2019-01-18 17:18:02 +01:00
#+TITLE : Control in a rotating frame
2019-01-28 11:22:15 +01:00
:DRAWER:
#+STARTUP : overview
2019-01-18 17:18:02 +01:00
#+HTML_HEAD : <link rel="stylesheet" type="text/css" href="css/htmlize.css"/>
#+HTML_HEAD : <link rel="stylesheet" type="text/css" href="css/readtheorg.css"/>
#+HTML_HEAD : <script src="js/jquery.min.js"></script>
#+HTML_HEAD : <script src="js/bootstrap.min.js"></script>
#+HTML_HEAD : <script type="text/javascript" src="js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD : <script type="text/javascript" src="js/readtheorg.js"></script>
2019-01-28 11:22:15 +01:00
2019-01-18 17:18:02 +01:00
#+LATEX_CLASS : cleanreport
#+LaTeX_CLASS_OPTIONS : [tocnp, secbreak, minted]
#+LaTeX_HEADER : \usepackage{svg}
#+LaTeX_HEADER : \newcommand{\authorFirstName}{Thomas}
#+LaTeX_HEADER : \newcommand{\authorLastName}{Dehaeze}
#+LaTeX_HEADER : \newcommand{\authorEmail}{dehaeze.thomas@gmail.com}
2019-01-28 11:22:15 +01:00
2019-01-18 17:18:02 +01:00
#+PROPERTY : header-args:matlab :session *MATLAB*
#+PROPERTY : header-args:matlab+ :comments org
#+PROPERTY : header-args:matlab+ :exports both
#+PROPERTY : header-args:matlab+ :eval no-export
#+PROPERTY : header-args:matlab+ :output-dir Figures
2019-01-28 11:22:15 +01:00
:END:
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
* Introduction
The objective of this note it to highlight some control problems that arises when controlling the position of an object using actuators that are rotating with respect to a fixed reference frame.
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
In section [[sec:system ]], a simple system composed of a spindle and a translation stage is defined and the equations of motion are written.
The rotation induces some coupling between the actuators and their displacement, and modifies the dynamics of the system.
This is studied using the equations, and some numerical computations are used to compare the use of voice coil and piezoelectric actuators.
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
Then, in section [[sec:control_strategies ]], two different control approach are compared where:
2019-01-18 17:18:02 +01:00
- the measurement is made in the fixed frame
- the measurement is made in the rotating frame
2019-01-21 23:33:23 +01:00
In section [[sec:simscape ]], the analytical study will be validated using a multi body model of the studied system.
Finally, in section [[sec:control ]], the control strategies are implemented using Simulink and Simscape and compared.
2019-01-24 14:07:14 +01:00
* System Description and Analysis
2019-01-21 23:33:23 +01:00
:PROPERTIES:
:HEADER-ARGS:matlab+: :tangle system_numerical_analysis.m
:END:
2019-01-18 17:18:02 +01:00
<<sec:system >>
** System description
The system consists of one 2 degree of freedom translation stage on top of a spindle (figure [[fig:rotating_frame_2dof ]]).
2019-01-21 23:33:23 +01:00
The control inputs are the forces applied by the actuators of the translation stage ($F_u$ and $F_v$).
As the translation stage is rotating around the Z axis due to the spindle, the forces are applied along $u$ and $v$.
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
The measurement is either the $x-y$ displacement of the object located on top of the translation stage or the $u-v$ displacement of the sample with respect to a fixed reference frame.
2019-01-18 17:18:02 +01:00
#+name : fig:rotating_frame_2dof
#+caption : Schematic of the mecanical system
[[./Figures/rotating_frame_2dof.png ]]
In the following block diagram:
- $G$ is the transfer function from the forces applied in the actuators to the measurement
- $K$ is the controller to design
- $J$ is a Jacobian matrix usually used to change the reference frame
Indices $x$ and $y$ corresponds to signals in the fixed reference frame (along $\vec{i}_x$ and $\vec{i}_y$):
- $D_x$ is the measured position of the sample
- $r_x$ is the reference signal which corresponds to the wanted $D_x$
- $\epsilon_x$ is the position error
Indices $u$ and $v$ corresponds to signals in the rotating reference frame ($\vec{i}_u$ and $\vec{i}_v$):
- $F_u$ and $F_v$ are forces applied by the actuators
- $\epsilon_u$ and $\epsilon_v$ are position error of the sample along $\vec{i}_u$ and $\vec{i}_v$
** Equations
<<sec:equations >>
Based on the figure [[fig:rotating_frame_2dof ]], we can write the equations of motion of the system.
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$:
#+name : eq:energy_inertial_frame
\begin{align}
T & = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) \\
V & = \frac{1}{2} k \left( x^2 + y^2 \right)
\end{align}
The Lagrangian is the kinetic energy minus the potential energy.
#+name : eq:lagrangian_inertial_frame
\begin{equation}
L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \left( x^2 + y^2 \right)
\end{equation}
The partial derivatives of the Lagrangian with respect to the variables $(x, y)$ are:
#+name : eq:inertial_frame_deriv
\begin{align*}
\frac{\partial L}{\partial x} & = -kx \\
\frac{\partial L}{\partial y} & = -ky \\
\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} & = m\ddot{x} \\
\frac{d}{dt}\frac{\partial L}{\partial \dot{y}} & = m\ddot{y}
\end{align*}
The external forces applied to the mass are:
\begin{align*}
F_{\text{ext}, x} &= F_u \cos{\theta} - F_v \sin{\theta}\\
F_{\text{ext}, y} &= F_u \sin{\theta} + F_v \cos{\theta}
\end{align*}
By appling the Lagrangian equations, we obtain:
\begin{align}
m\ddot{x} + kx = F_u \cos{\theta} - F_v \sin{\theta}\\
m\ddot{y} + ky = F_u \sin{\theta} + F_v \cos{\theta}
\end{align}
We then change coordinates from $(x, y)$ to $(d_x, d_y, \theta)$.
\begin{align*}
x & = d_u \cos{\theta} - d_v \sin{\theta}\\
y & = d_u \sin{\theta} + d_v \cos{\theta}
\end{align*}
We obtain:
\begin{align*}
\ddot{x} & = \ddot{d_u} \cos{\theta} - 2\dot{d_u}\dot{\theta}\sin{\theta} - d_u\ddot{\theta}\sin{\theta} - d_u\dot{\theta}^2 \cos{\theta}
- \ddot{d_v} \sin{\theta} - 2\dot{d_v}\dot{\theta}\cos{\theta} - d_v\ddot{\theta}\cos{\theta} + d_v\dot{\theta}^2 \sin{\theta} \\
\ddot{y} & = \ddot{d_u} \sin{\theta} + 2\dot{d_u}\dot{\theta}\cos{\theta} + d_u\ddot{\theta}\cos{\theta} - d_u\dot{\theta}^2 \sin{\theta}
+ \ddot{d_v} \cos{\theta} - 2\dot{d_v}\dot{\theta}\sin{\theta} - d_v\ddot{\theta}\sin{\theta} - d_v\dot{\theta}^2 \cos{\theta} \\
\end{align*}
2019-01-18 17:46:54 +01:00
By injecting the previous result into the Lagrangian equation, we obtain:
2019-01-18 17:18:02 +01:00
\begin{align*}
m \ddot{d_u} \cos{\theta} - 2m\dot{d_u}\dot{\theta}\sin{\theta} - m d_u\ddot{\theta}\sin{\theta} - m d_u\dot{\theta}^2 \cos{\theta}
-m \ddot{d_v} \sin{\theta} - 2m\dot{d_v}\dot{\theta}\cos{\theta} - m d_v\ddot{\theta}\cos{\theta} + m d_v\dot{\theta}^2 \sin{\theta}
+ k d_u \cos{\theta} - k d_v \sin{\theta} = F_u \cos{\theta} - F_v \sin{\theta} \\
m \ddot{d_u} \sin{\theta} + 2m\dot{d_u}\dot{\theta}\cos{\theta} + m d_u\ddot{\theta}\cos{\theta} - m d_u\dot{\theta}^2 \sin{\theta}
+ m \ddot{d_v} \cos{\theta} - 2m\dot{d_v}\dot{\theta}\sin{\theta} - m d_v\ddot{\theta}\sin{\theta} - m d_v\dot{\theta}^2 \cos{\theta}
+ k d_u \sin{\theta} + k d_v \cos{\theta} = F_u \sin{\theta} + F_v \cos{\theta}
\end{align*}
Which is equivalent to:
\begin{align*}
m \ddot{d_u} - 2m\dot{d_u}\dot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\ddot{\theta}\frac{\sin{\theta}}{\cos{\theta}} - m d_u\dot{\theta}^2
-m \ddot{d_v} \frac{\sin{\theta}}{\cos{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} + m d_v\dot{\theta}^2 \frac{\sin{\theta}}{\cos{\theta}}
+ k d_u - k d_v \frac{\sin{\theta}}{\cos{\theta}} = F_u - F_v \frac{\sin{\theta}}{\cos{\theta}} \\
m \ddot{d_u} + 2m\dot{d_u}\dot{\theta}\frac{\cos{\theta}}{\sin{\theta}} + m d_u\ddot{\theta}\frac{\cos{\theta}}{\sin{\theta}} - m d_u\dot{\theta}^2
+ m \ddot{d_v} \frac{\cos{\theta}}{\sin{\theta}} - 2m\dot{d_v}\dot{\theta} - m d_v\ddot{\theta} - m d_v\dot{\theta}^2 \frac{\cos{\theta}}{\sin{\theta}}
+ k d_u + k d_v \frac{\cos{\theta}}{\sin{\theta}} = F_u + F_v \frac{\cos{\theta}}{\sin{\theta}}
\end{align*}
We can then subtract and add the previous equations to obtain the following equations:
#+begin_important
2019-01-21 23:33:23 +01:00
#+NAME : eq:du_coupled
\begin{equation}
m \ddot{d_u} + (k - m\dot{\theta}^2) d_u = F_u + 2 m\dot{d_v}\dot{\theta} + m d_v\ddot{\theta}
\end{equation}
#+NAME : eq:dv_coupled
\begin{equation}
m \ddot{d_v} + (k - m\dot{\theta}^2) d_v = F_v - 2 m\dot{d_u}\dot{\theta} - m d_u\ddot{\theta}
\end{equation}
2019-01-18 17:18:02 +01:00
#+end_important
We obtain two differential equations that are coupled through:
- *Euler forces* : $m d_v \ddot{\theta}$
- *Coriolis forces* : $2 m \dot{d_v} \dot{\theta}$
2019-01-21 23:33:23 +01:00
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass $m$ and stiffness $k- m\dot{\theta}^2$.
Thus, the term $- m\dot{\theta}^2$ acts like a negative stiffness (due to *centrifugal forces* ).
2019-01-18 17:46:54 +01:00
2019-01-21 23:33:23 +01:00
The forces induced by the rotating reference frame are independent of the stiffness of the actuator.
The resulting effect of those forces should then be higher when using softer actuators.
2019-01-18 17:46:54 +01:00
2019-01-21 23:33:23 +01:00
** Numerical Values for the NASS
2019-01-18 17:46:54 +01:00
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
2019-01-18 17:18:02 +01:00
Let's define the parameters for the NASS.
2019-01-21 23:33:23 +01:00
#+begin_src matlab :exports none :results silent
mlight = 35; % Mass for light sample [kg]
mheavy = 85; % Mass for heavy sample [kg]
wlight = 2*pi; % Max rot. speed for light sample [rad/s]
wheavy = 2*pi/60; % Max rot. speed for heavy sample [rad/s]
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
kvc = 1e3; % Voice Coil Stiffness [N/m]
kpz = 1e8; % Piezo Stiffness [N/m]
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
wdot = 1; % Maximum rotation acceleration [rad/s2]
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
d = 0.01; % Maximum excentricity from rotational axis [m]
ddot = 0.2; % Maximum Horizontal speed [m/s]
save('./mat/parameters.mat');
#+end_src
#+begin_src matlab :results table :exports results
labels = {'Light sample mass [kg]', ...
'Heavy sample mass [kg]', ...
'Max rot. speed - light [rpm]', ...
'Max rot. speed - heavy [rpm]', ...
'Voice Coil Stiffness [N/m]', ...
'Piezo Stiffness [N/m]', ...
'Max rot. acceleration [rad/s2]', ...
'Max mass excentricity [m]', ...
'Max Horizontal speed [m/s]'};
data = [mlight, mheavy, 60*wlight/2/pi, 60*wheavy/2/pi, kvc, kpz, wdot, d, ddot];
data2orgtable(data', labels, {}, ' %.1e ')
2019-01-18 17:18:02 +01:00
#+end_src
2019-01-21 23:33:23 +01:00
#+RESULTS :
| Light sample mass [kg] | 3.5e+01 |
| Heavy sample mass [kg] | 8.5e+01 |
| Max rot. speed - light [rpm] | 6.0e+01 |
| Max rot. speed - heavy [rpm] | 1.0e+00 |
| Voice Coil Stiffness [N/m] | 1.0e+03 |
| Piezo Stiffness [N/m] | 1.0e+08 |
| Max rot. acceleration [rad/s2] | 1.0e+00 |
| Max mass excentricity [m] | 1.0e-02 |
| Max Horizontal speed [m/s] | 2.0e-01 |
** Euler and Coriolis forces - Numerical Result
2019-01-18 17:46:54 +01:00
First we will determine the value for Euler and Coriolis forces during regular experiment.
2019-01-21 23:33:23 +01:00
- *Euler forces* : $m d_v \ddot{\theta}$
- *Coriolis forces* : $2 m \dot{d_v} \dot{\theta}$
2019-01-18 17:46:54 +01:00
2019-01-18 17:18:02 +01:00
#+begin_src matlab :exports none :results silent
Felight = mlight*d*wdot;
Feheavy = mheavy*d*wdot;
2019-01-21 23:33:23 +01:00
Fclight = 2*mlight*ddot*wlight;
Fcheavy = 2*mheavy*ddot*wheavy;
2019-01-18 17:18:02 +01:00
#+end_src
2019-01-21 23:33:23 +01:00
The obtained values are displayed in table [[tab:euler_coriolis ]].
2019-01-18 17:18:02 +01:00
#+begin_src matlab :results value table :exports results :post addhdr(*this* )
2019-01-21 23:33:23 +01:00
data = [Fclight, Fcheavy ;
Felight, Feheavy];
data2orgtable(data, {'Coriolis', 'Euler'}, {'Light', 'Heavy'}, ' %.1fN ')
2019-01-18 17:18:02 +01:00
#+end_src
#+NAME : tab:euler_coriolis
#+CAPTION : Euler and Coriolis forces for the NASS
#+RESULTS :
2019-01-21 23:33:23 +01:00
| | Light | Heavy |
|----------+-------+-------|
| Coriolis | 88.0N | 3.6N |
| Euler | 0.4N | 0.8N |
** Negative Spring Effect - Numerical Result
The negative stiffness due to the rotation is equal to $-m{\omega_0}^2$.
2019-01-18 17:18:02 +01:00
#+begin_src matlab :exports none :results silent
2019-01-21 23:33:23 +01:00
Klight = mlight*wlight^2;
Kheavy = mheavy*wheavy^2;
2019-01-18 17:18:02 +01:00
#+end_src
2019-01-18 17:46:54 +01:00
The values for the negative spring effect are displayed in table [[tab:negative_spring ]].
2019-01-21 23:33:23 +01:00
2019-01-18 17:18:02 +01:00
This is definitely negligible when using piezoelectric actuators. It may not be the case when using voice coil actuators.
#+begin_src matlab :results value table :exports results :post addhdr(*this* )
2019-01-21 23:33:23 +01:00
data = [Klight, Kheavy];
data2orgtable(data, {'Neg. Spring'}, {'Light', 'Heavy'}, ' %.1f[N/m] ')
2019-01-18 17:18:02 +01:00
#+end_src
2019-01-18 17:46:54 +01:00
#+NAME : tab:negative_spring
#+CAPTION : Negative Spring effect
2019-01-18 17:18:02 +01:00
#+RESULTS :
2019-01-21 23:33:23 +01:00
| | Light | Heavy |
|-------------+-------------+----------|
| Neg. Spring | 1381.7[N/m] | 0.9[N/m] |
** Limitations due to coupling
To simplify, we consider a constant rotating speed $\dot{\theta} = {\omega_0}$ and thus $\ddot{\theta} = 0$.
From equations [[eq:du_coupled ]] and [[eq:dv_coupled ]], we obtain:
\begin{align*}
(m s^2 + (k - m{\omega_0}^2)) d_u &= F_u + 2 m {\omega_0} s d_v \\
(m s^2 + (k - m{\omega_0}^2)) d_v &= F_v - 2 m {\omega_0} s d_u \\
\end{align*}
From second equation:
\[ d_v = \frac{1}{m s^2 + (k - m{\omega_0}^2)} F_v - \frac{2 m {\omega_0} s}{m s^2 + (k - m{\omega_0}^2)} d_u \]
And we re-inject $d_v$ into the first equation:
\begin{equation*}
(m s^2 + (k - m{\omega_0}^2)) d_u = F_u + \frac{2 m {\omega_0} s}{m s^2 + (k - m{\omega_0}^2)} F_v - \frac{(2 m {\omega_0} s)^2}{m s^2 + (k - m{\omega_0}^2)} d_u
\end{equation*}
\begin{equation*}
\frac{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}{m s^2 + (k - m{\omega_0}^2)} d_u = F_u + \frac{2 m {\omega_0} s}{m s^2 + (k - m{\omega_0}^2)} F_v
\end{equation*}
Finally we obtain $d_u$ function of $F_u$ and $F_v$.
\[ d_u = \frac{m s^2 + (k - m{\omega_0}^2)}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2} F_u + \frac{2 m {\omega_0} s}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2} F_v \]
Similarly we can obtain $d_v$ function of $F_u$ and $F_v$:
\[ d_v = \frac{m s^2 + (k - m{\omega_0}^2)}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2} F_v - \frac{2 m {\omega_0} s}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2} F_u \]
The two previous equations can be written in a matrix form:
#+begin_important
2019-01-24 14:07:14 +01:00
#+NAME : eq:coupledplant
2019-01-21 23:33:23 +01:00
\begin{equation}
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
\begin{bmatrix}
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\
\end{bmatrix}
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
\end{equation}
#+end_important
Then, coupling is negligible if $|-m \omega^2 + (k - m{\omega_0}^2)| \gg |2 m {\omega_0} \omega|$.
*** Numerical Analysis
We plot on the same graph $\frac{|-m \omega^2 + (k - m {\omega_0}^2)|}{|2 m \omega_0 \omega|}$ for the voice coil and the piezo:
- with the light sample (figure [[fig:coupling_light ]]).
- with the heavy sample (figure [[fig:coupling_heavy ]]).
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
2019-01-21 23:44:33 +01:00
f = logspace(-1, 3, 1000);
2019-01-21 23:33:23 +01:00
figure;
hold on;
plot(f, abs(-mlight*(2*pi*f).^2 + kvc - mlight * wlight^2)./abs(2*mlight*wlight*2*pi*f), 'DisplayName', 'Voice Coil')
plot(f, abs(-mlight*(2*pi*f).^2 + kpz - mlight * wlight^2)./abs(2*mlight*wlight*2*pi*f), 'DisplayName', 'Piezo')
plot(f, ones(1, length(f)), 'k--', 'HandleVisibility', 'off')
2019-01-21 23:44:33 +01:00
hold off;
xlim([f(1), f(end)]);
2019-01-21 23:33:23 +01:00
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]');
legend('Location', 'northeast');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_light
#+HEADER : :var filepath="Figures/coupling_light.pdf" :var figsize="normal-normal"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_light.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-21 23:33:23 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_light
2019-01-21 23:33:23 +01:00
#+CAPTION : Relative Coupling for light mass and high rotation speed
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:coupling_light
2019-01-21 23:33:23 +01:00
[[file:Figures/coupling_light.png ]]
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
2019-01-21 23:33:23 +01:00
figure;
hold on;
plot(f, abs(-mheavy*(2*pi*f).^2 + kvc - mheavy * wheavy^2)./abs(2*mheavy*wheavy*2*pi*f), 'DisplayName', 'Voice Coil')
plot(f, abs(-mheavy*(2*pi*f).^2 + kpz - mheavy * wheavy^2)./abs(2*mheavy*wheavy*2*pi*f), 'DisplayName', 'Piezo')
plot(f, ones(1, length(f)), 'k--', 'HandleVisibility', 'off')
2019-01-21 23:44:33 +01:00
hold off;
xlim([f(1), f(end)]);
2019-01-21 23:33:23 +01:00
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]');
legend('Location', 'northeast');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_heavy
#+HEADER : :var filepath="Figures/coupling_heavy.pdf" :var figsize="normal-normal"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_heavy.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-21 23:33:23 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_heavy
2019-01-21 23:33:23 +01:00
#+CAPTION : Relative Coupling for heavy mass and low rotation speed
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:coupling_heavy
2019-01-21 23:33:23 +01:00
[[file:Figures/coupling_heavy.png ]]
#+begin_important
Coupling is higher for actuators with small stiffness.
#+end_important
** Limitations due to negative stiffness effect
If $\max{\dot{\theta}} \ll \sqrt{\frac{k}{m}}$, then the negative spring effect is negligible and $k - m\dot{\theta}^2 \approx k$.
Let's estimate what is the maximum rotation speed for which the negative stiffness effect is still negligible ($\omega_\text{max} = 0.1 \sqrt{\frac{k}{m}}$). Results are shown table [[tab:negative_stiffness ]].
#+begin_src matlab :results table :exports results :post addhdr(*this* )
data = 0.1*60*(1/2/pi)* [sqrt(kvc/mlight), sqrt(kpz/mlight);
sqrt(kvc/mheavy), sqrt(kpz/mheavy)];
data2orgtable(data, {'Light', 'Heavy'}, {'Voice Coil', 'Piezo'}, ' %.0f[rpm] ')
#+end_src
#+NAME : tab:negative_stiffness
#+CAPTION : Maximum rotation speed at which negative stiffness is negligible ($0.1\sqrt{\frac{k}{m}}$)
#+RESULTS :
| | Voice Coil | Piezo |
|-------+------------+-----------|
| Light | 5[rpm] | 1614[rpm] |
| Heavy | 3[rpm] | 1036[rpm] |
The negative spring effect is proportional to the rotational speed $\omega$.
The system dynamics will be much more affected when using soft actuator.
#+begin_important
Negative stiffness effect has very important effect when using soft actuators.
#+end_important
The system can even goes unstable when $m \omega^2 > k$, that is when the centrifugal forces are higher than the forces due to stiffness.
From this analysis, we can determine the lowest practical stiffness that is possible to use: $k_\text{min} = 10 m \omega^2$ (table [[tab:min_k ]])
#+begin_src matlab :results table :exports results :post addhdr(*this* )
data = 10*[mlight*2*pi, mheavy*2*pi/60]
data2orgtable(data, {'k min [N/m]'}, {'Light', 'Heavy'}, ' %.0f ')
#+end_src
#+NAME : tab:min_k
#+CAPTION : Minimum possible stiffness
#+RESULTS :
| | Light | Heavy |
|-------------+-------+-------|
| k min [N/m] | 2199 | 89 |
2019-01-18 17:18:02 +01:00
2019-01-24 14:07:14 +01:00
** Effect of rotation speed on the plant
As shown in equation [[eq:coupledplant ]], the plant changes with the rotation speed $\omega_0$.
Then, we compute the bode plot of the direct term and coupling term for multiple rotating speed.
Then we compare the result between voice coil and piezoelectric actuators.
*** Voice coil actuator
#+begin_src matlab :exports none :results silent
m = mlight;
k = kvc;
2019-01-29 09:32:29 +01:00
ws = linspace(0, 2*pi, 5); % Rotation speed vector [rad/s]
2019-01-24 14:07:14 +01:00
Gs = {zeros(1, length(ws))};
Gcs = {zeros(1, length(ws))};
for i = 1:length(ws)
w = ws(i);
Gs(i) = {(m*s^2 + (k-m*w^2))/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2)};
Gcs(i) = {(2*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2)};
end
#+end_src
#+begin_src matlab :exports none :results silent
freqs = logspace(-2, 1, 1000);
figure;
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, abs(squeeze(freqresp(Gs{i}, freqs, 'Hz'))));
2019-01-24 14:07:14 +01:00
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
2019-01-24 14:07:14 +01:00
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
2019-01-29 09:32:29 +01:00
legend('Location', 'southwest');
2019-01-24 14:07:14 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:G_ws_vc
#+HEADER : :var filepath="Figures/G_ws_vc.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file G_ws_vc.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
2019-03-05 13:30:43 +01:00
#+end_src
2019-01-24 14:07:14 +01:00
2019-03-05 13:30:43 +01:00
#+LABEL : fig:G_ws_vc
2019-01-24 14:07:14 +01:00
#+CAPTION : Bode plot of the direct transfer function term (from $F_u$ to $D_u$) for multiple rotation speed - Voice coil
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:G_ws_vc
2019-01-24 14:07:14 +01:00
[[file:Figures/G_ws_vc.png ]]
2019-03-05 13:30:43 +01:00
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
freqs = logspace(-2, 1, 1000);
figure;
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, abs(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))));
2019-01-24 14:07:14 +01:00
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, 180/pi*angle(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
2019-01-24 14:07:14 +01:00
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
2019-01-29 09:32:29 +01:00
legend('Location', 'southwest');
2019-01-24 14:07:14 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Gc_ws_vc
#+HEADER : :var filepath="Figures/Gc_ws_vc.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Gc_ws_vc.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Gc_ws_vc
#+CAPTION : caption
#+RESULTS : fig:Gc_ws_vc
2019-01-24 14:07:14 +01:00
[[file:Figures/Gc_ws_vc.png ]]
*** Piezoelectric actuator
#+begin_src matlab :exports none :results silent
m = mlight;
k = kpz;
2019-01-29 09:32:29 +01:00
ws = linspace(0, 2*pi, 5); % Rotation speed vector [rad/s]
2019-01-24 14:07:14 +01:00
Gs = {zeros(1, length(ws))};
Gcs = {zeros(1, length(ws))};
for i = 1:length(ws)
w = ws(i);
Gs(i) = {(m*s^2 + (k-m*w^2))/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2)};
Gcs(i) = {(2*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2)};
end
#+end_src
#+begin_src matlab :exports none :results silent
freqs = logspace(2, 3, 1000);
figure;
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, abs(squeeze(freqresp(Gs{i}, freqs, 'Hz'))));
2019-01-24 14:07:14 +01:00
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
2019-01-24 14:07:14 +01:00
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
2019-01-29 09:32:29 +01:00
legend('Location', 'southwest');
2019-01-24 14:07:14 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:G_ws_pz
#+HEADER : :var filepath="Figures/G_ws_pz.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file G_ws_pz.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:G_ws_pz
2019-01-24 14:07:14 +01:00
#+CAPTION : Bode plot of the direct transfer function term (from $F_u$ to $D_u$) for multiple rotation speed - Piezoelectric actuator
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:G_ws_pz
2019-01-24 14:07:14 +01:00
[[file:Figures/G_ws_pz.png ]]
#+begin_src matlab :exports none :results silent
figure;
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, abs(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))));
2019-01-24 14:07:14 +01:00
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
2019-01-29 09:32:29 +01:00
plot(freqs, 180/pi*angle(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
2019-01-24 14:07:14 +01:00
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
2019-01-29 09:32:29 +01:00
legend('Location', 'southwest');
2019-01-24 14:07:14 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Gc_ws_pz
#+HEADER : :var filepath="Figures/Gc_ws_pz.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Gc_ws_pz.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Gc_ws_pz
2019-01-24 14:07:14 +01:00
#+CAPTION : Bode plot of the coupling transfer function term (from $F_u$ to $D_v$) for multiple rotation speed - Piezoelectric actuator
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Gc_ws_pz
2019-01-24 14:07:14 +01:00
[[file:Figures/Gc_ws_pz.png ]]
*** Analysis
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
The poles of the coupling terms are the same as the poles of the diagonal terms. The magnitude of the coupling terms are increasing with the rotation speed.
2019-01-29 09:32:29 +01:00
#+begin_important
2019-01-24 14:07:14 +01:00
As shown in the previous figures, the system with voice coil is much more sensitive to rotation speed.
2019-01-29 09:32:29 +01:00
#+end_important
2019-01-24 14:07:14 +01:00
*** Campbell diagram
2019-01-24 15:21:39 +01:00
The poles of the system are computed for multiple values of the rotation frequency. To simplify the computation of the poles, we add some damping to the system.
2019-01-24 14:07:14 +01:00
#+begin_src matlab :results silent :exports code
m = mlight;
k = kvc;
c = 0.1*sqrt(k*m);
2019-01-29 09:32:29 +01:00
wsvc = linspace(0, 10, 100); % [rad/s]
2019-01-24 14:07:14 +01:00
2019-01-29 09:32:29 +01:00
polesvc = zeros(2, length(wsvc));
2019-01-24 14:07:14 +01:00
2019-01-29 09:32:29 +01:00
for i = 1:length(wsvc)
polei = pole(1/((m*s^2 + c*s + (k - m*wsvc(i)^2))^2 + (2*m*wsvc(i)*s)^2));
2019-01-24 14:07:14 +01:00
polesvc(:, i) = sort(polei(imag(polei) > 0));
end
#+end_src
#+begin_src matlab :results silent :exports code
m = mlight;
k = kpz;
c = 0.1*sqrt(k*m);
2019-01-29 09:32:29 +01:00
wspz = linspace(0, 1000, 100); % [rad/s]
2019-01-24 14:07:14 +01:00
2019-01-29 09:32:29 +01:00
polespz = zeros(2, length(wspz));
2019-01-24 14:07:14 +01:00
2019-01-29 09:32:29 +01:00
for i = 1:length(wspz)
polei = pole(1/((m*s^2 + c*s + (k - m*wspz(i)^2))^2 + (2*m*wspz(i)*s)^2));
2019-01-24 14:07:14 +01:00
polespz(:, i) = sort(polei(imag(polei) > 0));
end
#+end_src
We then plot the real and imaginary part of the poles as a function of the rotation frequency (figures [[fig:poles_w_vc ]] and [[fig:poles_w_pz ]]).
When the real part of one pole becomes positive, the system goes unstable.
For the voice coil (figure [[fig:poles_w_vc ]]), the system is unstable when the rotation speed is above 5 rad/s. The real and imaginary part of the poles of the system with piezoelectric actuators are changing much less (figure [[fig:poles_w_pz ]]).
#+begin_src matlab :results silent :exports none
figure;
% Amplitude
ax1 = subplot(1,2,1);
hold on;
2019-01-29 09:32:29 +01:00
plot(wsvc, real(polesvc(1, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wsvc, real(polesvc(2, :)))
plot(wsvc, zeros(size(wsvc)), 'k--')
2019-01-24 14:07:14 +01:00
hold off;
xlabel('Rotation Frequency [rad/s]');
ylabel('Pole Real Part');
ax2 = subplot(1,2,2);
hold on;
2019-01-29 09:32:29 +01:00
plot(wsvc, imag(polesvc(1, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wsvc, -imag(polesvc(1, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wsvc, imag(polesvc(2, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wsvc, -imag(polesvc(2, :)))
2019-01-24 14:07:14 +01:00
hold off;
xlabel('Rotation Frequency [rad/s]');
ylabel('Pole Imaginary Part');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:poles_w_vc
#+HEADER : :var filepath="Figures/poles_w_vc.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file poles_w_vc.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:poles_w_vc
2019-01-24 14:07:14 +01:00
#+CAPTION : Real and Imaginary part of the poles of the system as a function of the rotation speed - Voice Coil and light sample
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:poles_w_vc
2019-01-24 14:07:14 +01:00
[[file:Figures/poles_w_vc.png ]]
#+begin_src matlab :results silent :exports none
figure;
% Amplitude
ax1 = subplot(1,2,1);
hold on;
2019-01-29 09:32:29 +01:00
plot(wspz, real(polespz(1, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wspz, real(polespz(2, :)))
plot(wspz, zeros(size(wspz)), 'k--')
2019-01-24 14:07:14 +01:00
hold off;
xlabel('Rotation Frequency [rad/s]');
ylabel('Pole Real Part');
ax2 = subplot(1,2,2);
hold on;
2019-01-29 09:32:29 +01:00
plot(wspz, imag(polespz(1, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wspz, -imag(polespz(1, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wspz, imag(polespz(2, :)))
2019-01-24 14:07:14 +01:00
set(gca,'ColorOrderIndex',1)
2019-01-29 09:32:29 +01:00
plot(wspz, -imag(polespz(2, :)))
2019-01-24 14:07:14 +01:00
hold off;
xlabel('Rotation Frequency [rad/s]');
ylabel('Pole Imaginary Part');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:poles_w_pz
#+HEADER : :var filepath="Figures/poles_w_pz.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file poles_w_pz.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:poles_w_pz
2019-01-24 14:07:59 +01:00
#+CAPTION : Real and Imaginary part of the poles of the system as a function of the rotation speed - Piezoelectric actuator and light sample
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:poles_w_pz
2019-01-24 14:07:14 +01:00
[[file:Figures/poles_w_pz.png ]]
2019-01-18 17:18:02 +01:00
* Control Strategies
<<sec:control_strategies >>
** Measurement in the fixed reference frame
First, let's consider a measurement in the fixed referenced frame.
The transfer function from actuator $[F_u, F_v]$ to sensor $[D_x, D_y]$ is then $G(\theta)$.
Then the measurement is subtracted to the reference signal $[r_x, r_y]$ to obtain the position error in the fixed reference frame $[\epsilon_x, \epsilon_y]$.
The position error $[\epsilon_x, \epsilon_y]$ is then express in the rotating frame corresponding to the actuators $[\epsilon_u, \epsilon_v]$.
Finally, the control low $K$ links the position errors $[\epsilon_u, \epsilon_v]$ to the actuator forces $[F_u, F_v]$.
The block diagram is shown on figure [[fig:control_measure_fixed_2dof ]].
#+name : fig:control_measure_fixed_2dof
#+caption : Control with a measure from fixed frame
[[./Figures/control_measure_fixed_2dof.png ]]
The loop gain is then $L = G(\theta) K J(\theta)$.
2019-01-18 17:46:54 +01:00
One question we wish to answer is: is $G(\theta) J(\theta) = G(\theta_0) J(\theta_0)$?
2019-01-18 17:18:02 +01:00
** Measurement in the rotating frame
2019-01-18 17:46:54 +01:00
Let's consider that the measurement is made in the rotating reference frame.
2019-01-18 17:18:02 +01:00
The corresponding block diagram is shown figure [[fig:control_measure_rotating_2dof ]]
#+name : fig:control_measure_rotating_2dof
#+caption : Control with a measure from rotating frame
[[./Figures/control_measure_rotating_2dof.png ]]
The loop gain is $L = G K$.
2019-01-21 23:33:23 +01:00
* Multi Body Model - Simscape
:PROPERTIES:
:HEADER-ARGS:matlab+: :tangle simscape_analysis.m
:END:
<<sec:simscape >>
2019-01-18 17:46:54 +01:00
2019-01-24 17:52:32 +01:00
** Initialization
2019-01-18 17:46:54 +01:00
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
2019-01-21 23:33:23 +01:00
load('./mat/parameters.mat');
2019-01-18 17:46:54 +01:00
#+end_src
2019-01-21 23:33:23 +01:00
#+begin_src matlab :exports none :results silent
open rotating_frame.slx
#+end_src
2019-01-18 17:18:02 +01:00
2019-01-24 14:07:14 +01:00
First we define the parameters that must be defined in order to run the Simscape simulation.
2019-01-23 15:21:17 +01:00
#+begin_src matlab :exports code :results silent
w = 2*pi; % Rotation speed [rad/s]
theta_e = 0; % Static measurement error on the angle theta [rad]
m = 5; % mass of the sample [kg]
mTuv = 30;% Mass of the moving part of the Tuv stage [kg]
kTuv = 1e8; % Stiffness of the Tuv stage [N/m]
cTuv = 0; % Damping of the Tuv stage [N/(m/s)]
#+end_src
2019-01-24 14:07:14 +01:00
Then, we defined parameters that will be used in the following analysis.
2019-01-23 15:21:17 +01:00
#+begin_src matlab :exports code :results silent
mlight = 5; % Mass for light sample [kg]
mheavy = 55; % Mass for heavy sample [kg]
wlight = 2*pi; % Max rot. speed for light sample [rad/s]
wheavy = 2*pi/60; % Max rot. speed for heavy sample [rad/s]
kvc = 1e3; % Voice Coil Stiffness [N/m]
kpz = 1e8; % Piezo Stiffness [N/m]
d = 0.01; % Maximum excentricity from rotational axis [m]
2019-01-24 14:07:14 +01:00
freqs = logspace(-2, 3, 1000); % Frequency vector for analysis [Hz]
2019-01-23 15:21:17 +01:00
#+end_src
2019-01-21 23:33:23 +01:00
** Identification in the rotating referenced frame
2019-01-24 14:07:14 +01:00
We initialize the inputs and outputs of the system to identify:
- Inputs: $f_u$ and $f_v$
- Outputs: $d_u$ and $d_v$
2019-01-23 15:21:17 +01:00
2019-01-21 23:33:23 +01:00
#+begin_src matlab :exports code :results silent
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
%% Name of the Simulink File
mdl = 'rotating_frame';
%% Input/Output definition
io(1) = linio([mdl, '/fu'], 1, 'input');
io(2) = linio([mdl, '/fv'], 1, 'input');
io(3) = linio([mdl, '/du'], 1, 'output');
io(4) = linio([mdl, '/dv'], 1, 'output');
#+end_src
We start we identify the transfer functions at high speed with the light sample.
#+begin_src matlab :exports code :results silent
2019-01-23 15:21:17 +01:00
w = wlight; % Rotation speed [rad/s]
m = mlight; % mass of the sample [kg]
2019-01-21 23:33:23 +01:00
2019-01-23 15:21:17 +01:00
kTuv = kpz;
2019-01-21 23:33:23 +01:00
Gpz_light = linearize(mdl, io, 0.1);
Gpz_light.InputName = {'Fu', 'Fv'};
Gpz_light.OutputName = {'Du', 'Dv'};
2019-01-23 15:21:17 +01:00
kTuv = kvc;
Gvc_light = linearize(mdl, io, 0.1);
2019-01-21 23:33:23 +01:00
Gvc_light.InputName = {'Fu', 'Fv'};
Gvc_light.OutputName = {'Du', 'Dv'};
#+end_src
2019-01-23 15:21:17 +01:00
Then we identify the system with an heavy mass and low speed.
#+begin_src matlab :exports code :results silent
w = wheavy; % Rotation speed [rad/s]
m = mheavy; % mass of the sample [kg]
kTuv = kpz;
Gpz_heavy = linearize(mdl, io, 0.1);
Gpz_heavy.InputName = {'Fu', 'Fv'};
Gpz_heavy.OutputName = {'Du', 'Dv'};
kTuv = kvc;
Gvc_heavy = linearize(mdl, io, 0.1);
Gvc_heavy.InputName = {'Fu', 'Fv'};
Gvc_heavy.OutputName = {'Du', 'Dv'};
#+end_src
2019-01-24 14:07:14 +01:00
** Coupling ratio between $f_{uv}$ and $d_{uv}$
2019-01-24 17:52:32 +01:00
In order to validate the equations written, we can compute the coupling ratio using the simscape model and compare with the equations.
From the previous identification, we plot the coupling ratio in both case (figure [[fig:coupling_ratio_light_heavy ]]).
2019-01-24 14:07:14 +01:00
2019-01-23 15:21:17 +01:00
We obtain the same result than the analytical case (figures [[fig:coupling_light ]] and [[fig:coupling_heavy ]]).
#+begin_src matlab :results silent :exports none
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(Gvc_light('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gvc_light('Dv', 'Fu'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gpz_light('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gpz_light('Dv', 'Fu'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gvc_heavy('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gvc_heavy('Dv', 'Fu'), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(Gpz_heavy('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gpz_heavy('Dv', 'Fu'), freqs, 'Hz'))), '--');
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Coupling ratio');
legend({'light - VC', 'light - PZ', 'heavy - VC', 'heavy - PZ'})
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_ratio_light_heavy
#+HEADER : :var filepath="Figures/coupling_ratio_light_heavy.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_ratio_light_heavy.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-23 15:21:17 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_ratio_light_heavy
#+CAPTION : caption
#+RESULTS : fig:coupling_ratio_light_heavy
2019-01-24 17:52:32 +01:00
[[file:Figures/coupling_ratio_light_heavy.png ]]
2019-01-23 15:21:17 +01:00
2019-01-28 11:22:15 +01:00
** Plant Control - SISO approach
*** Plant identification
2019-01-24 17:52:32 +01:00
The goal is to study the control problems due to the coupling that appears because of the rotation.
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'rotating_frame';
%% Input/Output definition
io(1) = linio([mdl, '/fu'], 1, 'input');
io(2) = linio([mdl, '/fv'], 1, 'input');
io(3) = linio([mdl, '/du'], 1, 'output');
io(4) = linio([mdl, '/dv'], 1, 'output');
#+end_src
First, we identify the system when the rotation speed is null and then when the rotation speed is equal to 60rpm.
2019-01-24 17:52:32 +01:00
The actuators are voice coil with some damping added.
The bode plot of the system not rotating and rotating at 60rpm is shown figure [[fig:Gvc_speed ]].
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
w = 0; % Rotation speed [rad/s]
m = mlight; % mass of the sample [kg]
kTuv = kvc;
2019-01-24 17:52:32 +01:00
cTuv = 0.1*sqrt(kTuv*m);
2019-01-24 14:07:14 +01:00
2019-01-24 17:52:32 +01:00
Gvc = linearize(mdl, io, 0.1);
Gvc.InputName = {'Fu', 'Fv'};
Gvc.OutputName = {'Du', 'Dv'};
2019-01-24 14:07:14 +01:00
#+end_src
#+begin_src matlab :exports none :results silent
2019-01-24 17:52:32 +01:00
w = wlight; % Rotation speed [rad/s]
2019-01-24 14:07:14 +01:00
m = mlight; % mass of the sample [kg]
kTuv = kvc;
2019-01-24 17:52:32 +01:00
cTuv = 0.1*sqrt(kTuv*m);
2019-01-24 14:07:14 +01:00
2019-01-24 17:52:32 +01:00
Gtvc = linearize(mdl, io, 0.1);
Gtvc.InputName = {'Fu', 'Fv'};
Gtvc.OutputName = {'Du', 'Dv'};
2019-01-24 14:07:14 +01:00
#+end_src
#+begin_src matlab :exports none :results silent
figure;
2019-01-24 17:52:32 +01:00
bode(Gvc, Gtvc)
legend({'Gvc - $\omega = 0$', 'Gvc - $\omega = 60$rpm'}, 'Location', 'southwest');
2019-01-24 14:07:14 +01:00
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Gvc_speed
#+HEADER : :var filepath="Figures/Gvc_speed.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Gvc_speed.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 14:07:14 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Gvc_speed
2019-01-24 17:52:32 +01:00
#+CAPTION : Bode plot of the system not rotating and rotating at 60rmp - Voice coil and light sample
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Gvc_speed
2019-01-24 17:52:32 +01:00
[[file:Figures/Gvc_speed.png ]]
*** Controller design
We design a controller based on the identification when the system is not rotating.
#+begin_src matlab :results none :exports code
sisotool(Gvc('Du', 'fu'))
#+end_src
The controller is a lead-lag controller with the following transfer function.
#+begin_src matlab :results none :exports code
Kll = 2.0698e09*(s+40.45)* (s+1.181)/(s*(s+198.4)* (s+2790));
K = [Kll 0;
0 Kll];
#+end_src
The loop gain is displayed figure [[fig:Gvc_loop_gain ]].
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
2019-01-24 17:52:32 +01:00
freqs = logspace(-2, 2, 1000);
2019-01-24 14:07:14 +01:00
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
2019-01-24 17:52:32 +01:00
plot(freqs, abs(squeeze(freqresp(Gvc('Du', 'fu')*Kll, freqs, 'Hz'))), '-');
2019-01-24 14:07:14 +01:00
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
2019-01-24 17:52:32 +01:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gvc('Du', 'fu')*Kll, freqs, 'Hz')))), '-');
2019-01-24 14:07:14 +01:00
set(gca,'xscale','log');
yticks(-180:180:180);
2019-01-24 17:52:32 +01:00
ylim([-180 180]);
2019-01-24 14:07:14 +01:00
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Gvc_loop_gain
#+HEADER : :var filepath="Figures/Gvc_loop_gain.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Gvc_loop_gain.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 17:52:32 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Gvc_loop_gain
2019-01-24 17:52:32 +01:00
#+CAPTION : Loop gain obtained for a lead-lag controller on the system with a voice coil
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Gvc_loop_gain
2019-01-24 17:52:32 +01:00
[[file:Figures/Gvc_loop_gain.png ]]
*** Controlling the rotating system
We here want to see if the system is robust with respect to the rotation speed. We then use the controller based on the non-rotating system, and see if the system is stable and its dynamics.
We can then plot the same loop gain with the rotating system using the same controller (figure [[fig:Gtvc_loop_gain ]]). The result obtained is unstable.
2019-01-24 14:07:14 +01:00
#+begin_src matlab :exports none :results silent
2019-01-24 17:52:32 +01:00
freqs = logspace(-2, 2, 1000);
2019-01-24 14:07:14 +01:00
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
2019-01-24 17:52:32 +01:00
plot(freqs, abs(squeeze(freqresp(Gtvc('Du', 'fu')*Kll, freqs, 'Hz'))), '-');
2019-01-24 14:07:14 +01:00
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
2019-01-24 17:52:32 +01:00
plot(freqs, 180/pi*angle(squeeze(freqresp(Gtvc('Du', 'fu')*Kll, freqs, 'Hz'))), '-');
2019-01-24 14:07:14 +01:00
set(gca,'xscale','log');
yticks(-180:180:180);
2019-01-24 17:52:32 +01:00
ylim([-180 180]);
2019-01-24 14:07:14 +01:00
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
#+end_src
2019-01-23 15:21:17 +01:00
2019-03-05 13:30:43 +01:00
#+NAME : fig:Gtvc_loop_gain
#+HEADER : :var filepath="Figures/Gtvc_loop_gain.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Gtvc_loop_gain.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-24 17:52:32 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Gtvc_loop_gain
2019-01-29 09:32:29 +01:00
#+CAPTION : Loop gain with the rotating system
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Gtvc_loop_gain
2019-01-24 17:52:32 +01:00
[[file:Figures/Gtvc_loop_gain.png ]]
We can look at the poles of the system where we control only one direction ($u$ for instance). We obtain a pole with a positive real part.
#+begin_src matlab :results table :exports both
pole(feedback(Gtvc, blkdiag(Kll, 0)))
#+end_src
#+RESULTS :
| -2798 |
| -58.906+94.246i |
| -58.906-94.246i |
| -71.654 |
| 3.1648 |
| -3.3031 |
| -1.1902 |
However, when we look at the poles of the closed loop with a diagonal controller, all the poles have negative real part and the system is stable.
#+begin_src matlab :results table :exports both
pole(feedback(Gtvc, blkdiag(Kll, Kll)))
#+end_src
#+RESULTS :
| -2798+0.035765i |
| -2798-0.035765i |
| -56.406+105.34i |
| -56.406-105.34i |
| -64.482+79.308i |
| -64.482-79.308i |
| -68.521+13.503i |
| -68.521-13.503i |
| -1.1837+0.0041777i |
| -1.1837-0.0041777i |
2019-01-28 11:52:31 +01:00
*** Close loop performance
First, we create the closed loop systems. Then, we plot the transfer function from the reference signals $[\epsilon_u, \epsilon_v]$ to the output $[d_u, d_v]$ (figure [[fig:perfcomp ]]).
2019-01-28 11:22:15 +01:00
#+begin_src matlab :results none :exports code
2019-01-28 11:52:31 +01:00
K.InputName = 'e';
K.OutputName = 'u';
Gtvc.InputName = 'u';
Gtvc.OutputName = 'y';
Gvc.InputName = 'u';
Gvc.OutputName = 'y';
Sum = sumblk('e = r-y', 2);
2019-01-24 17:52:32 +01:00
2019-01-28 11:52:31 +01:00
Tvc = connect(Gvc, K, Sum, 'r', 'y');
Ttvc = connect(Gtvc, K, Sum, 'r', 'y');
#+end_src
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
#+begin_src matlab :results none :exports code
2019-01-28 11:52:31 +01:00
freqs = logspace(-2, 2, 1000);
2019-01-28 11:22:15 +01:00
figure;
2019-01-28 11:52:31 +01:00
ax1 = subplot(1,2,1);
hold on;
plot(freqs, abs(squeeze(freqresp(Tvc(1, 1), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Ttvc(1, 1), freqs, 'Hz'))));
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]');
legend({'w = 0 [rpm]', 'w = 60 [rpm]'}, 'Location', 'southwest')
title('$G_{r_u \to d_u}$')
ax2 = subplot(1,2,2);
hold on;
plot(freqs, abs(squeeze(freqresp(Tvc(1, 2), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Ttvc(1, 2), freqs, 'Hz'))));
hold off;
xlim([freqs(1), freqs(end)]);
ylim([1e-5, 1]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]');
title('$G_{r_u \to d_v}$')
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:perfconp
#+HEADER : :var filepath="Figures/perfconp.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file perfconp.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-28 11:52:31 +01:00
<<plt-matlab >>
2019-01-28 11:22:15 +01:00
#+end_src
2019-01-24 17:52:32 +01:00
2019-03-05 13:30:43 +01:00
#+LABEL : fig:perfconp
2019-01-28 11:52:31 +01:00
#+CAPTION : Close loop performance for $\omega = 0$ and $\omega = 60 rpm$
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:perfconp
2019-01-28 11:52:31 +01:00
[[file:Figures/perfconp.png ]]
2019-01-28 11:22:15 +01:00
*** Effect of rotation speed
We first identify the system (voice coil and light mass) for multiple rotation speed.
Then we compute the bode plot of the diagonal element (figure [[fig:Guu_ws ]]) and of the coupling element (figure [[fig:Guv_ws ]]).
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
As the rotation frequency increases:
- one pole goes to lower frequencies while the other goes to higher frequencies
- one zero appears between the two poles
2019-01-29 09:32:29 +01:00
- the zero disappears when $\omega > \sqrt{\frac{k}{m}}$ and the low frequency pole becomes unstable (positive real part)
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
To stabilize the unstable pole, we need a control bandwidth of at least twice of frequency of the unstable pole.
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
#+begin_src matlab :exports none :results silent
ws = linspace(0, 2*pi, 5); % Rotation speed vector [rad/s]
m = mlight; % mass of the sample [kg]
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
kTuv = kvc;
cTuv = 0.1*sqrt(kTuv*m);
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
Gs = {zeros(1, length(ws))};
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
for i = 1:length(ws)
w = ws(i);
Gs{i} = linearize(mdl, io, 0.1);
end
#+end_src
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
#+begin_src matlab :exports none :results silent
freqs = logspace(-2, 2, 1000);
2019-01-24 17:52:32 +01:00
figure;
2019-01-28 11:22:15 +01:00
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}(1, 1), freqs, 'Hz'))));
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}(1, 1), freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
legend('Location', 'northeast');
linkaxes([ax1,ax2],'x');
2019-01-24 17:52:32 +01:00
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Guu_ws
#+HEADER : :var filepath="Figures/Guu_ws.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Guu_ws.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-28 11:22:15 +01:00
<<plt-matlab >>
2019-01-24 17:52:32 +01:00
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Guu_ws
2019-01-28 11:22:15 +01:00
#+CAPTION : Diagonal term as a function of the rotation frequency
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Guu_ws
2019-01-28 11:22:15 +01:00
[[file:Figures/Guu_ws.png ]]
2019-03-05 13:30:43 +01:00
2019-01-28 11:22:15 +01:00
#+begin_src matlab :exports none :results silent
freqs = logspace(-2, 2, 1000);
2019-01-24 17:52:32 +01:00
figure;
2019-01-28 11:22:15 +01:00
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}(1, 2), freqs, 'Hz'))));
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
2019-01-24 17:52:32 +01:00
2019-01-28 11:22:15 +01:00
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}(1, 2), freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
legend('Location', 'northeast');
linkaxes([ax1,ax2],'x');
2019-01-24 17:52:32 +01:00
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Guv_ws
#+HEADER : :var filepath="Figures/Guv_ws.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Guv_ws.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-28 11:22:15 +01:00
<<plt-matlab >>
2019-01-24 17:52:32 +01:00
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Guv_ws
2019-01-28 11:22:15 +01:00
#+CAPTION : Couplin term as a function of the rotation frequency
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Guv_ws
2019-01-28 11:22:15 +01:00
[[file:Figures/Guv_ws.png ]]
2019-01-24 17:52:32 +01:00
2019-01-29 09:32:29 +01:00
Then, we can look at the same plots for the piezoelectric actuator (figure [[fig:Guu_ws_pz ]]). The effect of the rotation frequency has very little effect on the dynamics of the system to control.
#+begin_src matlab :exports none :results silent
ws = linspace(0, 2*pi, 5); % Rotation speed vector [rad/s]
m = mlight; % mass of the sample [kg]
kTuv = kpz;
cTuv = 0.1*sqrt(kTuv*m);
Gs = {zeros(1, length(ws))};
for i = 1:length(ws)
w = ws(i);
Gs{i} = linearize(mdl, io, 0.1);
end
#+end_src
#+begin_src matlab :exports none :results silent
freqs = logspace(2, 3, 1000);
figure;
ax1 = subaxis(2,1,1);
hold on;
for i = 1:length(ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}(1, 1), freqs, 'Hz'))));
end
hold off;
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]');
ax2 = subaxis(2,1,2);
hold on;
for i = 1:length(ws)
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}(1, 1), freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
end
hold off;
yticks(-180:90:180);
ylim([-180 180]);
xlim([freqs(1), freqs(end)]);
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
legend('Location', 'northeast');
linkaxes([ax1,ax2],'x');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:Guu_ws_pz
#+HEADER : :var filepath="Figures/Guu_ws_pz.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file Guu_ws_pz.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-29 09:32:29 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:Guu_ws_pz
2019-01-29 09:32:29 +01:00
#+CAPTION : Diagonal term as a function of the rotation frequency
2019-03-05 13:30:43 +01:00
#+RESULTS : fig:Guu_ws_pz
2019-01-29 09:32:29 +01:00
[[file:Figures/Guu_ws_pz.png ]]
** Plant Control - MIMO approach
*** TODO Analysis - SVD
\[ G = U \Sigma V^H \]
With:
- $\Sigma$ is an $2 \times 2$ matrix with 2 non-negative *singular values* $\sigma_i$, arranged in descending order along its main diagonal
- $U$ is an $2 \times 2$ unitary matrix. The columns vectors of $U$, denoted $u_i$, represent the *output directions* of the plant. They are orthonomal
- $V$ is an $2 \times 2$ unitary matrix. The columns vectors of $V$, denoted $v_i$, represent the *input directions* of the plant. They are orthonomal
We first look at the evolution of the singular values as a function of frequency (figure [[fig:G_sigma ]]).
#+begin_src matlab :exports none :results silent
ws = linspace(0, 2*pi, 5); % Rotation speed vector [rad/s]
m = mlight; % mass of the sample [kg]
kTuv = kvc;
cTuv = 0.1*sqrt(kTuv*m);
Gs = {zeros(1, length(ws))};
for i = 1:length(ws)
w = ws(i);
Gs{i} = linearize(mdl, io, 0.1);
end
#+end_src
#+begin_src matlab :results silent :exports none
freqs = logspace(-2, 2, 1000);
figure;
hold on;
for i = 1:length(ws)
plot(freqs, abs(squeeze(freqresp(Gs{i}(1,1), freqs, 'Hz'))), '-');
end
hold off;
set(gca,'xscale','log'); set(gca,'yscale','log');
#+end_src
#+begin_src matlab :results silent :exports none
freqs = logspace(-2, 1, 1000);
figure;
hold on;
for i = 1:length(ws)
sv = sigma(Gs{i}, 2*pi*freqs);
set(gca,'ColorOrderIndex',i)
plot(freqs, sv(1, :), 'DisplayName', sprintf('w = %.0f rpm', ws(i)*60/2/pi));
set(gca,'ColorOrderIndex',i)
plot(freqs, sv(2, :), '--', 'HandleVisibility', 'off');
end
hold off;
set(gca,'xscale','log'); set(gca,'yscale','log');
legend('location', 'southwest');
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:G_sigma
#+HEADER : :var filepath="Figures/G_sigma.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file G_sigma.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-29 09:32:29 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:G_sigma
#+CAPTION : caption
#+RESULTS : fig:G_sigma
2019-01-29 09:32:29 +01:00
#+CAPTION : Evolution of the singular values with frequency
[[file:Figures/G_sigma.png ]]
We compute
#+begin_src matlab :results silent :exports code
[U,S,V] = svd(freqresp(Gtvc, 2*pi*10));
#+end_src
#+begin_src matlab :results output :exports results
U, S, V
#+end_src
#+RESULTS :
#+begin_example
U, S, V
U =
-0.707101109012986 - 0.00283224868340902i -0.707104254409621 - 0.00189034277692295i
0.00283224868340845 - 0.707101109012987i -0.00189034277692242 + 0.70710425440962i
S =
9.01532756059351e-06 0
0 6.01714794171208e-06
V =
0.707106781186547 + 0i 0.707106781186548 + 0i
-1.57009245868378e-16 + 0.707106781186548i 1.57009245868377e-16 - 0.707106781186547i
#+end_example
The input and output directions are related through the singular values
\[ G v_i = \sigma_i u_i \]
So, if we consider an input in the direction $v_i$, then the output is in the direction $u_i$. Furthermore, since $\normtwo{v_i}=1$ and $\normtwo{u_i}=1$, we see that *the singular value $\sigma_i$ directly gives the gain of the matrix $G$ in this direction* .
#+begin_src matlab
freqresp(Gtvc, 2*pi*10)*V(:, 1)
#+end_src
#+RESULTS :
| -6.3747e-06-2.5534e-08i |
| 2.5534e-08-6.3747e-06i |
#+begin_src matlab
S(1)*U(:, 1)
#+end_src
#+RESULTS :
| -6.3747e-06-2.5534e-08i |
| 2.5534e-08-6.3747e-06i |
*** Closed loop SVD
#+begin_src matlab :results silent :exports none
figure;
sigma(Tvc, Ttvc)
#+end_src
2019-01-24 17:52:32 +01:00
** test
2019-01-23 15:21:17 +01:00
2019-01-24 17:52:32 +01:00
#+begin_src matlab :exports none :results silent
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gvc_light('du', 'fu'), freqs, 'Hz'))), '-');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gvc_light('du', 'fu'), freqs, 'Hz')))), '-');
set(gca,'xscale','log');
yticks(-180:180:180);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
#+end_src
2019-01-23 15:21:17 +01:00
2019-01-24 17:52:32 +01:00
#+begin_src matlab :exports none :results silent
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(-Gvc_light('dv', 'fv'), freqs, 'Hz'))), '-');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(-Gvc_light('dv', 'fv'), freqs, 'Hz')))), '-');
set(gca,'xscale','log');
yticks(-180:180:180);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
#+end_src
2019-01-23 15:21:17 +01:00
2019-01-21 23:33:23 +01:00
#+begin_src matlab :exports none :results silent
figure;
bode(Gpz_light, Gvc_light);
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_simscape
#+HEADER : :var filepath="Figures/coupling_simscape.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_simscape.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-21 23:44:33 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_simscape
#+CAPTION : caption
#+RESULTS : fig:coupling_simscape
2019-01-21 23:44:33 +01:00
[[file:Figures/coupling_simscape_light.png ]]
2019-01-21 23:33:23 +01:00
And then with the heavy sample.
#+begin_src matlab :exports code :results silent
rot_speed = wheavy;
angle_e = 0;
m = mheavy;
k = kpz;
c = 1e3;
Gpz_heavy = linearize(mdl, io, 0.1);
k = kvc;
c = 1e3;
Gvc_heavy = linearize(mdl, io, 0.1);
Gpz_heavy.InputName = {'Fu', 'Fv'};
Gpz_heavy.OutputName = {'Du', 'Dv'};
Gvc_heavy.InputName = {'Fu', 'Fv'};
Gvc_heavy.OutputName = {'Du', 'Dv'};
#+end_src
#+begin_src matlab :exports none :results silent
figure;
bode(Gpz_heavy, Gvc_heavy);
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_simscape_heavy
#+HEADER : :var filepath="Figures/coupling_simscape_heavy.pdf" :var figsize="full-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_simscape_heavy.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-21 23:44:33 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_simscape_heavy
#+CAPTION : caption
#+RESULTS : fig:coupling_simscape_heavy
2019-01-21 23:44:33 +01:00
[[file:Figures/coupling_simscape_heavy.png ]]
2019-01-21 23:33:23 +01:00
Plot the ratio between the main transfer function and the coupling term:
#+begin_src matlab :results silent :exports none
freqs = logspace(-2, 3, 1000);
figure;
hold on;
2019-01-21 23:44:33 +01:00
plot(freqs, abs(squeeze(freqresp(Gvc_light('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gvc_light('Dv', 'Fu'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gpz_light('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gpz_light('Dv', 'Fu'), freqs, 'Hz'))));
2019-01-21 23:33:23 +01:00
hold off;
2019-01-21 23:44:33 +01:00
xlim([freqs(1), freqs(end)]);
2019-01-21 23:33:23 +01:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Coupling ratio');
legend({'Voice Coil', 'Piezoelectric'})
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_ratio_simscape_light
#+HEADER : :var filepath="Figures/coupling_ratio_simscape_light.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_ratio_simscape_light.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-21 23:44:33 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_ratio_simscape_light
#+CAPTION : caption
#+RESULTS : fig:coupling_ratio_simscape_light
2019-01-24 17:52:32 +01:00
[[file:Figures/coupling_ratio_simscape_light.png ]]
2019-01-21 23:44:33 +01:00
2019-01-21 23:33:23 +01:00
#+begin_src matlab :results silent :exports none
freqs = logspace(-2, 3, 1000);
figure;
hold on;
2019-01-21 23:44:33 +01:00
plot(freqs, abs(squeeze(freqresp(Gvc_heavy('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gvc_heavy('Dv', 'Fu'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gpz_heavy('Du', 'Fu'), freqs, 'Hz')))./abs(squeeze(freqresp(Gpz_heavy('Dv', 'Fu'), freqs, 'Hz'))));
2019-01-21 23:33:23 +01:00
hold off;
2019-01-21 23:44:33 +01:00
xlim([freqs(1), freqs(end)]);
2019-01-21 23:33:23 +01:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Coupling ratio');
legend({'Voice Coil', 'Piezoelectric'})
#+end_src
2019-03-05 13:30:43 +01:00
#+NAME : fig:coupling_ratio_simscape_heavy
#+HEADER : :var filepath="Figures/coupling_ratio_simscape_heavy.pdf" :var figsize="wide-tall"
#+HEADER : :tangle no :exports results :results raw :noweb yes :mkdirp yes
#+begin_src matlab :output-dir Figures :file coupling_ratio_simscape_heavy.pdf :post pdf2svg(file=*this*, ext= "png")
2019-01-21 23:44:33 +01:00
<<plt-matlab >>
#+end_src
2019-03-05 13:30:43 +01:00
#+LABEL : fig:coupling_ratio_simscape_heavy
#+CAPTION : caption
#+RESULTS : fig:coupling_ratio_simscape_heavy
2019-01-24 17:52:32 +01:00
[[file:Figures/coupling_ratio_simscape_heavy.png ]]
2019-01-21 23:44:33 +01:00
2019-01-21 23:33:23 +01:00
*** Low rotation speed and High rotation speed
#+begin_src matlab :exports code :results silent
rot_speed = 2*pi/60; angle_e = 0;
G_low = linearize(mdl, io, 0.1);
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
rot_speed = 2*pi; angle_e = 0;
G_high = linearize(mdl, io, 0.1);
2019-01-18 17:46:54 +01:00
2019-01-21 23:33:23 +01:00
G_low.InputName = {'Fu', 'Fv'};
G_low.OutputName = {'Du', 'Dv'};
G_high.InputName = {'Fu', 'Fv'};
G_high.OutputName = {'Du', 'Dv'};
#+end_src
2019-01-18 17:46:54 +01:00
2019-01-21 23:33:23 +01:00
#+begin_src matlab :results silent
figure;
bode(G_low, G_high);
#+end_src
2019-01-18 17:46:54 +01:00
2019-01-21 23:33:23 +01:00
** Identification in the fixed frame
Let's define some options as well as the inputs and outputs for linearization.
#+begin_src matlab :exports code :results silent
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
%% Name of the Simulink File
mdl = 'rotating_frame';
2019-01-18 17:18:02 +01:00
2019-01-21 23:33:23 +01:00
%% Input/Output definition
io(1) = linio([mdl, '/fx'], 1, 'input');
io(2) = linio([mdl, '/fy'], 1, 'input');
io(3) = linio([mdl, '/dx'], 1, 'output');
io(4) = linio([mdl, '/dy'], 1, 'output');
#+end_src
We then define the error estimation of the error and the rotational speed.
#+begin_src matlab :exports code :results silent
%% Run the linearization
angle_e = 0;
rot_speed = 0;
#+end_src
Finally, we run the linearization.
#+begin_src matlab :exports code :results silent
G = linearize(mdl, io, 0);
%% Input/Output names
G.InputName = {'Fx', 'Fy'};
G.OutputName = {'Dx', 'Dy'};
#+end_src
#+begin_src matlab :exports code :results silent
%% Run the linearization
angle_e = 0;
rot_speed = 2*pi;
Gr = linearize(mdl, io, 0);
%% Input/Output names
Gr.InputName = {'Fx', 'Fy'};
Gr.OutputName = {'Dx', 'Dy'};
2019-01-18 17:18:02 +01:00
#+end_src
2019-01-21 23:33:23 +01:00
#+begin_src matlab :exports code :results silent
%% Run the linearization
angle_e = 1*2*pi/180;
rot_speed = 2*pi;
Ge = linearize(mdl, io, 0);
%% Input/Output names
Ge.InputName = {'Fx', 'Fy'};
Ge.OutputName = {'Dx', 'Dy'};
#+end_src
#+begin_src matlab :exports code :results silent
figure;
bode(G);
% exportFig('G_x_y', 'wide-tall');
figure;
bode(Ge);
% exportFig('G_x_y_e', 'normal-normal');
#+end_src
** Identification from actuator forces to displacement in the fixed frame
#+begin_src matlab :exports code :results silent
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'rotating_frame';
%% Input/Output definition
io(1) = linio([mdl, '/fu'], 1, 'input');
io(2) = linio([mdl, '/fv'], 1, 'input');
io(3) = linio([mdl, '/dx'], 1, 'output');
io(4) = linio([mdl, '/dy'], 1, 'output');
#+end_src
#+begin_src matlab :exports code :results silent
rot_speed = 2*pi;
angle_e = 0;
G = linearize(mdl, io, 0.0);
G.InputName = {'Fu', 'Fv'};
G.OutputName = {'Dx', 'Dy'};
#+end_src
#+begin_src matlab :exports code :results silent
rot_speed = 2*pi;
angle_e = 0;
G1 = linearize(mdl, io, 0.4);
G1.InputName = {'Fu', 'Fv'};
G1.OutputName = {'Dx', 'Dy'};
#+end_src
#+begin_src matlab :exports code :results silent
rot_speed = 2*pi;
angle_e = 0;
G2 = linearize(mdl, io, 0.8);
G2.InputName = {'Fu', 'Fv'};
G2.OutputName = {'Dx', 'Dy'};
#+end_src
#+begin_src matlab :exports code :results silent
figure;
bode(G, G1, G2);
exportFig('G_u_v_to_x_y', 'wide-tall');
#+end_src
** Effect of the rotating Speed
<<sec:effect_rot_speed >>
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init >>
#+end_src
*** TODO Use realistic parameters for the mass of the sample and stiffness of the X-Y stage
2019-03-05 13:30:43 +01:00
2019-01-21 23:33:23 +01:00
*** TODO Check if the plant is changing a lot when we are not turning to when we are turning at the maximum speed (60rpm)
2019-03-05 13:30:43 +01:00
2019-01-21 23:33:23 +01:00
** Effect of the X-Y stage stiffness
<<sec:effect_stiffness >>
2019-03-05 13:30:43 +01:00
2019-01-21 23:33:23 +01:00
*** TODO At full speed, check how the coupling changes with the stiffness of the actuators
2019-03-05 13:30:43 +01:00
2019-01-21 23:33:23 +01:00
* Control Implementation
<<sec:control >>
2019-03-05 13:30:43 +01:00
2019-01-21 23:33:23 +01:00
** Measurement in the fixed reference frame
2019-03-05 13:30:43 +01:00
2019-01-24 15:21:39 +01:00
* Bibliography :ignore:
2019-01-29 09:32:29 +01:00
# #+BIBLIOGRAPHY: /home/tdehaeze/MEGA/These/Ressources/references.bib plain option:-a option:-noabstract option:-nokeywords option:-noheader option:-nofooter option:-nobibsource limit:t