, mustBePositive} = 110e-3 % Radius [m]
|
|
args.m (1,1) double {mustBeNumeric, mustBePositive} = 1 % Mass [kg]
|
|
end
|
|
|
|
sample = struct();
|
|
|
|
switch args.type
|
|
case 'none'
|
|
sample.type = 0;
|
|
sample.m = 0;
|
|
case 'cylindrical'
|
|
sample.type = 1;
|
|
|
|
sample.H = args.H;
|
|
sample.R = args.R;
|
|
sample.m = args.m;
|
|
end
|
|
|
|
if exist('./mat', 'dir')
|
|
if exist('./mat/nass_model_stages.mat', 'file')
|
|
save('mat/nass_model_stages.mat', 'sample', '-append');
|
|
else
|
|
save('mat/nass_model_stages.mat', 'sample');
|
|
end
|
|
elseif exist('./matlab', 'dir')
|
|
if exist('./matlab/mat/nass_model_stages.mat', 'file')
|
|
save('matlab/mat/nass_model_stages.mat', 'sample', '-append');
|
|
else
|
|
save('matlab/mat/nass_model_stages.mat', 'sample');
|
|
end
|
|
end
|
|
|
|
end
|
|
#+end_src
|
|
|
|
** Initialize Nano-Hexapod
|
|
*** =initializeStewartPlatform=: Initialize the Stewart Platform structure
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeStewartPlatform.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeStewartPlatform()
|
|
% initializeStewartPlatform - Initialize the stewart structure
|
|
%
|
|
% Syntax: [stewart] = initializeStewartPlatform(args)
|
|
%
|
|
% Outputs:
|
|
% - stewart - A structure with the following sub-structures:
|
|
% - platform_F -
|
|
% - platform_M -
|
|
% - joints_F -
|
|
% - joints_M -
|
|
% - struts_F -
|
|
% - struts_M -
|
|
% - actuators -
|
|
% - geometry -
|
|
% - properties -
|
|
|
|
stewart = struct();
|
|
stewart.platform_F = struct();
|
|
stewart.platform_M = struct();
|
|
stewart.joints_F = struct();
|
|
stewart.joints_M = struct();
|
|
stewart.struts_F = struct();
|
|
stewart.struts_M = struct();
|
|
stewart.actuators = struct();
|
|
stewart.sensors = struct();
|
|
stewart.sensors.inertial = struct();
|
|
stewart.sensors.force = struct();
|
|
stewart.sensors.relative = struct();
|
|
stewart.geometry = struct();
|
|
stewart.kinematics = struct();
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeFramesPositions=: Initialize the positions of frames {A}, {B}, {F} and {M}
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeFramesPositions.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeFramesPositions(stewart, args)
|
|
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
|
|
%
|
|
% Syntax: [stewart] = initializeFramesPositions(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - args - Can have the following fields:
|
|
% - H [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m]
|
|
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - A structure with the following fields:
|
|
% - geometry.H [1x1] - Total Height of the Stewart Platform [m]
|
|
% - geometry.FO_M [3x1] - Position of {M} with respect to {F} [m]
|
|
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M} [m]
|
|
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F} [m]
|
|
|
|
arguments
|
|
stewart
|
|
args.H (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
|
|
args.MO_B (1,1) double {mustBeNumeric} = 50e-3
|
|
end
|
|
|
|
H = args.H; % Total Height of the Stewart Platform [m]
|
|
|
|
FO_M = [0; 0; H]; % Position of {M} with respect to {F} [m]
|
|
|
|
MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m]
|
|
|
|
FO_A = MO_B + FO_M; % Position of {A} with respect to {F} [m]
|
|
|
|
stewart.geometry.H = H;
|
|
stewart.geometry.FO_M = FO_M;
|
|
stewart.platform_M.MO_B = MO_B;
|
|
stewart.platform_F.FO_A = FO_A;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =generateGeneralConfiguration=: Generate a Very General Configuration
|
|
|
|
#+begin_src matlab :tangle matlab/src/generateGeneralConfiguration.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = generateGeneralConfiguration(stewart, args)
|
|
% generateGeneralConfiguration - Generate a Very General Configuration
|
|
%
|
|
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - args - Can have the following fields:
|
|
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
|
|
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
|
|
% - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad]
|
|
% - MH [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m]
|
|
% - FR [1x1] - Radius of the position of the mobile joints in the X-Y [m]
|
|
% - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
|
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
|
|
|
arguments
|
|
stewart
|
|
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
|
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
|
|
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
|
|
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
|
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
|
|
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
|
|
end
|
|
|
|
Fa = zeros(3,6);
|
|
Mb = zeros(3,6);
|
|
|
|
for i = 1:6
|
|
Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH];
|
|
Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH];
|
|
end
|
|
|
|
stewart.platform_F.Fa = Fa;
|
|
stewart.platform_M.Mb = Mb;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =computeJointsPose=: Compute the Pose of the Joints
|
|
|
|
#+begin_src matlab :tangle matlab/src/computeJointsPose.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = computeJointsPose(stewart)
|
|
% computeJointsPose -
|
|
%
|
|
% Syntax: [stewart] = computeJointsPose(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
|
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
|
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F}
|
|
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M}
|
|
% - geometry.FO_M [3x1] - Position of {M} with respect to {F}
|
|
%
|
|
% Outputs:
|
|
% - stewart - A structure with the following added fields
|
|
% - geometry.Aa [3x6] - The i'th column is the position of ai with respect to {A}
|
|
% - geometry.Ab [3x6] - The i'th column is the position of bi with respect to {A}
|
|
% - geometry.Ba [3x6] - The i'th column is the position of ai with respect to {B}
|
|
% - geometry.Bb [3x6] - The i'th column is the position of bi with respect to {B}
|
|
% - geometry.l [6x1] - The i'th element is the initial length of strut i
|
|
% - geometry.As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
|
|
% - geometry.Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
|
|
% - struts_F.l [6x1] - Length of the Fixed part of the i'th strut
|
|
% - struts_M.l [6x1] - Length of the Mobile part of the i'th strut
|
|
% - platform_F.FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
|
|
% - platform_M.MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
|
|
|
|
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
|
Fa = stewart.platform_F.Fa;
|
|
|
|
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
|
Mb = stewart.platform_M.Mb;
|
|
|
|
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
|
FO_A = stewart.platform_F.FO_A;
|
|
|
|
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
|
MO_B = stewart.platform_M.MO_B;
|
|
|
|
assert(isfield(stewart.geometry, 'FO_M'), 'stewart.geometry should have attribute FO_M')
|
|
FO_M = stewart.geometry.FO_M;
|
|
|
|
Aa = Fa - repmat(FO_A, [1, 6]);
|
|
Bb = Mb - repmat(MO_B, [1, 6]);
|
|
|
|
Ab = Bb - repmat(-MO_B-FO_M+FO_A, [1, 6]);
|
|
Ba = Aa - repmat( MO_B+FO_M-FO_A, [1, 6]);
|
|
|
|
As = (Ab - Aa)./vecnorm(Ab - Aa); % As_i is the i'th vector of As
|
|
|
|
l = vecnorm(Ab - Aa)';
|
|
|
|
Bs = (Bb - Ba)./vecnorm(Bb - Ba);
|
|
|
|
FRa = zeros(3,3,6);
|
|
MRb = zeros(3,3,6);
|
|
|
|
for i = 1:6
|
|
FRa(:,:,i) = [cross([0;1;0], As(:,i)) , cross(As(:,i), cross([0;1;0], As(:,i))) , As(:,i)];
|
|
FRa(:,:,i) = FRa(:,:,i)./vecnorm(FRa(:,:,i));
|
|
|
|
MRb(:,:,i) = [cross([0;1;0], Bs(:,i)) , cross(Bs(:,i), cross([0;1;0], Bs(:,i))) , Bs(:,i)];
|
|
MRb(:,:,i) = MRb(:,:,i)./vecnorm(MRb(:,:,i));
|
|
end
|
|
|
|
stewart.geometry.Aa = Aa;
|
|
stewart.geometry.Ab = Ab;
|
|
stewart.geometry.Ba = Ba;
|
|
stewart.geometry.Bb = Bb;
|
|
stewart.geometry.As = As;
|
|
stewart.geometry.Bs = Bs;
|
|
stewart.geometry.l = l;
|
|
|
|
stewart.struts_F.l = l/2;
|
|
stewart.struts_M.l = l/2;
|
|
|
|
stewart.platform_F.FRa = FRa;
|
|
stewart.platform_M.MRb = MRb;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeCylindricalPlatforms=: Initialize the geometry of the Fixed and Mobile Platforms
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeCylindricalPlatforms.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeCylindricalPlatforms(stewart, args)
|
|
% initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms
|
|
%
|
|
% Syntax: [stewart] = initializeCylindricalPlatforms(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - Fpm [1x1] - Fixed Platform Mass [kg]
|
|
% - Fph [1x1] - Fixed Platform Height [m]
|
|
% - Fpr [1x1] - Fixed Platform Radius [m]
|
|
% - Mpm [1x1] - Mobile Platform Mass [kg]
|
|
% - Mph [1x1] - Mobile Platform Height [m]
|
|
% - Mpr [1x1] - Mobile Platform Radius [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - platform_F [struct] - structure with the following fields:
|
|
% - type = 1
|
|
% - M [1x1] - Fixed Platform Mass [kg]
|
|
% - I [3x3] - Fixed Platform Inertia matrix [kg*m^2]
|
|
% - H [1x1] - Fixed Platform Height [m]
|
|
% - R [1x1] - Fixed Platform Radius [m]
|
|
% - platform_M [struct] - structure with the following fields:
|
|
% - M [1x1] - Mobile Platform Mass [kg]
|
|
% - I [3x3] - Mobile Platform Inertia matrix [kg*m^2]
|
|
% - H [1x1] - Mobile Platform Height [m]
|
|
% - R [1x1] - Mobile Platform Radius [m]
|
|
|
|
arguments
|
|
stewart
|
|
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
|
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3
|
|
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
|
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
|
end
|
|
|
|
I_F = diag([1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
|
1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
|
1/2 *args.Fpm * args.Fpr^2]);
|
|
|
|
I_M = diag([1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
|
1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
|
1/2 *args.Mpm * args.Mpr^2]);
|
|
|
|
stewart.platform_F.type = 1;
|
|
|
|
stewart.platform_F.I = I_F;
|
|
stewart.platform_F.M = args.Fpm;
|
|
stewart.platform_F.R = args.Fpr;
|
|
stewart.platform_F.H = args.Fph;
|
|
|
|
stewart.platform_M.type = 1;
|
|
|
|
stewart.platform_M.I = I_M;
|
|
stewart.platform_M.M = args.Mpm;
|
|
stewart.platform_M.R = args.Mpr;
|
|
stewart.platform_M.H = args.Mph;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeCylindricalStruts=: Define the inertia of cylindrical struts
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeCylindricalStruts.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeCylindricalStruts(stewart, args)
|
|
% initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts
|
|
%
|
|
% Syntax: [stewart] = initializeCylindricalStruts(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - Fsm [1x1] - Mass of the Fixed part of the struts [kg]
|
|
% - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m]
|
|
% - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m]
|
|
% - Msm [1x1] - Mass of the Mobile part of the struts [kg]
|
|
% - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m]
|
|
% - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - struts_F [struct] - structure with the following fields:
|
|
% - M [6x1] - Mass of the Fixed part of the struts [kg]
|
|
% - I [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2]
|
|
% - H [6x1] - Height of cylinder for the Fixed part of the struts [m]
|
|
% - R [6x1] - Radius of cylinder for the Fixed part of the struts [m]
|
|
% - struts_M [struct] - structure with the following fields:
|
|
% - M [6x1] - Mass of the Mobile part of the struts [kg]
|
|
% - I [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2]
|
|
% - H [6x1] - Height of cylinder for the Mobile part of the struts [m]
|
|
% - R [6x1] - Radius of cylinder for the Mobile part of the struts [m]
|
|
|
|
arguments
|
|
stewart
|
|
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
|
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
|
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
|
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
|
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
|
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
|
end
|
|
|
|
stewart.struts_M.type = 1;
|
|
|
|
%% Compute the properties of the cylindrical struts
|
|
Fsm = args.Fsm;
|
|
Fsh = args.Fsh;
|
|
Fsr = args.Fsr;
|
|
|
|
Msm = args.Msm;
|
|
Msh = args.Msh;
|
|
Msr = args.Msr;
|
|
|
|
I_F = [1/12 * Fsm * (3*Fsr^2 + Fsh^2), ...
|
|
1/12 * Fsm * (3*Fsr^2 + Fsh^2), ...
|
|
1/2 * Fsm * Fsr^2];
|
|
|
|
I_M = [1/12 * Msm * (3*Msr^2 + Msh^2), ...
|
|
1/12 * Msm * (3*Msr^2 + Msh^2), ...
|
|
1/2 * Msm * Msr^2];
|
|
stewart.struts_M.I = I_M;
|
|
stewart.struts_F.I = I_F;
|
|
|
|
stewart.struts_M.M = args.Msm;
|
|
stewart.struts_M.R = args.Msr;
|
|
stewart.struts_M.H = args.Msh;
|
|
|
|
stewart.struts_F.type = 1;
|
|
|
|
stewart.struts_F.M = args.Fsm;
|
|
stewart.struts_F.R = args.Fsr;
|
|
stewart.struts_F.H = args.Fsh;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeStrutDynamics=: Add Stiffness and Damping properties of each strut
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeStrutDynamics.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeStrutDynamics(stewart, args)
|
|
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
|
|
%
|
|
% Syntax: [stewart] = initializeStrutDynamics(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - K [6x1] - Stiffness of each strut [N/m]
|
|
% - C [6x1] - Damping of each strut [N/(m/s)]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - actuators.type = 1
|
|
% - actuators.K [6x1] - Stiffness of each strut [N/m]
|
|
% - actuators.C [6x1] - Damping of each strut [N/(m/s)]
|
|
|
|
arguments
|
|
stewart
|
|
args.type char {mustBeMember(args.type,{'1dof', '2dof', 'flexible'})} = '1dof'
|
|
args.k (1,1) double {mustBeNumeric, mustBeNonnegative} = 20e6
|
|
args.kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.ke (1,1) double {mustBeNumeric, mustBeNonnegative} = 5e6
|
|
args.ka (1,1) double {mustBeNumeric, mustBeNonnegative} = 60e6
|
|
args.c (1,1) double {mustBeNumeric, mustBeNonnegative} = 2e1
|
|
args.cp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.ce (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e6
|
|
args.ca (1,1) double {mustBeNumeric, mustBeNonnegative} = 10
|
|
|
|
args.F_gain (1,1) double {mustBeNumeric} = 1
|
|
args.me (1,1) double {mustBeNumeric} = 0.01
|
|
args.ma (1,1) double {mustBeNumeric} = 0.01
|
|
end
|
|
|
|
if strcmp(args.type, '1dof')
|
|
stewart.actuators.type = 1;
|
|
elseif strcmp(args.type, '2dof')
|
|
stewart.actuators.type = 2;
|
|
elseif strcmp(args.type, 'flexible')
|
|
stewart.actuators.type = 3;
|
|
end
|
|
|
|
stewart.actuators.k = args.k;
|
|
stewart.actuators.c = args.c;
|
|
|
|
% Parallel stiffness
|
|
stewart.actuators.kp = args.kp;
|
|
stewart.actuators.cp = args.cp;
|
|
|
|
stewart.actuators.ka = args.ka;
|
|
stewart.actuators.ca = args.ca;
|
|
|
|
stewart.actuators.ke = args.ke;
|
|
stewart.actuators.ce = args.ce;
|
|
|
|
stewart.actuators.F_gain = args.F_gain;
|
|
|
|
stewart.actuators.ma = args.ma;
|
|
stewart.actuators.me = args.me;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeJointDynamics=: Add Stiffness and Damping properties for spherical joints
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeJointDynamics.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeJointDynamics(stewart, args)
|
|
% initializeJointDynamics - Add Stiffness and Damping properties for the spherical joints
|
|
%
|
|
% Syntax: [stewart] = initializeJointDynamics(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - type_F - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
|
% - type_M - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
|
% - Kf_M [6x1] - Bending (Rx, Ry) Stiffness for each top joints [(N.m)/rad]
|
|
% - Kt_M [6x1] - Torsion (Rz) Stiffness for each top joints [(N.m)/rad]
|
|
% - Cf_M [6x1] - Bending (Rx, Ry) Damping of each top joint [(N.m)/(rad/s)]
|
|
% - Ct_M [6x1] - Torsion (Rz) Damping of each top joint [(N.m)/(rad/s)]
|
|
% - Kf_F [6x1] - Bending (Rx, Ry) Stiffness for each bottom joints [(N.m)/rad]
|
|
% - Kt_F [6x1] - Torsion (Rz) Stiffness for each bottom joints [(N.m)/rad]
|
|
% - Cf_F [6x1] - Bending (Rx, Ry) Damping of each bottom joint [(N.m)/(rad/s)]
|
|
% - Cf_F [6x1] - Torsion (Rz) Damping of each bottom joint [(N.m)/(rad/s)]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - stewart.joints_F and stewart.joints_M:
|
|
% - type - 1 (universal), 2 (spherical), 3 (universal perfect), 4 (spherical perfect)
|
|
% - Kx, Ky, Kz [6x1] - Translation (Tx, Ty, Tz) Stiffness [N/m]
|
|
% - Kf [6x1] - Flexion (Rx, Ry) Stiffness [(N.m)/rad]
|
|
% - Kt [6x1] - Torsion (Rz) Stiffness [(N.m)/rad]
|
|
% - Cx, Cy, Cz [6x1] - Translation (Rx, Ry) Damping [N/(m/s)]
|
|
% - Cf [6x1] - Flexion (Rx, Ry) Damping [(N.m)/(rad/s)]
|
|
% - Cb [6x1] - Torsion (Rz) Damping [(N.m)/(rad/s)]
|
|
|
|
arguments
|
|
stewart
|
|
args.type_F char {mustBeMember(args.type_F,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '2dof'
|
|
args.type_M char {mustBeMember(args.type_M,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '3dof'
|
|
args.Kf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kt_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ct_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kt_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ct_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ka_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ca_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ka_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Ca_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Kr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.Cr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0
|
|
args.K_M double {mustBeNumeric} = zeros(6,6)
|
|
args.M_M double {mustBeNumeric} = zeros(6,6)
|
|
args.n_xyz_M double {mustBeNumeric} = zeros(2,3)
|
|
args.xi_M double {mustBeNumeric} = 0.1
|
|
args.step_file_M char {} = ''
|
|
args.K_F double {mustBeNumeric} = zeros(6,6)
|
|
args.M_F double {mustBeNumeric} = zeros(6,6)
|
|
args.n_xyz_F double {mustBeNumeric} = zeros(2,3)
|
|
args.xi_F double {mustBeNumeric} = 0.1
|
|
args.step_file_F char {} = ''
|
|
end
|
|
|
|
switch args.type_F
|
|
case '2dof'
|
|
stewart.joints_F.type = 1;
|
|
case '3dof'
|
|
stewart.joints_F.type = 2;
|
|
case '4dof'
|
|
stewart.joints_F.type = 3;
|
|
case '6dof'
|
|
stewart.joints_F.type = 4;
|
|
case 'flexible'
|
|
stewart.joints_F.type = 5;
|
|
otherwise
|
|
error("joints_F are not correctly defined")
|
|
end
|
|
|
|
switch args.type_M
|
|
case '2dof'
|
|
stewart.joints_M.type = 1;
|
|
case '3dof'
|
|
stewart.joints_M.type = 2;
|
|
case '4dof'
|
|
stewart.joints_M.type = 3;
|
|
case '6dof'
|
|
stewart.joints_M.type = 4;
|
|
case 'flexible'
|
|
stewart.joints_M.type = 5;
|
|
otherwise
|
|
error("joints_M are not correctly defined")
|
|
end
|
|
|
|
stewart.joints_M.Ka = args.Ka_M;
|
|
stewart.joints_M.Kr = args.Kr_M;
|
|
|
|
stewart.joints_F.Ka = args.Ka_F;
|
|
stewart.joints_F.Kr = args.Kr_F;
|
|
|
|
stewart.joints_M.Ca = args.Ca_M;
|
|
stewart.joints_M.Cr = args.Cr_M;
|
|
|
|
stewart.joints_F.Ca = args.Ca_F;
|
|
stewart.joints_F.Cr = args.Cr_F;
|
|
|
|
stewart.joints_M.Kf = args.Kf_M;
|
|
stewart.joints_M.Kt = args.Kt_M;
|
|
|
|
stewart.joints_F.Kf = args.Kf_F;
|
|
stewart.joints_F.Kt = args.Kt_F;
|
|
|
|
stewart.joints_M.Cf = args.Cf_M;
|
|
stewart.joints_M.Ct = args.Ct_M;
|
|
|
|
stewart.joints_F.Cf = args.Cf_F;
|
|
stewart.joints_F.Ct = args.Ct_F;
|
|
|
|
stewart.joints_F.M = args.M_F;
|
|
stewart.joints_F.K = args.K_F;
|
|
stewart.joints_F.n_xyz = args.n_xyz_F;
|
|
stewart.joints_F.xi = args.xi_F;
|
|
stewart.joints_F.xi = args.xi_F;
|
|
stewart.joints_F.step_file = args.step_file_F;
|
|
|
|
stewart.joints_M.M = args.M_M;
|
|
stewart.joints_M.K = args.K_M;
|
|
stewart.joints_M.n_xyz = args.n_xyz_M;
|
|
stewart.joints_M.xi = args.xi_M;
|
|
stewart.joints_M.step_file = args.step_file_M;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =initializeStewartPose=: Determine the initial stroke in each leg to have the wanted pose
|
|
|
|
#+begin_src matlab :tangle matlab/src/initializeStewartPose.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = initializeStewartPose(stewart, args)
|
|
% initializeStewartPose - Determine the initial stroke in each leg to have the wanted pose
|
|
% It uses the inverse kinematic
|
|
%
|
|
% Syntax: [stewart] = initializeStewartPose(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - Aa [3x6] - The positions ai expressed in {A}
|
|
% - Bb [3x6] - The positions bi expressed in {B}
|
|
% - args - Can have the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - actuators.Leq [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
|
|
[Li, dLi] = inverseKinematics(stewart, 'AP', args.AP, 'ARB', args.ARB);
|
|
|
|
stewart.actuators.Leq = dLi;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =computeJacobian=: Compute the Jacobian Matrix
|
|
|
|
#+begin_src matlab :tangle matlab/src/computeJacobian.m :comments none :mkdirp yes :eval no
|
|
function [stewart] = computeJacobian(stewart)
|
|
% computeJacobian -
|
|
%
|
|
% Syntax: [stewart] = computeJacobian(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - With at least the following fields:
|
|
% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}
|
|
% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}
|
|
% - actuators.K [6x1] - Total stiffness of the actuators
|
|
%
|
|
% Outputs:
|
|
% - stewart - With the 3 added field:
|
|
% - geometry.J [6x6] - The Jacobian Matrix
|
|
% - geometry.K [6x6] - The Stiffness Matrix
|
|
% - geometry.C [6x6] - The Compliance Matrix
|
|
|
|
assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As')
|
|
As = stewart.geometry.As;
|
|
|
|
assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab')
|
|
Ab = stewart.geometry.Ab;
|
|
|
|
assert(isfield(stewart.actuators, 'k'), 'stewart.actuators should have attribute k')
|
|
Ki = stewart.actuators.k;
|
|
|
|
J = [As' , cross(Ab, As)'];
|
|
|
|
K = J'*diag(Ki)*J;
|
|
|
|
C = inv(K);
|
|
|
|
stewart.geometry.J = J;
|
|
stewart.geometry.K = K;
|
|
stewart.geometry.C = C;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =inverseKinematics=: Compute Inverse Kinematics
|
|
|
|
#+begin_src matlab :tangle matlab/src/inverseKinematics.m :comments none :mkdirp yes :eval no
|
|
function [Li, dLi] = inverseKinematics(stewart, args)
|
|
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
|
|
%
|
|
% Syntax: [stewart] = inverseKinematics(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - geometry.Aa [3x6] - The positions ai expressed in {A}
|
|
% - geometry.Bb [3x6] - The positions bi expressed in {B}
|
|
% - geometry.l [6x1] - Length of each strut
|
|
% - args - Can have the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
%
|
|
% Outputs:
|
|
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
|
|
assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa')
|
|
Aa = stewart.geometry.Aa;
|
|
|
|
assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb')
|
|
Bb = stewart.geometry.Bb;
|
|
|
|
assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l')
|
|
l = stewart.geometry.l;
|
|
|
|
Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa));
|
|
|
|
dLi = Li-l;
|
|
|
|
end
|
|
#+end_src
|
|
|
|
*** =displayArchitecture=: 3D plot of the Stewart platform architecture
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/displayArchitecture.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:displayArchitecture>>
|
|
|
|
This Matlab function is accessible [[file:../src/displayArchitecture.m][here]].
|
|
|
|
**** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [] = displayArchitecture(stewart, args)
|
|
% displayArchitecture - 3D plot of the Stewart platform architecture
|
|
%
|
|
% Syntax: [] = displayArchitecture(args)
|
|
%
|
|
% Inputs:
|
|
% - stewart
|
|
% - args - Structure with the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
% - F_color [color] - Color used for the Fixed elements
|
|
% - M_color [color] - Color used for the Mobile elements
|
|
% - L_color [color] - Color used for the Legs elements
|
|
% - frames [true/false] - Display the Frames
|
|
% - legs [true/false] - Display the Legs
|
|
% - joints [true/false] - Display the Joints
|
|
% - labels [true/false] - Display the Labels
|
|
% - platforms [true/false] - Display the Platforms
|
|
% - views ['all', 'xy', 'yz', 'xz', 'default'] -
|
|
%
|
|
% Outputs:
|
|
#+end_src
|
|
|
|
**** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
args.F_color = [0 0.4470 0.7410]
|
|
args.M_color = [0.8500 0.3250 0.0980]
|
|
args.L_color = [0 0 0]
|
|
args.frames logical {mustBeNumericOrLogical} = true
|
|
args.legs logical {mustBeNumericOrLogical} = true
|
|
args.joints logical {mustBeNumericOrLogical} = true
|
|
args.labels logical {mustBeNumericOrLogical} = true
|
|
args.platforms logical {mustBeNumericOrLogical} = true
|
|
args.views char {mustBeMember(args.views,{'all', 'xy', 'xz', 'yz', 'default'})} = 'default'
|
|
end
|
|
#+end_src
|
|
|
|
**** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
|
FO_A = stewart.platform_F.FO_A;
|
|
|
|
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
|
MO_B = stewart.platform_M.MO_B;
|
|
|
|
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
|
|
H = stewart.geometry.H;
|
|
|
|
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
|
Fa = stewart.platform_F.Fa;
|
|
|
|
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
|
Mb = stewart.platform_M.Mb;
|
|
#+end_src
|
|
|
|
|
|
**** Figure Creation, Frames and Homogeneous transformations
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
The reference frame of the 3d plot corresponds to the frame $\{F\}$.
|
|
#+begin_src matlab
|
|
if ~strcmp(args.views, 'all')
|
|
figure;
|
|
else
|
|
f = figure('visible', 'off');
|
|
end
|
|
|
|
hold on;
|
|
#+end_src
|
|
|
|
We first compute homogeneous matrices that will be useful to position elements on the figure where the reference frame is $\{F\}$.
|
|
#+begin_src matlab
|
|
FTa = [eye(3), FO_A; ...
|
|
zeros(1,3), 1];
|
|
ATb = [args.ARB, args.AP; ...
|
|
zeros(1,3), 1];
|
|
BTm = [eye(3), -MO_B; ...
|
|
zeros(1,3), 1];
|
|
|
|
FTm = FTa*ATb*BTm;
|
|
#+end_src
|
|
|
|
Let's define a parameter that define the length of the unit vectors used to display the frames.
|
|
#+begin_src matlab
|
|
d_unit_vector = H/4;
|
|
#+end_src
|
|
|
|
Let's define a parameter used to position the labels with respect to the center of the element.
|
|
#+begin_src matlab
|
|
d_label = H/20;
|
|
#+end_src
|
|
|
|
**** Fixed Base elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Let's first plot the frame $\{F\}$.
|
|
#+begin_src matlab
|
|
Ff = [0, 0, 0];
|
|
if args.frames
|
|
quiver3(Ff(1)*ones(1,3), Ff(2)*ones(1,3), Ff(3)*ones(1,3), ...
|
|
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
|
|
|
|
if args.labels
|
|
text(Ff(1) + d_label, ...
|
|
Ff(2) + d_label, ...
|
|
Ff(3) + d_label, '$\{F\}$', 'Color', args.F_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Now plot the frame $\{A\}$ fixed to the Base.
|
|
#+begin_src matlab
|
|
if args.frames
|
|
quiver3(FO_A(1)*ones(1,3), FO_A(2)*ones(1,3), FO_A(3)*ones(1,3), ...
|
|
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
|
|
|
|
if args.labels
|
|
text(FO_A(1) + d_label, ...
|
|
FO_A(2) + d_label, ...
|
|
FO_A(3) + d_label, '$\{A\}$', 'Color', args.F_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Let's then plot the circle corresponding to the shape of the Fixed base.
|
|
#+begin_src matlab
|
|
if args.platforms && stewart.platform_F.type == 1
|
|
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
|
|
v = null([0; 0; 1]'); % Two vectors that are perpendicular to the circle normal
|
|
center = [0; 0; 0]; % Center of the circle
|
|
radius = stewart.platform_F.R; % Radius of the circle [m]
|
|
|
|
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
|
|
|
|
plot3(points(1,:), ...
|
|
points(2,:), ...
|
|
points(3,:), '-', 'Color', args.F_color);
|
|
end
|
|
#+end_src
|
|
|
|
Let's now plot the position and labels of the Fixed Joints
|
|
#+begin_src matlab
|
|
if args.joints
|
|
scatter3(Fa(1,:), ...
|
|
Fa(2,:), ...
|
|
Fa(3,:), 'MarkerEdgeColor', args.F_color);
|
|
if args.labels
|
|
for i = 1:size(Fa,2)
|
|
text(Fa(1,i) + d_label, ...
|
|
Fa(2,i), ...
|
|
Fa(3,i), sprintf('$a_{%i}$', i), 'Color', args.F_color);
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
**** Mobile Platform elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
Plot the frame $\{M\}$.
|
|
#+begin_src matlab
|
|
Fm = FTm*[0; 0; 0; 1]; % Get the position of frame {M} w.r.t. {F}
|
|
|
|
if args.frames
|
|
FM_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
|
|
quiver3(Fm(1)*ones(1,3), Fm(2)*ones(1,3), Fm(3)*ones(1,3), ...
|
|
FM_uv(1,1:3), FM_uv(2,1:3), FM_uv(3,1:3), '-', 'Color', args.M_color)
|
|
|
|
if args.labels
|
|
text(Fm(1) + d_label, ...
|
|
Fm(2) + d_label, ...
|
|
Fm(3) + d_label, '$\{M\}$', 'Color', args.M_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Plot the frame $\{B\}$.
|
|
#+begin_src matlab
|
|
FB = FO_A + args.AP;
|
|
|
|
if args.frames
|
|
FB_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
|
|
quiver3(FB(1)*ones(1,3), FB(2)*ones(1,3), FB(3)*ones(1,3), ...
|
|
FB_uv(1,1:3), FB_uv(2,1:3), FB_uv(3,1:3), '-', 'Color', args.M_color)
|
|
|
|
if args.labels
|
|
text(FB(1) - d_label, ...
|
|
FB(2) + d_label, ...
|
|
FB(3) + d_label, '$\{B\}$', 'Color', args.M_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Let's then plot the circle corresponding to the shape of the Mobile platform.
|
|
#+begin_src matlab
|
|
if args.platforms && stewart.platform_M.type == 1
|
|
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
|
|
v = null((FTm(1:3,1:3)*[0;0;1])'); % Two vectors that are perpendicular to the circle normal
|
|
center = Fm(1:3); % Center of the circle
|
|
radius = stewart.platform_M.R; % Radius of the circle [m]
|
|
|
|
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
|
|
|
|
plot3(points(1,:), ...
|
|
points(2,:), ...
|
|
points(3,:), '-', 'Color', args.M_color);
|
|
end
|
|
#+end_src
|
|
|
|
Plot the position and labels of the rotation joints fixed to the mobile platform.
|
|
#+begin_src matlab
|
|
if args.joints
|
|
Fb = FTm*[Mb;ones(1,6)];
|
|
|
|
scatter3(Fb(1,:), ...
|
|
Fb(2,:), ...
|
|
Fb(3,:), 'MarkerEdgeColor', args.M_color);
|
|
|
|
if args.labels
|
|
for i = 1:size(Fb,2)
|
|
text(Fb(1,i) + d_label, ...
|
|
Fb(2,i), ...
|
|
Fb(3,i), sprintf('$b_{%i}$', i), 'Color', args.M_color);
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
**** Legs
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Plot the legs connecting the joints of the fixed base to the joints of the mobile platform.
|
|
#+begin_src matlab
|
|
if args.legs
|
|
for i = 1:6
|
|
plot3([Fa(1,i), Fb(1,i)], ...
|
|
[Fa(2,i), Fb(2,i)], ...
|
|
[Fa(3,i), Fb(3,i)], '-', 'Color', args.L_color);
|
|
|
|
if args.labels
|
|
text((Fa(1,i)+Fb(1,i))/2 + d_label, ...
|
|
(Fa(2,i)+Fb(2,i))/2, ...
|
|
(Fa(3,i)+Fb(3,i))/2, sprintf('$%i$', i), 'Color', args.L_color);
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
**** Figure parameters
|
|
#+begin_src matlab
|
|
switch args.views
|
|
case 'default'
|
|
view([1 -0.6 0.4]);
|
|
case 'xy'
|
|
view([0 0 1]);
|
|
case 'xz'
|
|
view([0 -1 0]);
|
|
case 'yz'
|
|
view([1 0 0]);
|
|
end
|
|
axis equal;
|
|
axis off;
|
|
#+end_src
|
|
|
|
**** Subplots
|
|
#+begin_src matlab
|
|
if strcmp(args.views, 'all')
|
|
hAx = findobj('type', 'axes');
|
|
|
|
figure;
|
|
s1 = subplot(2,2,1);
|
|
copyobj(get(hAx(1), 'Children'), s1);
|
|
view([0 0 1]);
|
|
axis equal;
|
|
axis off;
|
|
title('Top')
|
|
|
|
s2 = subplot(2,2,2);
|
|
copyobj(get(hAx(1), 'Children'), s2);
|
|
view([1 -0.6 0.4]);
|
|
axis equal;
|
|
axis off;
|
|
|
|
s3 = subplot(2,2,3);
|
|
copyobj(get(hAx(1), 'Children'), s3);
|
|
view([1 0 0]);
|
|
axis equal;
|
|
axis off;
|
|
title('Front')
|
|
|
|
s4 = subplot(2,2,4);
|
|
copyobj(get(hAx(1), 'Children'), s4);
|
|
view([0 -1 0]);
|
|
axis equal;
|
|
axis off;
|
|
title('Side')
|
|
|
|
close(f);
|
|
end
|
|
#+end_src
|
|
|
|
|
|
*** =describeStewartPlatform=: Display some text describing the current defined Stewart Platform
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/src/describeStewartPlatform.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:describeStewartPlatform>>
|
|
|
|
This Matlab function is accessible [[file:../src/describeStewartPlatform.m][here]].
|
|
|
|
**** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [] = describeStewartPlatform(stewart)
|
|
% describeStewartPlatform - Display some text describing the current defined Stewart Platform
|
|
%
|
|
% Syntax: [] = describeStewartPlatform(args)
|
|
%
|
|
% Inputs:
|
|
% - stewart
|
|
%
|
|
% Outputs:
|
|
#+end_src
|
|
|
|
**** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
end
|
|
#+end_src
|
|
|
|
**** Geometry
|
|
#+begin_src matlab
|
|
fprintf('GEOMETRY:\n')
|
|
fprintf('- The height between the fixed based and the top platform is %.3g [mm].\n', 1e3*stewart.geometry.H)
|
|
|
|
if stewart.platform_M.MO_B(3) > 0
|
|
fprintf('- Frame {A} is located %.3g [mm] above the top platform.\n', 1e3*stewart.platform_M.MO_B(3))
|
|
else
|
|
fprintf('- Frame {A} is located %.3g [mm] below the top platform.\n', - 1e3*stewart.platform_M.MO_B(3))
|
|
end
|
|
|
|
fprintf('- The initial length of the struts are:\n')
|
|
fprintf('\t %.3g, %.3g, %.3g, %.3g, %.3g, %.3g [mm]\n', 1e3*stewart.geometry.l)
|
|
fprintf('\n')
|
|
#+end_src
|
|
|
|
**** Actuators
|
|
#+begin_src matlab
|
|
fprintf('ACTUATORS:\n')
|
|
if stewart.actuators.type == 1
|
|
fprintf('- The actuators are modelled as 1DoF.\n')
|
|
fprintf('- The Stiffness and Damping of each actuators is:\n')
|
|
fprintf('\t k = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.k(1), stewart.actuators.c(1))
|
|
if stewart.actuators.kp > 0
|
|
fprintf('\t Added parallel stiffness: kp = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.kp(1))
|
|
end
|
|
elseif stewart.actuators.type == 2
|
|
fprintf('- The actuators are modelled as 2DoF (APA).\n')
|
|
fprintf('- The vertical stiffness and damping contribution of the piezoelectric stack is:\n')
|
|
fprintf('\t ka = %.0e [N/m] \t ca = %.0e [N/(m/s)]\n', stewart.actuators.ka(1), stewart.actuators.ca(1))
|
|
fprintf('- Vertical stiffness when the piezoelectric stack is removed is:\n')
|
|
fprintf('\t kr = %.0e [N/m] \t cr = %.0e [N/(m/s)]\n', stewart.actuators.kr(1), stewart.actuators.cr(1))
|
|
elseif stewart.actuators.type == 3
|
|
fprintf('- The actuators are modelled with a flexible element (FEM).\n')
|
|
end
|
|
fprintf('\n')
|
|
#+end_src
|
|
|
|
**** Joints
|
|
#+begin_src matlab
|
|
fprintf('JOINTS:\n')
|
|
#+end_src
|
|
|
|
Type of the joints on the fixed base.
|
|
#+begin_src matlab
|
|
switch stewart.joints_F.type
|
|
case 1
|
|
fprintf('- The joints on the fixed based are universal joints (2DoF)\n')
|
|
case 2
|
|
fprintf('- The joints on the fixed based are spherical joints (3DoF)\n')
|
|
end
|
|
#+end_src
|
|
|
|
Type of the joints on the mobile platform.
|
|
#+begin_src matlab
|
|
switch stewart.joints_M.type
|
|
case 1
|
|
fprintf('- The joints on the mobile based are universal joints (2DoF)\n')
|
|
case 2
|
|
fprintf('- The joints on the mobile based are spherical joints (3DoF)\n')
|
|
end
|
|
#+end_src
|
|
|
|
Position of the fixed joints
|
|
#+begin_src matlab
|
|
fprintf('- The position of the joints on the fixed based with respect to {F} are (in [mm]):\n')
|
|
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_F.Fa)
|
|
#+end_src
|
|
|
|
Position of the mobile joints
|
|
#+begin_src matlab
|
|
fprintf('- The position of the joints on the mobile based with respect to {M} are (in [mm]):\n')
|
|
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_M.Mb)
|
|
fprintf('\n')
|
|
#+end_src
|
|
|
|
**** Kinematics
|
|
#+begin_src matlab
|
|
fprintf('KINEMATICS:\n')
|
|
|
|
if isfield(stewart.kinematics, 'K')
|
|
fprintf('- The Stiffness matrix K is (in [N/m]):\n')
|
|
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.K)
|
|
end
|
|
|
|
if isfield(stewart.kinematics, 'C')
|
|
fprintf('- The Damping matrix C is (in [m/N]):\n')
|
|
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.C)
|
|
end
|
|
#+end_src
|
|
|
|
* Helping Functions :noexport:
|
|
** Initialize Path
|
|
#+NAME: m-init-path
|
|
#+BEGIN_SRC matlab
|
|
addpath('./matlab/'); % Path for scripts
|
|
|
|
%% Path for functions, data and scripts
|
|
addpath('./matlab/mat/'); % Path for Computed FRF
|
|
addpath('./matlab/src/'); % Path for functions
|
|
addpath('./matlab/STEPS/'); % Path for STEPS
|
|
addpath('./matlab/subsystems/'); % Path for Subsystems Simulink files
|
|
|
|
%% Data directory
|
|
data_dir = './matlab/mat/'
|
|
#+END_SRC
|
|
|
|
#+NAME: m-init-path-tangle
|
|
#+BEGIN_SRC matlab
|
|
%% Path for functions, data and scripts
|
|
addpath('./mat/'); % Path for Data
|
|
addpath('./src/'); % Path for functions
|
|
addpath('./STEPS/'); % Path for STEPS
|
|
addpath('./subsystems/'); % Path for Subsystems Simulink files
|
|
|
|
%% Data directory
|
|
data_dir = './mat/';
|
|
#+END_SRC
|
|
|
|
** Initialize Simscape Model
|
|
#+NAME: m-init-simscape
|
|
#+begin_src matlab
|
|
% Simulink Model name
|
|
mdl = 'nass_model';
|
|
#+end_src
|
|
|
|
** Initialize other elements
|
|
#+NAME: m-init-other
|
|
#+BEGIN_SRC matlab
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
#+END_SRC
|