First draft with only detailed outline
1211
figs/introduction_endstation_id11.svg
Normal file
After Width: | Height: | Size: 1.8 MiB |
BIN
figs/introduction_endstation_id16b.png
Normal file
After Width: | Height: | Size: 912 KiB |
15098
figs/introduction_esrf_schematic.svg
Normal file
After Width: | Height: | Size: 576 KiB |
BIN
figs/introduction_id31_cad.jpg
Normal file
After Width: | Height: | Size: 575 KiB |
BIN
figs/introduction_id31_station_detector.jpg
Normal file
After Width: | Height: | Size: 991 KiB |
1175
figs/introduction_linear_stage.svg
Normal file
After Width: | Height: | Size: 250 KiB |
BIN
figs/introduction_moore_law.png
Normal file
After Width: | Height: | Size: 358 KiB |
BIN
figs/introduction_nano_scan.png
Normal file
After Width: | Height: | Size: 163 KiB |
BIN
figs/introduction_overview_chapters.pdf
Normal file
BIN
figs/introduction_overview_chapters.png
Normal file
After Width: | Height: | Size: 388 KiB |
592
figs/introduction_overview_chapters.svg
Normal file
@ -0,0 +1,592 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
width="207.97545mm"
|
||||
height="67.707573mm"
|
||||
viewBox="0 0 207.97545 67.707573"
|
||||
version="1.1"
|
||||
id="svg1"
|
||||
inkscape:version="1.3.2 (091e20ef0f, 2023-11-25, custom)"
|
||||
sodipodi:docname="introduction_overview_chapters.svg"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:svg="http://www.w3.org/2000/svg">
|
||||
<sodipodi:namedview
|
||||
id="namedview1"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:showpageshadow="2"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pagecheckerboard="0"
|
||||
inkscape:deskcolor="#d1d1d1"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:zoom="1.2006431"
|
||||
inkscape:cx="427.27102"
|
||||
inkscape:cy="109.52464"
|
||||
inkscape:window-width="1894"
|
||||
inkscape:window-height="1147"
|
||||
inkscape:window-x="11"
|
||||
inkscape:window-y="38"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="layer1" />
|
||||
<defs
|
||||
id="defs1" />
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-1.0583331,-115.52678)">
|
||||
<rect
|
||||
style="fill:#f0f0f0;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="rect1"
|
||||
width="65.555527"
|
||||
height="61.017681"
|
||||
x="1.1899716"
|
||||
y="122.08504"
|
||||
rx="0.043372877"
|
||||
ry="0.043372877" />
|
||||
<rect
|
||||
style="fill:#f0f0f0;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="rect1-6"
|
||||
width="65.555527"
|
||||
height="61.017681"
|
||||
x="72.268295"
|
||||
y="122.08504"
|
||||
rx="0.043372877"
|
||||
ry="0.043372877" />
|
||||
<rect
|
||||
style="fill:#f0f0f0;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="rect1-2"
|
||||
width="65.555527"
|
||||
height="61.017681"
|
||||
x="143.34662"
|
||||
y="122.08504"
|
||||
rx="0.043372877"
|
||||
ry="0.043372877" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="16.507368"
|
||||
y="119.12383"
|
||||
id="text1"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1"
|
||||
style="stroke-width:0.264583"
|
||||
x="16.507368"
|
||||
y="119.12383">Conceptual Design</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="90.364876"
|
||||
y="119.10055"
|
||||
id="text2"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2"
|
||||
style="stroke-width:0.264583"
|
||||
x="90.364876"
|
||||
y="119.10055">Detailed Design</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="153.42104"
|
||||
y="119.12595"
|
||||
id="text3"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3"
|
||||
style="stroke-width:0.264583"
|
||||
x="153.42104"
|
||||
y="119.12595">Experimental Validation</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="134.32542"
|
||||
id="text4"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="134.32542">Uniaxial</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="137.85321"
|
||||
id="tspan5">Rotating</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="141.381"
|
||||
id="tspan6">Micro-Station Measurements</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="144.90878"
|
||||
id="tspan8">Model: Micro Station + Nano-Hexapod</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="148.43657"
|
||||
id="tspan9">Simulation</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="151.96436"
|
||||
id="tspan10" /><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="155.49216"
|
||||
id="tspan11">=> Concept validation</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="10.989797"
|
||||
y="159.01994"
|
||||
id="tspan7" /></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="135.65897"
|
||||
id="text12"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan12"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="135.65897">Geometry</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="139.18675"
|
||||
id="tspan13">Flexible Elements</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="142.71454"
|
||||
id="tspan14">Actuators, Flexible Joints</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="146.24232"
|
||||
id="tspan15">Instrumentation</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="149.77011"
|
||||
id="tspan17">Obtained design</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="153.2979"
|
||||
id="tspan20" /><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="156.8257"
|
||||
id="tspan21">=> Design validation</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="160.35349"
|
||||
id="tspan18" /><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="84.037552"
|
||||
y="163.88127"
|
||||
id="tspan19" /></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="156.40875"
|
||||
y="137.68449"
|
||||
id="text22"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan22"
|
||||
style="stroke-width:0.264583"
|
||||
x="156.40875"
|
||||
y="137.68449">Test bench: APA, Struts</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="156.40875"
|
||||
y="141.21228"
|
||||
id="tspan23">Test Bench: Flexible joints</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="156.40875"
|
||||
y="144.74007"
|
||||
id="tspan24">Nano-Hexapod Mouting</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="156.40875"
|
||||
y="148.26785"
|
||||
id="tspan26">Validation with rotation</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
style="stroke-width:0.264583"
|
||||
x="156.40875"
|
||||
y="151.79564"
|
||||
id="tspan25">Validation on ID31</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60"
|
||||
cx="12.086958"
|
||||
cy="118.06762"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="12.070024"
|
||||
y="119.47732"
|
||||
id="text60"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60"
|
||||
style="font-size:4.23333px;text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="12.070024"
|
||||
y="119.47732">1</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5"
|
||||
cx="21.326229"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="21.314939"
|
||||
y="127.47407"
|
||||
id="text60-9"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="21.314939"
|
||||
y="127.47407">1.1</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-7"
|
||||
cx="28.156984"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="28.145695"
|
||||
y="127.47408"
|
||||
id="text60-9-3"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-6"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="28.145695"
|
||||
y="127.47408">1.2</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-3"
|
||||
cx="34.98774"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="34.976452"
|
||||
y="127.47407"
|
||||
id="text60-9-1"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-9"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="34.976452"
|
||||
y="127.47407">1.3</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-4"
|
||||
cx="42.2719"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="42.260609"
|
||||
y="127.47407"
|
||||
id="text60-9-5"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-0"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="42.260609"
|
||||
y="127.47407">1.4</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-0"
|
||||
cx="49.010864"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="48.999577"
|
||||
y="127.47407"
|
||||
id="text60-9-6"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-3"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="48.999577"
|
||||
y="127.47407">1.5</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-1"
|
||||
cx="56.083378"
|
||||
cy="126.53427"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="56.07209"
|
||||
y="127.47407"
|
||||
id="text60-9-55"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-4"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="56.07209"
|
||||
y="127.47407">1.6</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-6"
|
||||
cx="80.581238"
|
||||
cy="126.24608"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="80.569954"
|
||||
y="127.18589"
|
||||
id="text60-9-9"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-37"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="80.569954"
|
||||
y="127.18589">2.1</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-7-4"
|
||||
cx="87.411995"
|
||||
cy="126.24608"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="87.400703"
|
||||
y="127.18591"
|
||||
id="text60-9-3-5"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-6-2"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="87.400703"
|
||||
y="127.18591">2.2</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-3-5"
|
||||
cx="94.242752"
|
||||
cy="126.24608"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="94.231461"
|
||||
y="127.18589"
|
||||
id="text60-9-1-4"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-9-7"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="94.231461"
|
||||
y="127.18589">2.3</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-4-4"
|
||||
cx="101.52691"
|
||||
cy="126.24608"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="101.51562"
|
||||
y="127.18589"
|
||||
id="text60-9-5-4"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-0-3"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="101.51562"
|
||||
y="127.18589">2.4</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-0-0"
|
||||
cx="108.26588"
|
||||
cy="126.24608"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="108.25459"
|
||||
y="127.18589"
|
||||
id="text60-9-6-7"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-3-8"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="108.25459"
|
||||
y="127.18589">2.5</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-1-6"
|
||||
cx="115.33839"
|
||||
cy="126.24609"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="115.3271"
|
||||
y="127.18589"
|
||||
id="text60-9-55-8"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-4-8"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="115.3271"
|
||||
y="127.18589">2.6</tspan></text>
|
||||
<g
|
||||
id="g1"
|
||||
transform="translate(134.77532,-0.0877507)">
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-49"
|
||||
cx="21.326229"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="21.314939"
|
||||
y="127.47407"
|
||||
id="text60-9-2"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-06"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="21.314939"
|
||||
y="127.47407">3.1</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-7-8"
|
||||
cx="28.156984"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="28.145695"
|
||||
y="127.47408"
|
||||
id="text60-9-3-9"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-6-26"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="28.145695"
|
||||
y="127.47408">3.2</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-3-6"
|
||||
cx="34.98774"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="34.976452"
|
||||
y="127.47407"
|
||||
id="text60-9-1-49"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-9-5"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="34.976452"
|
||||
y="127.47407">3.3</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-4-0"
|
||||
cx="42.2719"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="42.260609"
|
||||
y="127.47407"
|
||||
id="text60-9-5-48"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-0-7"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="42.260609"
|
||||
y="127.47407">3.4</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-0-1"
|
||||
cx="49.010864"
|
||||
cy="126.53426"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="48.999577"
|
||||
y="127.47407"
|
||||
id="text60-9-6-72"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-3-7"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="48.999577"
|
||||
y="127.47407">3.5</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-5-1-2"
|
||||
cx="56.083378"
|
||||
cy="126.53427"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:2.82223px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="56.07209"
|
||||
y="127.47407"
|
||||
id="text60-9-55-2"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-2-4-6"
|
||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="56.07209"
|
||||
y="127.47407">3.6</tspan></text>
|
||||
</g>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-6"
|
||||
cx="85.85556"
|
||||
cy="118.06762"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="85.857674"
|
||||
y="119.47732"
|
||||
id="text60-2"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-6"
|
||||
style="font-size:4.23333px;text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="85.857674"
|
||||
y="119.47732">2</tspan></text>
|
||||
<circle
|
||||
style="fill:#e3634f;fill-opacity:1;stroke:#000000;stroke-width:0.263277;stroke-miterlimit:10;-inkscape-stroke:none"
|
||||
id="path60-6-9"
|
||||
cx="148.90329"
|
||||
cy="118.06762"
|
||||
r="2.4091735" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:4.23333px;line-height:1.25;font-family:'Latin Modern Roman';-inkscape-font-specification:'Latin Modern Roman, Normal';stroke-width:0.264583"
|
||||
x="148.90541"
|
||||
y="119.43075"
|
||||
id="text60-2-2"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan60-6-0"
|
||||
style="font-size:4.23333px;text-align:center;text-anchor:middle;stroke-width:0.264583"
|
||||
x="148.90541"
|
||||
y="119.43075">3</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 22 KiB |
2936
figs/introduction_stacked_stages.svg
Normal file
After Width: | Height: | Size: 427 KiB |
BIN
figs/introduction_stages_engblom.png
Normal file
After Width: | Height: | Size: 172 KiB |
BIN
figs/introduction_stages_geraldes.png
Normal file
After Width: | Height: | Size: 290 KiB |
BIN
figs/introduction_stages_holler.png
Normal file
After Width: | Height: | Size: 217 KiB |
BIN
figs/introduction_stages_kelly.png
Normal file
After Width: | Height: | Size: 444 KiB |
BIN
figs/introduction_stages_nazaretski.png
Normal file
After Width: | Height: | Size: 612 KiB |
BIN
figs/introduction_stages_schroer.png
Normal file
After Width: | Height: | Size: 450 KiB |
BIN
figs/introduction_stages_villar.png
Normal file
After Width: | Height: | Size: 68 KiB |
BIN
figs/introduction_stages_wang.png
Normal file
After Width: | Height: | Size: 94 KiB |
BIN
figs/introduction_synchrotrons.png
Normal file
After Width: | Height: | Size: 1.0 MiB |
BIN
figs/introduction_tomography_example.png
Normal file
After Width: | Height: | Size: 438 KiB |
BIN
figs/introduction_tomography_picture_id16a.png
Normal file
After Width: | Height: | Size: 1.0 MiB |
3691
figs/introduction_two_stage_control_example.svg
Normal file
After Width: | Height: | Size: 611 KiB |
5000
figs/introduction_two_stage_example.svg
Normal file
After Width: | Height: | Size: 498 KiB |
1846
figs/introduction_two_stage_schematic.svg
Normal file
After Width: | Height: | Size: 1.3 MiB |
BIN
figs/nass_mechatronics_approach.pdf
Normal file
BIN
figs/nass_mechatronics_approach.png
Normal file
After Width: | Height: | Size: 177 KiB |
2031
figs/nass_mechatronics_approach.svg
Normal file
After Width: | Height: | Size: 248 KiB |
@ -88,16 +88,286 @@
|
||||
|
||||
Prefix is =introduction=
|
||||
|
||||
* Context of this thesis / Background and Motivation
|
||||
** TODO [#C] Finish review about Stewart platforms
|
||||
|
||||
- \gls{esrf} (Figure [[fig:esrf_picture]])
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
|
||||
|
||||
#+name: fig:esrf_picture
|
||||
- [ ] cite:li01_simul_fault_vibrat_isolat_point
|
||||
- [ ] cite:bishop02_devel_precis_point_contr_vibrat
|
||||
- [ ] cite:hanieh03_activ_stewar
|
||||
- [ ] cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies
|
||||
- [ ] cite:naves20_desig
|
||||
|
||||
** TODO [#C] Review of two stage control
|
||||
|
||||
[[elisp:(helm-bibtex nil nil "Two Stage Actuator ")][Two Stage Actuator]]:
|
||||
- [X] cite:&xu12_desig_devel_flexur_based_dual
|
||||
- [ ] cite:&pahk01_ultra_precis_posit_system_servo_motor
|
||||
- [ ] cite:&kobayashi03_phase_stabil_servo_contr_dual
|
||||
disk drive
|
||||
- [ ] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol
|
||||
- [ ] cite:&woody06_desig_perfor_dual_drive_system
|
||||
- [ ] cite:&chassagne07_nano_posit_system_with_sub
|
||||
- [ ] cite:&schitter08_dual
|
||||
- [X] cite:&buice09_desig_evaluat_singl_axis_precis
|
||||
- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage
|
||||
- [ ] cite:&ting11_contr_desig_high_frequen_cuttin
|
||||
- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
|
||||
- [ ] cite:&ito13_high_precis_posit_system_using
|
||||
- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system
|
||||
- [ ] cite:&kim13_desig_contr_singl_stage_dual
|
||||
- [ ] cite:&wu13_desig
|
||||
- [ ] cite:&parmar14_large_dynam_range_nanop_using
|
||||
- [ ] cite:&ito15_low_stiff_dual_stage_actuat
|
||||
- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system
|
||||
- [ ] cite:&zhu17_flexur_based_paral_actuat_dual
|
||||
- [ ] cite:&wang17_devel_contr_long_strok_precis_stage
|
||||
- [ ] cite:&okyay18_modal_analy_metrol_error_budget
|
||||
- [ ] cite:&csencsics18_system_contr_desig_voice_coil
|
||||
- [ ] cite:&okyay18_mechat_desig_actuat_optim_contr
|
||||
- [ ] cite:&kong18_vibrat_isolat_dual_stage_actuat
|
||||
- [ ] cite:&du19_multi_actuat_system_contr
|
||||
- [ ] cite:&yun20_inves_two_stage_vibrat_suppr
|
||||
- [ ] cite:&mukherjee20_hybrid_contr_precis_posit_applic
|
||||
- [ ] cite:&barros21_feedf_contr_piezoel_dual_actuat_system
|
||||
|
||||
*To read in details*:
|
||||
- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann
|
||||
*top*
|
||||
- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]]
|
||||
- [X] cite:&shinno11_newly_devel_long_range_posit
|
||||
- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
|
||||
- [ ] cite:&shan15_contr_review
|
||||
*good review*
|
||||
- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol
|
||||
*Good review*
|
||||
#+begin_quote
|
||||
The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred.
|
||||
Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal.
|
||||
#+end_quote
|
||||
- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat
|
||||
*only found example of dual stage with hexapod*
|
||||
#+begin_quote
|
||||
The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs.
|
||||
#+end_quote
|
||||
|
||||
#+name: tab:introduction_dual_stages
|
||||
#+caption: for each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator).
|
||||
#+attr_latex: :environment tabularx :width \linewidth :align lXX
|
||||
#+attr_latex: :center t :booktabs t
|
||||
| DoF | Long Stroke | Short Stroke | Bandwidth | |
|
||||
|--------+---------------------------------+---------------+---------------+------------------------------------------------------|
|
||||
| X,Y | 2 axis, linear motor | 2 piezo | | cite:&chassagne07_nano_posit_system_with_sub |
|
||||
| X,Y,Rz | 1 axis, iron core linear motor | 4 VCM | 85Hz | cite:&choi08_desig_contr_nanop_xy_theta_scann |
|
||||
| X | 1 axis, DC motor, feedscrew | 1 PZT | | cite:&buice09_desig_evaluat_singl_axis_precis |
|
||||
| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo | 3 PID, few Hz | cite:&liu10_desig_contr_long_travel_nano_posit_stage |
|
||||
| X | 1 axis, Servo motor, ball screw | 1 VCM | | cite:&shinno11_newly_devel_long_range_posit |
|
||||
| X | 1 axis, VCM | 1 piezo stack | | cite:&xu12_desig_devel_flexur_based_dual |
|
||||
|
||||
** TODO [#C] Make all the figures
|
||||
|
||||
1. [ ] [[file:figs/introduction_esrf_schematic.svg]]
|
||||
highlight Linac, Booster, Storage ring, ID31 beamline
|
||||
2. [ ] Good Picture of ESRF: =introduction_esrf_picture=
|
||||
3. [ ] Map with all the Synchrotrons in the World: =introduction_synchrotrons=
|
||||
Show Synchrotron going to 4th generation, Highlight ESRF
|
||||
4. [ ] Synchrotron Moore law =introduction_moore_law=
|
||||
5. [ ] Picture of the beam =introduction_beam_3rd_generation= and =introduction_beam_4th_generation=
|
||||
6. [ ] ID31/typical beamline layout with: =introduction_id31_layout=
|
||||
- Insertion device
|
||||
7. [ ] CAD view of the ID31 EH: =introduction_id31_cad=
|
||||
- Highlight focussing optics, positioning station, sample, detector
|
||||
- Show X-Y-Z vectors
|
||||
8. [ ] Micro-Station with each stage in different color and associated motions
|
||||
=introduction_id31_microstation_cad=
|
||||
=introduction_id31_microstation_picture=
|
||||
9. [ ] Typical experiment (ideally from ID31 experiments):
|
||||
- [ ] tomography: =introduction_exp_tomography= and =introduction_exp_tomography_image=
|
||||
- [ ] scanning: =introduction_exp_scanning= and =introduction_exp_scanning_image=
|
||||
10. [ ] Typical linear stage =introduction_linear_stage=
|
||||
- Show: stepper motor, ball screw, linear guides
|
||||
- Show: straightness, flatness, etc...
|
||||
11. [ ] Flexure based stage =introduction_flexure_stage=
|
||||
12. [ ] NASS concept: =introduction_nass_concept_schematic=
|
||||
- 4 elements: micro-station, nano-hexapod, metrology, control system
|
||||
13. [ ] NASS metrology schematic: =introduction_nass_metrology=
|
||||
- Nano-hexapod, sample, spherical mirror with flat bottom surface
|
||||
- several fiber interferometers with tracking systems (arrows showing that they can move in Rx/Ry)
|
||||
14. [ ] Show some passive end-stations =introduction_pass_stations=
|
||||
- ID16b
|
||||
- ID11
|
||||
15. [ ] Show active passive end-stations =introduction_acti_stations=
|
||||
- ID16a
|
||||
16. [ ] Two stage control =introduction_two_stage_control=
|
||||
Schematic with the long stroke, short stroke, metrology and control architecture: trajectory generation => long stroke & short stroke + feedback on the short stroke
|
||||
17. [ ] Examples of two stage control:
|
||||
- =introduction_two_stage_control_h_bridge= from [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]]
|
||||
- =introduction_two_stage_control_example= from [[cite:&shinno11_newly_devel_long_range_posit]]
|
||||
18. [ ] Serial VS Parallel: comparison of X-Y-Rz stages
|
||||
- =introduction_kinematics_serial=
|
||||
- =introduction_kinematics_parallel=
|
||||
19. [ ] Stewart platform architecture =introduction_stewart_platform=
|
||||
Maybe two pose to show that by changing the length of each strut, it is possible to change the relative position between the two plates?
|
||||
Maybe do that with Matlab and then editing with Inkscape
|
||||
20. [ ] Different model types
|
||||
- =introduction_model_lumped=
|
||||
- =introduction_model_fem=
|
||||
- =introduction_model_multi_body=
|
||||
21. [ ] Dynamic Error Budgeting ??
|
||||
- feedback model with disturbances, noise, and performance signal
|
||||
- PSD + CPS ? => understand what are the limitations?, similar to what is in [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]] ?
|
||||
|
||||
** DONE [#B] Check these papers for literature review
|
||||
CLOSED: [2024-05-05 Sun 16:22]
|
||||
|
||||
Check these papers:
|
||||
- [[elisp:(helm-bibtex nil nil "nass ")][Nano Active Stabilization System]]
|
||||
- [[elisp:(helm-bibtex nil nil "esrf ")][ESRF]]
|
||||
- [[elisp:(helm-bibtex nil nil "nanostage ")][Nano Positioning Stage]]
|
||||
|
||||
|
||||
NASS:
|
||||
- [X] cite:&wang12_autom_marker_full_field_hard
|
||||
Calibration of spindle run-out errors, and correct the errors in post processing, for tomography
|
||||
- [X] cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot
|
||||
- [X] cite:&schroer17_ptynam
|
||||
- [X] cite:&nazaretski17_desig_perfor_x_ray_scann
|
||||
- [X] cite:&nazaretski15_pushin_limit
|
||||
- [X] cite:nazaretski22_new_kirkp_baez_based_scann
|
||||
|
||||
- [X] cite:&naves20_t_flex
|
||||
- [X] cite:&kim13_compac_protot_appar_reduc_circl
|
||||
- [X] cite:&khaled18_pract_desig_applic_model_predic_contr
|
||||
- [X] cite:&holler18_omny_tomog_nano_cryo_stage
|
||||
- [X] cite:&holler17_omny_pin_versat_sampl_holder
|
||||
- [X] cite:&engblom18_nanop_resul
|
||||
- [X] cite:&dehaeze18_sampl_stabil_for_tomog_exper
|
||||
- [X] HXN [[cite:&xu23_high_nsls_ii]]
|
||||
Laser interferometers on reference ring (on top of rotary stage).
|
||||
Used to trigger the detectors (ptychography, microscope)
|
||||
|
||||
ESRF:
|
||||
- [X] cite:raimondi21_commis_hybrid_multib_achrom_lattic
|
||||
- [X] cite:cotte17_id21_x_ray_infrar_micros
|
||||
- [X] cite:martinez-criado16_id16b
|
||||
- [X] cite:villar18_nanop_esrf_id16a_nano_imagin_beaml
|
||||
- [X] cite:riekel10_progr_micro_nano_diffr_at
|
||||
- [X] cite:wright20_new_oppor_at_mater_scien
|
||||
- [X] cite:leake19_nanod_beaml_id01
|
||||
- [X] cite:versteegen23_inser_devic_contr
|
||||
- [X] cite:marion04_hexap_esrf
|
||||
- [X] cite:fajardo95_contr_six_degree_paral_manip
|
||||
- [X] cite:cammarata09_chopp_system_time_resol_exper
|
||||
- [X] cite:dabin02_mechan_desig_high_precis_posit
|
||||
- [X] cite:dabin03_precis_mechan_high_accur_beaml
|
||||
- [X] cite:guijarro17_bliss_exper_contr_esrf_ebs_beaml
|
||||
- [X] cite:janvier13_icepap
|
||||
- [X] cite:baker18_esrf_doubl_cryst_monoc_protot_projec
|
||||
- [X] cite:dabin04_mecan
|
||||
- [X] cite:reichert21_stiff_hexap
|
||||
- [X] cite:dehaeze21_mechat_approac_devel_nano_activ_stabil_system
|
||||
- [X] cite:brumund21_multib_simul_reduc_order_flexib_bodies_fea
|
||||
- [X] cite:dehaeze21_activ_dampin_rotat_platf_using
|
||||
- [X] cite:zhang96_groun_vibrat_orme_meris_super_esrf
|
||||
- [X] cite:zelenika04_flexur_use_elast_sr_instr_desig
|
||||
- [X] cite:youness20_concep
|
||||
- [X] cite:ravy18_shinin_light_synch_light
|
||||
- [X] cite:dimper15_esrf_upgrad_progr_phase_ii
|
||||
- [X] cite:dehaeze18_sampl_stabil_for_tomog_exper
|
||||
- [X] cite:dabin04_mecan
|
||||
- [X] cite:brendike19_esrf_doubl_cryst_monoc_protot_contr_concep
|
||||
|
||||
nanostage:
|
||||
- [X] cite:&yong16_mechan_desig_high_speed_nanop_system
|
||||
- [X] cite:&lee17_compac_compl_paral_xy_nano
|
||||
- [X] cite:&awtar13_desig_large_range_xy_nanop_system
|
||||
- [X] cite:&liu18_desig_trajec_track_contr_piezoel
|
||||
- [X] cite:&yong09_desig_ident_contr_flexur_based
|
||||
- [X] cite:&fleming10_integ_strain_force_feedb_high
|
||||
- [X] cite:&barillot99_desig_funct_tests_xy_piezoel
|
||||
|
||||
** DONE [#C] Table that compares nano positioning stations with metrology / feedback
|
||||
CLOSED: [2024-05-05 Sun 11:55]
|
||||
|
||||
- [X] ID16a: capacitive sensors, short stroke, spindle above the fix hexapod, light samples [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]
|
||||
- [X] Soleil Nano probe [[cite:&engblom18_nanop_resul;&stankevic17_inter_charac_rotat_stages_x_ray_nanot]]
|
||||
- [X] PSI OMNY [[cite:&holler18_omny_tomog_nano_cryo_stage;&holler17_omny_pin_versat_sampl_holder]]
|
||||
[[cite:&holler15_error_motion_compen_track_inter;&holler12_instr_x_ray_nano_imagin]]
|
||||
- [X] DESY PETRA III /PtyNAMi/ [[cite:&schropp20_ptynam;&schroer17_ptynam;&schroeck01_compen_desig_linear_time_invar]]
|
||||
scanning microscope and tomography
|
||||
tracking the mechanical stability of optics relative to the sample scanner
|
||||
laser interferometer system to track the sample in the two directions transverse to the optical axis
|
||||
#+begin_quote
|
||||
For scanning microscopy and tomography it is essential to know where the beam hits the sample.
|
||||
Position uncertainties can arise from vibrations of the focusing optics and of the sample.
|
||||
The sample is scanned through the nanobeam, while the optics are kept fixed after initial alignment.
|
||||
#+end_quote
|
||||
Interferometers used for monitoring, not for closed-loop control
|
||||
- [ ] APS/Diamond:
|
||||
- [X] cite:&wang12_autom_marker_full_field_hard
|
||||
Calibration of spindle run-out errors, and correct the errors in post processing, for tomography
|
||||
- [X] [[cite:&geraldes23_sapot_carnaub_sirius_lnls]]
|
||||
SIRIUS, LNLS
|
||||
#+begin_quote
|
||||
Synchrotron scanning X-ray microscopes are generally based on piezo scanning stages, with motion range typically
|
||||
limited to 100 µm, such that complementary long-stroke stages, with motion range of several millimeters, are often
|
||||
required to comply with alignment and the search of regions of interest in typical millimeter-size samples or sample
|
||||
mounts [3, 5–13, 15, 16]. However, potential limitations in this architecture include: 1) limited dynamics and stability,
|
||||
with resonance modes in the order of 100 Hz (or less) resulting from multiple stacked stages; 2) parasitic motion
|
||||
associated with coarse stages; and 3) deteriorated performance in continuous fly-scan beyond the piezo range, which
|
||||
are caused by disturbances introduced by stepper motors or stick-slip piezos [43].
|
||||
#+end_quote
|
||||
- [X] Delta robot, diamond [[cite:&kelly22_delta_robot_long_travel_nano]]
|
||||
|
||||
Bandwidth is rarely specified
|
||||
|
||||
Same table for nano positioning stages without integrated metrology?
|
||||
|
||||
|
||||
* Context of this thesis
|
||||
** Synchrotron Radiation Facilities
|
||||
**** Accelerating electrons to produce intense X-ray
|
||||
|
||||
- Explain what is a Synchrotron: light source
|
||||
- Say how many there are in the world (~50)
|
||||
- Electron part: LINAC, Booster, Storage Ring ref:fig:introduction_esrf_schematic
|
||||
- Synchrotron radiation: Insertion device / Bending magnet
|
||||
- Many beamlines (large diversity in terms of instrumentation and science)
|
||||
- Science that can be performed:
|
||||
- structural biology, structure of materials, matter at extreme, ...
|
||||
|
||||
**** The European Synchrotron Radiation Facility
|
||||
|
||||
#+name: fig:introduction_esrf_picture
|
||||
#+caption: European Synchrotron Radiation Facility
|
||||
#+attr_latex: :width 0.7\linewidth
|
||||
[[file:figs/introduction_esrf_picture.jpg]]
|
||||
|
||||
- ID31 and Micro Station (Figure [[fig:id31_microstation_picture]])
|
||||
#+name: fig:introduction_esrf_schematic
|
||||
#+caption: Schematic of the ESRF - Over 40 beamlines. Booster, Linac, storage ring
|
||||
#+attr_latex: :width 0.7\linewidth
|
||||
[[file:figs/introduction_esrf_schematic.svg]]
|
||||
|
||||
**** 3rd and 4th generation Synchrotrons
|
||||
|
||||
- 4th generation light sources
|
||||
- [[cite:&raimondi21_commis_hybrid_multib_achrom_lattic]]
|
||||
- [ ] Picture of 3rd generation "beam source" vs 4th generation?
|
||||
- [ ] Picture showing Synchrotron "moore's law"
|
||||
|
||||
** The ID31 ESRF Beamline
|
||||
**** Beamline Layout
|
||||
|
||||
- [ ] Beamline layout (OH, EH)
|
||||
- ID31 and Micro Station (Figure ref:fig:introduction_id31_microstation_picture)
|
||||
Check https://www.esrf.fr/UsersAndScience/Experiments/StructMaterials/ID31
|
||||
https://www.wayforlight.eu/beamline/23244
|
||||
- X-ray beam + detectors + sample stage (Figure ref:fig:introduction_id31_beamline_schematic)
|
||||
- Focusing optics
|
||||
- Optical schematic with: source, lens, sample and detector.
|
||||
Explain that what is the most important is the relative position between the sample and the lens.
|
||||
- Explain the XYZ frame for all the thesis (ESRF convention: X: x-ray, Z gravity up)
|
||||
- [ ] Add XYZ on figure ref:fig:introduction_id31_cad
|
||||
|
||||
#+begin_src latex :file id31_microstation_picture.pdf
|
||||
\begin{tikzpicture}
|
||||
@ -133,15 +403,19 @@ Prefix is =introduction=
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:id31_microstation_picture
|
||||
#+caption: Picture of the ID31 Micro-Station with annotations
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
#+RESULTS:
|
||||
[[file:figs/introduction_id31_microstation_picture.png]]
|
||||
#+name: fig:introduction_id31_cad
|
||||
#+caption: CAD view of the optical hutch with the nano-focusing optics, the micro-station
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:figs/introduction_id31_cad.jpg]]
|
||||
|
||||
Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
**** Positioning End Station: The Micro-Station
|
||||
|
||||
- X-ray beam + detectors + sample stage (Figure [[fig:id31_beamline_schematic]])
|
||||
Micro-Station:
|
||||
- DoF with strokes: Ty, Ry, Rz, Hexapod
|
||||
- Experiments: tomography, reflectivity, truncation rod, ...
|
||||
Make a table to explain the different "experiments"
|
||||
- Explain how it is used (positioning, scans), what it does. But not about the performances
|
||||
- Different sample environments
|
||||
|
||||
#+begin_src latex :file id31_beamline_schematic.pdf
|
||||
\begin{tikzpicture}
|
||||
@ -278,53 +552,292 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:id31_beamline_schematic
|
||||
#+caption: ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.
|
||||
#+attr_latex: :width \linewidth
|
||||
- Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
|
||||
#+name: fig:introduction_id31_microstation_picture
|
||||
#+caption: Picture of the ID31 Micro-Station with annotations
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
#+RESULTS:
|
||||
[[file:figs/introduction_id31_beamline_schematic.png]]
|
||||
[[file:figs/introduction_id31_microstation_picture.png]]
|
||||
|
||||
**** Science performed on ID31
|
||||
|
||||
- Few words about science made on ID31 and why nano-meter accuracy is required
|
||||
- Typical experiments (tomography, ...), various samples (up to 50kg)
|
||||
- Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...)
|
||||
- Example of picture obtained (Figure [[fig:id31_tomography_result]])
|
||||
- Typical experiments (tomography, ...), various samples (up to 50kg), sample environments (high temp, cryo, etc..)
|
||||
- Alignment of the sample, then
|
||||
- Reflectivity
|
||||
- Tomography
|
||||
- Diffraction tomography: most critical
|
||||
- Example of picture obtained (Figure ref:fig:introduction_id31_tomography_result) with resolution
|
||||
|
||||
#+name: fig:id31_tomography_result
|
||||
|
||||
=introduction_exp_scanning= and =introduction_exp_scanning_image=
|
||||
|
||||
#+name: fig:introduction_id31_tomography_result
|
||||
#+caption: Image obtained on the ID31 beamline
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-c.png]]
|
||||
|
||||
- Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, ...)
|
||||
** Need of accurate positioning end stations with high dynamics
|
||||
**** A push towards brighter and smaller beams...
|
||||
|
||||
- Speak about the metrology concept, and why it is not included in this thesis
|
||||
Improvement of both the light source and the instrumentation:
|
||||
- EBS: smaller source + higher flux
|
||||
- Better focusing optic (add some links): beam size in the order of 10 to 20nm FWHM (reference)
|
||||
- [ ] Show picture or measurement of the beam size
|
||||
crossed silicon compound refractive lenses, KB mirrors [17], zone plates [18], or multilayer Laue lenses [19]
|
||||
[[cite:&barrett16_reflec_optic_hard_x_ray]]
|
||||
|
||||
Higher flux density (+high energy of the ID31 beamline) => Radiation damage: needs to scan the sample quite fast with respect to the focused beam
|
||||
|
||||
- Allowed by better detectors: higher sampling rates and lower noise => possible to scan fast
|
||||
[[cite:&hatsui15_x_ray_imagin_detec_synch_xfel_sourc]]
|
||||
|
||||
**** ...Requires the use of dynamical positioning
|
||||
"from traditional step by step scans to /fly-scan/"
|
||||
|
||||
Fast scans + needs of high accuracy and stability => need mechatronics system with:
|
||||
- accurate metrology
|
||||
- multi degree of freedom positioning systems
|
||||
- fast feedback loops
|
||||
|
||||
Shift from step by step scan to /fly-scan/ cite:huang15_fly_scan_ptych
|
||||
- Much lower pixel size + large image => takes of lot of time if captured step by step.
|
||||
Explain what is step by step scanning: move motors from point A to point B, stops, start detector acquisition, open shutter , close the shutter, move to point C, ...
|
||||
|
||||
[[cite:&xu23_high_nsls_ii]]
|
||||
#+begin_quote
|
||||
In traditional step scan mode, each exposure position requires the system to stop prior to data acquisition, which may become a limiting factor when fast data collection is required.
|
||||
Fly-scanning is chosen as a preferred solution that helps overcome such speed limitations [5, 6].
|
||||
In fly-scan mode, the sample keeps moving and a triggering system generates trigger signals based on the position of the sample or the time elapsed.
|
||||
The trigger signals are used to control detector exposure.
|
||||
#+end_quote
|
||||
|
||||
- [ ] Make picture representing a typical experiment (maybe YZ scan?) with:
|
||||
Probably already shown earlier =introduction_exp_scanning=
|
||||
- nano focusing optics (see the beam focused)
|
||||
- positioning stage with displayed YZ motion (pixel by pixel in the YZ plane)
|
||||
- detector
|
||||
|
||||
Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy
|
||||
|
||||
* Challenge definition
|
||||
** Multi DoF, Highly accurate, and Long stroke positioning end station?
|
||||
**** Performance limitation of "stacked stages" end-stations
|
||||
|
||||
#+name: fig:nass_concept_schematic
|
||||
Typical positioning end station:
|
||||
- stacked stages
|
||||
- ballscrew, linear guides, rotary motor
|
||||
|
||||
|
||||
Explain the limitation of performances:
|
||||
- Backlash, play, thermal expansion, guiding imperfections, ...
|
||||
- Give some numbers: straightness of the Ty stage for instance, change of $0.1^oC$ with steel gives x nm of motion
|
||||
- Vibrations
|
||||
- Explain that this micro-station can only have ~10um of accuracy due to physical limitation
|
||||
- Possibility to have linear/rotary encoders that correct the motion in the considered DoF, but does not change anything to the other 5DoF
|
||||
|
||||
|
||||
Talk about flexure based positioning stations?
|
||||
Advantages: no backlash, etc...
|
||||
But: limited to short stroke
|
||||
Picture of schematic of one positioning station based on flexure
|
||||
|
||||
**** The ID31 Micro-Station
|
||||
|
||||
Presentation of the Micro-Station in details ref:fig:introduction_id31_microstation_cad:
|
||||
- Goal of each stage (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...)
|
||||
- Stroke
|
||||
- Initial design objectives: as stiff as possible, smallest errors as possible
|
||||
|
||||
**** New positioning requirements
|
||||
|
||||
- To benefits from nano-focusing optics, new source, etc... new positioning requirements
|
||||
- Positioning requirements on ID31:
|
||||
- Maybe make a table with the requirements and the associated performances of the micro-station
|
||||
- Make tables with the wanted motion, stroke, accuracy in different DoF, etc..
|
||||
- Sample masses
|
||||
|
||||
The goal in this thesis is to increase the positioning accuracy of the micro-station to fulfil the initial positioning requirements.
|
||||
|
||||
*Goal*: Improve accuracy of 6DoF long stroke position platform
|
||||
|
||||
** The Nano Active Stabilization System
|
||||
**** NASS Concept
|
||||
|
||||
Briefly describe the NASS concept.
|
||||
4 parts:
|
||||
- Micro Station
|
||||
- multi-DoF positioning system with good dynamics
|
||||
- 5DoF metrology system
|
||||
- Control system and associated instrumentation
|
||||
|
||||
6DoF vibration control platform on top of a complex positioning platform that correct positioning errors based on an external metrology
|
||||
|
||||
- [ ] Add the control system in the schematic
|
||||
|
||||
#+name: fig:introduction_nass_concept_schematic
|
||||
#+caption: Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology
|
||||
[[file:figs/introduction_nass_concept_schematic.png]]
|
||||
|
||||
- 6DoF vibration control platform on top of a complex positioning platform
|
||||
- *Goal*: Improve accuracy of 6DoF long stroke position platform
|
||||
- *Approach*: Mechatronic approach / model based / predictive
|
||||
- *Control*: Robust control approach / various payloads.
|
||||
First hexapod with control bandwidth higher than the suspension modes that accepts various payloads?
|
||||
- Rotation aspect
|
||||
- Compactness? (more related to mechanical design)
|
||||
**** Metrology system
|
||||
|
||||
Requirements:
|
||||
- 5 DoF
|
||||
- long stroke
|
||||
- nano-meter accurate
|
||||
- high bandwidth
|
||||
|
||||
The accuracy of the NASS will only depend on the accuracy of the metrology system.
|
||||
|
||||
Concept:
|
||||
- Fiber interferometers
|
||||
- Spherical reflector with flat bottom
|
||||
- Tracking system
|
||||
|
||||
Complex mechatronics system on its own.
|
||||
|
||||
This metrology system is not further discussed in this thesis as it is still under active development.
|
||||
|
||||
In the following of this thesis, it is supposed that the metrology system is accurate, etc..
|
||||
|
||||
- Say that there are several high precision sensors, but only interferometers for long stroke / high accuracy?
|
||||
|
||||
**** Multi-DoF Positioning stage for error compensation
|
||||
|
||||
- 5 DoF
|
||||
- High dynamics
|
||||
- nano-meter capable (no backlash,)
|
||||
- Accept payloads up to 50kg
|
||||
|
||||
**** MIMO robust control strategies
|
||||
|
||||
Explain the robustness need?
|
||||
- 24 7/7 ...
|
||||
- That is why most of end-stations are based on well-proven design (stepper motors, linear guides, ball bearing, ...)
|
||||
- Plant uncertainty: many different samples, use cases, rotating velocities, etc...
|
||||
|
||||
Trade-off between robustness and performance in the design of feedback system.
|
||||
|
||||
** Predictive Design
|
||||
|
||||
- The performances of the system will depend on many factors:
|
||||
- sensors
|
||||
- actuators
|
||||
- mechanical design
|
||||
- achievable bandwidth
|
||||
- ...
|
||||
- Need to evaluate the different concepts, and predict the performances to guide the design
|
||||
- The goal is to design, built and test this system such that it work as expected the first time.
|
||||
Very costly system, so much be correct.
|
||||
|
||||
** Control Challenge
|
||||
|
||||
High bandwidth, 6 DoF system for vibration control, fixed on top of a complex multi DoF positioning station, robust, ...
|
||||
|
||||
- Many different configurations (tomography, Ty scans, slow fast, ...)
|
||||
- Complex MIMO system. Dynamics of the system could be coupled to the complex dynamics of the micro station
|
||||
- Rotation aspect, gyroscopic effects, actuators are rotating with respect to the sensors
|
||||
- Robustness to payload change: very critical.
|
||||
Say that high performance systems (lithography machines, etc...) works with calibrated payloads.
|
||||
Being robust to change of payload inertia means large stability margins and therefore less performance.
|
||||
|
||||
* Literature Review
|
||||
** Nano Positioning end-stations
|
||||
**** End Station with Stacked Stages
|
||||
|
||||
#+name: fig:stewart_platform_examples
|
||||
Stacked stages:
|
||||
- errors are combined
|
||||
|
||||
To have acceptable performances / stability:
|
||||
- limited number of stages
|
||||
- high performances stages (air bearing etc...)
|
||||
|
||||
Examples:
|
||||
- ID16b [[cite:&martinez-criado16_id16b]]
|
||||
- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]]
|
||||
- ID11 cite:wright20_new_oppor_at_mater_scien
|
||||
- ID01 [[cite:&leake19_nanod_beaml_id01]]
|
||||
- [ ] Maybe make a table to compare stations
|
||||
|
||||
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ...
|
||||
|
||||
**** Online Metrology and Active Control of Positioning Errors
|
||||
|
||||
The idea of having an external metrology to correct for errors is not new.
|
||||
|
||||
- To have even better performances: online metrology are required.
|
||||
- Several strategies:
|
||||
- only used for measurements (post processing)
|
||||
- for calibration
|
||||
- for triggering detectors
|
||||
- for real time positioning control
|
||||
|
||||
|
||||
|
||||
- [ ] HXN [[cite:&xu23_high_nsls_ii]]
|
||||
Laser interferometers on reference ring (on top of rotary stage).
|
||||
Used to trigger the detectors (ptychography, microscope)
|
||||
Similar to cite:&wang12_autom_marker_full_field_hard
|
||||
|
||||
#+name: tab:introduction_sample_stages
|
||||
#+caption: Table caption
|
||||
#+attr_latex: :environment tabularx :width \linewidth :align lllllllX
|
||||
#+attr_latex: :center t :booktabs t
|
||||
| Architecture | Sensors and measured DoFs | Actuators and controlled DoFs | Institute, BL | OL/CL (bandwidth) | Stroke, DoF | Samples | Ref |
|
||||
|-----------------------------------------------+--------------------------------------+-------------------------------+----------------+---------------------+-----------------------+--------------+----------------------------------------------------------------------------------|
|
||||
| XYZ, Spherical retroreflector, Sample | 3 interferometers[fn:1], Y,Z | YZ piezo stages | PETRA III, P06 | OL | 100um | light | [[cite:&schroer17_ptynam;&schropp20_ptynam]] |
|
||||
| Spindle / Metrology Ring / XYZ Stage / Sample | 3 Capacitive, Y,Z,Rx | | NSLS, X8C | OL, post processing | | micron scale | cite:&wang12_autom_marker_full_field_hard |
|
||||
| *Hexapod* / Spindle / Metrology Ring / Sample | 12 Capacitive[fn:4], X,Y,Z,Rx,Ry | Piezo (Hexapod) | ESRF, ID16a | CL, 10Hz bandwidth | 50um, 500urad | light | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
|
||||
| XYZ, Rz, XY, Cylindrical reference | 5 interferometers[fn:3], X,Y,Z,Rx,Ry | XYZ linear motors | Soleil | CL | | light | [[cite:&engblom18_nanop_resul;&stankevic17_inter_charac_rotat_stages_x_ray_nanot]] |
|
||||
| XYZ, Rz, XYZ Spherical reference | 3 Interferometers[fn:2], Y,Z,Rx | XYZ parallel piezo stage | PSI, OMNY | CL | 400um | light | [[cite:&holler18_omny_tomog_nano_cryo_stage;&holler17_omny_pin_versat_sampl_holder]] |
|
||||
| XYZ, mirrors/sample | 3 interferometers[fn:3], XYZ | XYZ piezo stage | APS | CL, 3 PID | 3mm | light | [[cite:&nazaretski15_pushin_limit]] |
|
||||
| Rz, Parallel XYZ stage | 3 interferometers[fn:1] | 3xVCM parallel stage | LNLS, CARNAUBA | CL, 100Hz bandwidth | YZ: 3mm, Rz: +-110deg | light | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
|
||||
| Parallel XYZ stage | 3 interferometers[fn:2], XYZ | 3xVCM parallel stage | Diamond, I14 | CL, 100Hz bandwidth | XYZ: 3mm | up to 350g | [[cite:&kelly22_delta_robot_long_travel_nano]] |
|
||||
|
||||
- [ ] Figure with different stages
|
||||
- [ ] Compared to the existing stages (see table), what are the challenges here? Rotation, large stroke, light to heavy payloads, lots of DoF (5 to be controlled)
|
||||
- [ ] Comparison with NASS?
|
||||
| Architecture | Sensors | Actuators | Institute, BL | OL/CL (bandwidth) | Stroke, DoF | Samples | Ref |
|
||||
|-------------------------+--------------------+-----------+---------------+-------------------+------------------+------------+-----|
|
||||
| Ty,Ry,Rz,Hexapod,Sample | 6+ Interferometers | | ESRF, ID31 | CL | Ty, Ry, Rz, Hexa | up to 50kg | |
|
||||
|
||||
|
||||
**** Long Stroke - Short Stroke architecture
|
||||
|
||||
Speak about two stage control?
|
||||
- Long stroke + short stroke
|
||||
- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner)
|
||||
- Any application in 6DoF? Maybe new!
|
||||
- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil)
|
||||
|
||||
** Multi-DoF dynamical positioning stations
|
||||
**** Serial and Parallel Kinematics
|
||||
|
||||
Example of several dynamical stations:
|
||||
- XYZ piezo stages
|
||||
- Delta robot? Octoglide?
|
||||
- Stewart platform
|
||||
|
||||
Serial vs parallel kinematics (table?)
|
||||
|
||||
**** Stewart platforms
|
||||
|
||||
- [ ] Explain the normal stewart platform architecture
|
||||
- [ ] Make a table that compares the different stewart platforms for vibration control.
|
||||
Geometry (cubic), Actuator (soft, stiff), Sensor, Flexible joints, etc.
|
||||
|
||||
#+name: fig:introduction_stewart_platform_examples
|
||||
#+caption: Examples of Stewart Platforms
|
||||
#+begin_figure
|
||||
#+name: fig:stewart_platform_a
|
||||
#+name: fig:introduction_stewart_platform_a
|
||||
#+attr_latex: :caption \subcaption{Stewart platform based on voice coil actuators}
|
||||
#+attr_latex: :options {0.49\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.8\linewidth
|
||||
[[file:example-image-a.png]]
|
||||
#+end_subfigure
|
||||
#+name: fig:stewart_platform_a
|
||||
#+name: fig:introduction_stewart_platform_a
|
||||
#+attr_latex: :options {0.49\textwidth}
|
||||
#+attr_latex: :caption \subcaption{Stewart platform based on piezoelectric actuators}
|
||||
#+begin_subfigure
|
||||
@ -333,26 +846,146 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
#+end_subfigure
|
||||
#+end_figure
|
||||
|
||||
- Hexapods
|
||||
cite:li01_simul_fault_vibrat_isolat_point
|
||||
cite:bishop02_devel_precis_point_contr_vibrat
|
||||
cite:hanieh03_activ_stewar
|
||||
cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies
|
||||
cite:naves20_desig
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
|
||||
- Positioning stations
|
||||
- Mechatronic approach?
|
||||
cite:rankers98_machin
|
||||
cite:monkhorst04_dynam_error_budget
|
||||
cite:jabben07_mechat
|
||||
** Mechatronics approach
|
||||
**** Predicting performances using models
|
||||
|
||||
* Outline of thesis / Thesis Summary / Thesis Contributions
|
||||
|
||||
*Mechatronic Design Approach* / *Model Based Design*:
|
||||
- [[cite:&monkhorst04_dynam_error_budget]] high costs of the design process: the designed system must be *first time right*.
|
||||
- [[cite:&monkhorst04_dynam_error_budget]]
|
||||
#+begin_quote
|
||||
high costs of the design process: the designed system must be *first time right*.
|
||||
When the system is finally build, its performance level should satisfy the specifications.
|
||||
No significant changes are allowed in the post design phase.
|
||||
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
|
||||
#+end_quote
|
||||
|
||||
|
||||
Can use several models:
|
||||
- Lumped mass-spring-damper models
|
||||
cite:rankers98_machin
|
||||
- Multi-Body Models
|
||||
- Finite element models
|
||||
Sub structuring?
|
||||
|
||||
**** Closed-Loop Simulations
|
||||
|
||||
[[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]]
|
||||
|
||||
Say what can limit the performances for a complex mechatronics systems as this one:
|
||||
- disturbances
|
||||
- measurement noise
|
||||
- DAC / amplifier noise (actuator)
|
||||
- feedback system / bandwidth
|
||||
|
||||
Simulations can help evaluate the behavior of the system.
|
||||
|
||||
**** Dynamic Error Budgeting
|
||||
|
||||
- [[cite:&monkhorst04_dynam_error_budget]]
|
||||
#+begin_quote
|
||||
high costs of the design process: the designed system must be *first time right*.
|
||||
When the system is finally build, its performance level should satisfy the specifications.
|
||||
No significant changes are allowed in the post design phase.
|
||||
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
|
||||
#+end_quote
|
||||
- cite:jabben07_mechat
|
||||
- [[cite:&okyay16_mechat_desig_dynam_contr_metrol]]
|
||||
#+begin_quote
|
||||
Error budgets [23] are frequently used in the design of precision machines, in order to assess the
|
||||
contributions of different factors such as parasitic motions, thermal expansion, and servo accuracy, on
|
||||
the positioning accuracy of a machine. Dynamic Error Budgeting (DEB) or ‘Spectral Analysis’
|
||||
extends this concept to the realm of feedback control. Recognizing that the controller can provide
|
||||
only a finite attenuation of disturbance signals interfering with the servo, DEB provides a
|
||||
methodology for predicting the cumulative effect of such signals on the control error as a function of
|
||||
their spectral (frequency) content. The method can be used to predict the control accuracy of a system
|
||||
implemented using a set of certain devices under certain conditions before it is realized. Furthermore,
|
||||
as it is formulated in the frequency domain, it can be used to optimize the controller design as well,
|
||||
typically leading to an H2 - optimal control framework. In DEB, the disturbance signals are modeled
|
||||
with their power spectral density (PSD), assuming that they are stationary stochastic processes which
|
||||
are not correlated with each other. Then, these PSD’s are transmitted to the performance goal, most
|
||||
often the positioning error, using linear time invariant (LTI) system theory. The transmitted PSD’s are
|
||||
summed up into the variance of the performance goal, which constitutes a comparative measure of
|
||||
performance. Most importantly, the influence of different dynamic factors and disturbance sources,
|
||||
which have the greatest impact on the achievable performance (e.g., accuracy) can be easily spotted
|
||||
and improved, through this kind of analysis. An approach similar to DEB was followed to decompose
|
||||
the contribution of different noise sources on the hard disk position error in [1], [2], [45]. DEB has
|
||||
been used to assess the performance of a geophone and a vibration isolation system in [75]. Jabben
|
||||
[49] has used DEB in the mechatronic design of a magnetically suspended rotating platform. Aguirre
|
||||
et al. [3] have analyzed the performance of active aerostatic thrust bearings using DEB.
|
||||
#+end_quote
|
||||
|
||||
** Control architecture
|
||||
|
||||
Maybe make a simple review of control strategies for Stewart platform control.
|
||||
Based on [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
|
||||
|
||||
Broad subject (MIMO control), maybe talk only about vibration control based on external metrology.
|
||||
|
||||
- Active Damping
|
||||
- Decentralized
|
||||
- Centralized
|
||||
- Manually tuned: PID, lead lag, etc...
|
||||
- Automatic / Optimal: LQG, H-Infinity
|
||||
|
||||
* Original Contributions
|
||||
**** Introduction :ignore:
|
||||
|
||||
This thesis proposes several contributions in the fields of Control, Mechatronics Design and Experimental validation.
|
||||
|
||||
**** Active Damping of rotating mechanical systems using Integral Force Feedback
|
||||
|
||||
[[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]]
|
||||
#+begin_quote
|
||||
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
|
||||
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
|
||||
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
|
||||
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
|
||||
Conditions for stability and optimal parameters are derived.
|
||||
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
|
||||
#+end_quote
|
||||
|
||||
**** Design of complementary filters using $\mathcal{H}_\infty$ Synthesis and sensor fusion
|
||||
|
||||
[[cite:&dehaeze19_compl_filter_shapin_using_synth]]
|
||||
[[cite:&verma20_virtual_sensor_fusion_high_precis_contr]]
|
||||
[[cite:&tsang22_optim_sensor_fusion_method_activ]]
|
||||
|
||||
- Several uses (link to some papers).
|
||||
- For the NASS, they could be use to further improve the robustness of the system.
|
||||
|
||||
**** Multi-body simulations with reduced order flexible bodies obtained by FEA
|
||||
|
||||
[[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
|
||||
|
||||
Combined multi-body / FEA techniques and experimental validation on a Stewart platform containing amplified piezoelectric actuators
|
||||
Super-element of amplified piezoelectric actuator / combined multibody-FEA technique, experimental validation on an amplified piezoelectric actuator and further validated on a complete stewart platform
|
||||
|
||||
#+begin_quote
|
||||
We considered sub-components in the multi-body model as /reduced order flexible bodies/ representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models.
|
||||
These matrices were created from FEA models via modal reduction techniques, more specifically the /component mode synthesis/ (CMS).
|
||||
This makes this design approach a combined multibody-FEA technique.
|
||||
We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA).
|
||||
#+end_quote
|
||||
|
||||
**** Robustness by design
|
||||
|
||||
- Design of a Stewart platform and associated control architecture that is robust to large plant uncertainties due to large variety of payload and experimental conditions.
|
||||
- Instead of relying on complex controller synthesis (such as $\mathcal{H}_\infty$ synthesis or $\mu\text{-synthesis}$) to guarantee the robustness and performance.
|
||||
- The approach here is to choose an adequate architecture (mechanics, sensors, actuators) such that controllers are robust by nature.
|
||||
- Example: collocated actuator/sensor pair => controller can easily be made robust
|
||||
- This is done by using models and using HAC-LAC architecture
|
||||
|
||||
**** Mechatronics design
|
||||
|
||||
Conduct a rigorous mechatronics design approach for a nano active stabilization system
|
||||
[[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]]
|
||||
|
||||
Approach from start to finish:
|
||||
- From first concepts using basic models, to concept validation
|
||||
- Detailed design phase
|
||||
- Experimental phase
|
||||
|
||||
Complete design with clear choices based on models.
|
||||
Such approach, while not new, is here applied
|
||||
This can be used for the design of future end-stations.
|
||||
|
||||
#+begin_src latex :file nass_mechatronics_approach.pdf
|
||||
% \graphicspath{ {/home/thomas/Cloud/thesis/papers/dehaeze21_mechatronics_approach_nass/tikz/figs-tikz} }
|
||||
@ -368,8 +1001,8 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
\node[draw, fill=lightblue, align=center, label={[mylabel, text width=8.0cm] Dynamical Models}, minimum height = 4.5cm, text width = 8.0cm] (model) at (0, 0) {};
|
||||
|
||||
\node[myblock, fill=lightgreen, label={[mylabel] Disturbances}, left = 3 of model.west] (dist) {};
|
||||
\node[myblock, fill=lightgreen, label={[mylabel] $\mu$ Station}, below = 2pt of dist] (mustation) {};
|
||||
\node[myblock, fill=lightgreen, label={[mylabel] $\nu$ Hexapod}, above = 2pt of dist] (nanohexapod) {};
|
||||
\node[myblock, fill=lightgreen, label={[mylabel] Micro Station}, below = 2pt of dist] (mustation) {};
|
||||
\node[myblock, fill=lightgreen, label={[mylabel] Nano Hexapod}, above = 2pt of dist] (nanohexapod) {};
|
||||
|
||||
\node[myblock, fill=lightyellow, label={[mylabel] Mech. Design}, above = 1 of model.north] (mechanical) {};
|
||||
\node[myblock, fill=lightyellow, label={[mylabel] Instrumentation}, left = 2pt of mechanical] (instrumentation) {};
|
||||
@ -392,7 +1025,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
|
||||
\node[mymodel] at (mounting.south) {Struts \\ Nano-Hexapod};
|
||||
\node[mymodel] at (testbenches.south) {Instrumentation \\ APA, Struts};
|
||||
\node[mymodel] at (implementation.south) {Control tests \\ $\mu$ Station};
|
||||
\node[mymodel] at (implementation.south) {Control tests \\ Micro Station};
|
||||
|
||||
% Links
|
||||
\draw[->] (dist.east) -- node[above, midway]{{\small Measurements}} node[below,midway]{{\small Spectral Analysis}} (dist.east-|model.west);
|
||||
@ -451,26 +1084,64 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:nass_mechatronics_approach
|
||||
#+name: fig:introduction_nass_mechatronics_approach
|
||||
#+caption: Overview of the mechatronic approach used for the Nano-Active-Stabilization-System
|
||||
#+attr_latex: :width \linewidth
|
||||
#+RESULTS:
|
||||
[[file:figs/introduction_nass_mechatronics_approach.png]]
|
||||
[[file:figs/nass_mechatronics_approach.png]]
|
||||
|
||||
*Goals*:
|
||||
- Design \gls{nass} such that it is easy to control (and maintain).
|
||||
Have good performances by design and not by complex control strategies.
|
||||
**** 6DoF vibration control of a rotating platform
|
||||
|
||||
Vibration control in 5DoF of a rotating stage
|
||||
To the author's knowledge, the use of a continuously rotating stewart platform for vibration control has not been proved in the literature.
|
||||
|
||||
**** Experimental validation of the Nano Active Stabilization System
|
||||
|
||||
Demonstration of the improvement of the the positioning accuracy of a complex multi DoF (the micro-station) by several orders of magnitude (Section ...) using ...
|
||||
|
||||
* Thesis Outline - Mechatronics Design Approach
|
||||
**** Introduction :ignore:
|
||||
|
||||
#+name: fig:introduction_overview_chapters
|
||||
#+caption: Overview of the sections
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/introduction_overview_chapters.png]]
|
||||
|
||||
This thesis
|
||||
- has a structure that follows the mechatronics design approach
|
||||
|
||||
Is structured in three chapters that corresponds to the three mains parts of the proposed mechatronics approach.
|
||||
|
||||
A brief overview of these three chapters is given bellow.
|
||||
|
||||
**** Conceptual design development
|
||||
|
||||
- Start with simple models for witch trade offs can be easily understood (uniaxial)
|
||||
- Increase the model complexity if important physical phenomenon are to be modelled (cf the rotating model)
|
||||
- Only when better understanding of the physical effects in play, and only if required, go for higher model complexity (here multi-body model)
|
||||
- The system concept and main characteristics should be extracted from the different models and validated with closed-loop simulations with the most accurate model
|
||||
- Once the concept is validated, the chosen concept can be design in mode details
|
||||
|
||||
**** Detailed design
|
||||
|
||||
- During this detailed design phase, models are refined from the obtained CAD and using FEM
|
||||
- The models are used to assists the design and to optimize each element based on dynamical analysis and closed-loop simulations
|
||||
- The requirements for all the associated instrumentation can be determined from a dynamical noise budgeting
|
||||
- After converging to a detailed design that give acceptable performance based on the models, the different parts can be ordered and the experimental phase begins
|
||||
|
||||
**** Experimental validation
|
||||
|
||||
- It is advised that the important characteristics of the different elements are evaluated individually
|
||||
Systematic validation/refinement of models with experimental measurements
|
||||
- The obtained characteristics can be used to refine the models
|
||||
- Then, an accurate model of the system is obtained which can be used during experimental tests (for control synthesis for instance)
|
||||
|
||||
*Models*:
|
||||
- Uniaxial Model:
|
||||
- Effect of limited support compliance
|
||||
- Effect of change of payload
|
||||
- Rotating Model
|
||||
- Gyroscopic effects
|
||||
- Multi Body Model
|
||||
- Finite Element Models
|
||||
|
||||
* Bibliography :ignore:
|
||||
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
|
||||
* Footnotes
|
||||
[fn:4]Capacitive sensors from Fogale Sensors
|
||||
[fn:3]Attocube FPS3010 Fabry-Pérot interferometers
|
||||
[fn:2]Attocube IDS3010 Fabry-Pérot interferometers
|
||||
[fn:1]PicoScale SmarAct Michelson interferometers
|
||||
|
@ -1,4 +1,4 @@
|
||||
% Created 2024-04-17 Wed 11:35
|
||||
% Created 2024-05-06 Mon 14:50
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
@ -7,10 +7,10 @@
|
||||
\bibliography{nass-introduction.bib}
|
||||
\author{Dehaeze Thomas}
|
||||
\date{\today}
|
||||
\title{NASS - Introduction}
|
||||
\title{Nano Active Stabilization System - Introduction}
|
||||
\hypersetup{
|
||||
pdfauthor={Dehaeze Thomas},
|
||||
pdftitle={NASS - Introduction},
|
||||
pdftitle={Nano Active Stabilization System - Introduction},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 29.3 (Org mode 9.6)},
|
||||
@ -24,78 +24,435 @@
|
||||
|
||||
\clearpage
|
||||
|
||||
\chapter{Context of this thesis / Background and Motivation}
|
||||
\chapter{Context of this thesis}
|
||||
\section{Synchrotron Radiation Facilities}
|
||||
\paragraph{Accelerating electrons to produce intense X-ray}
|
||||
|
||||
\begin{itemize}
|
||||
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
|
||||
\item Explain what is a Synchrotron: light source
|
||||
\item Say how many there are in the world (\textasciitilde{}50)
|
||||
\item Electron part: LINAC, Booster, Storage Ring \ref{fig:introduction_esrf_schematic}
|
||||
\item Synchrotron radiation: Insertion device / Bending magnet
|
||||
\item Many beamlines (large diversity in terms of instrumentation and science)
|
||||
\item Science that can be performed:
|
||||
\begin{itemize}
|
||||
\item structural biology, structure of materials, matter at extreme, \ldots{}
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{The European Synchrotron Radiation Facility}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.7\linewidth]{figs/introduction_esrf_picture.jpg}
|
||||
\caption{\label{fig:esrf_picture}European Synchrotron Radiation Facility}
|
||||
\caption{\label{fig:introduction_esrf_picture}European Synchrotron Radiation Facility}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includesvg[scale=1,width=0.7\linewidth]{figs/introduction_esrf_schematic}
|
||||
\caption{\label{fig:introduction_esrf_schematic}Schematic of the ESRF - Over 40 beamlines. Booster, Linac, storage ring}
|
||||
\end{figure}
|
||||
|
||||
\paragraph{3rd and 4th generation Synchrotrons}
|
||||
|
||||
\begin{itemize}
|
||||
\item ID31 and Micro Station (Figure \ref{fig:id31_microstation_picture})
|
||||
\item 4th generation light sources
|
||||
\begin{itemize}
|
||||
\item \cite{raimondi21_commis_hybrid_multib_achrom_lattic}
|
||||
\item[{$\square$}] Picture of 3rd generation ``beam source'' vs 4th generation?
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Picture showing Synchrotron ``moore's law''
|
||||
\end{itemize}
|
||||
|
||||
\section{The ID31 ESRF Beamline}
|
||||
\paragraph{Beamline Layout}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Beamline layout (OH, EH)
|
||||
\item ID31 and Micro Station (Figure \ref{fig:introduction_id31_microstation_picture})
|
||||
Check \url{https://www.esrf.fr/UsersAndScience/Experiments/StructMaterials/ID31}
|
||||
\url{https://www.wayforlight.eu/beamline/23244}
|
||||
\item X-ray beam + detectors + sample stage (Figure \ref{fig:introduction_id31_beamline_schematic})
|
||||
\item Focusing optics
|
||||
\item Optical schematic with: source, lens, sample and detector.
|
||||
Explain that what is the most important is the relative position between the sample and the lens.
|
||||
\item Explain the XYZ frame for all the thesis (ESRF convention: X: x-ray, Z gravity up)
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Add XYZ on figure \ref{fig:introduction_id31_cad}
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.8\linewidth]{figs/introduction_id31_cad.jpg}
|
||||
\caption{\label{fig:introduction_id31_cad}CAD view of the optical hutch with the nano-focusing optics, the micro-station}
|
||||
\end{figure}
|
||||
|
||||
\paragraph{Positioning End Station: The Micro-Station}
|
||||
|
||||
Micro-Station:
|
||||
\begin{itemize}
|
||||
\item DoF with strokes: Ty, Ry, Rz, Hexapod
|
||||
\item Experiments: tomography, reflectivity, truncation rod, \ldots{}
|
||||
Make a table to explain the different ``experiments''
|
||||
\item Explain how it is used (positioning, scans), what it does. But not about the performances
|
||||
\item Different sample environments
|
||||
|
||||
\item Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.49\linewidth]{figs/introduction_id31_microstation_picture.png}
|
||||
\caption{\label{fig:id31_microstation_picture}Picture of the ID31 Micro-Station with annotations}
|
||||
\caption{\label{fig:introduction_id31_microstation_picture}Picture of the ID31 Micro-Station with annotations}
|
||||
\end{figure}
|
||||
|
||||
Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||||
|
||||
\begin{itemize}
|
||||
\item X-ray beam + detectors + sample stage (Figure \ref{fig:id31_beamline_schematic})
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/introduction_id31_beamline_schematic.png}
|
||||
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
|
||||
\end{figure}
|
||||
\paragraph{Science performed on ID31}
|
||||
|
||||
\begin{itemize}
|
||||
\item Few words about science made on ID31 and why nano-meter accuracy is required
|
||||
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
|
||||
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
|
||||
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
|
||||
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg), sample environments (high temp, cryo, etc..)
|
||||
\begin{itemize}
|
||||
\item Alignment of the sample, then
|
||||
\item Reflectivity
|
||||
\item Tomography
|
||||
\item Diffraction tomography: most critical
|
||||
\end{itemize}
|
||||
\item Example of picture obtained (Figure \ref{fig:introduction_id31_tomography_result}) with resolution
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\texttt{introduction\_exp\_scanning} and \texttt{introduction\_exp\_scanning\_image}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.49\linewidth]{example-image-c.png}
|
||||
\caption{\label{fig:id31_tomography_result}Image obtained on the ID31 beamline}
|
||||
\caption{\label{fig:introduction_id31_tomography_result}Image obtained on the ID31 beamline}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
|
||||
\section{Need of accurate positioning end stations with high dynamics}
|
||||
\paragraph{A push towards brighter and smaller beams\ldots{}}
|
||||
|
||||
\item Speak about the metrology concept, and why it is not included in this thesis
|
||||
Improvement of both the light source and the instrumentation:
|
||||
\begin{itemize}
|
||||
\item EBS: smaller source + higher flux
|
||||
\item Better focusing optic (add some links): beam size in the order of 10 to 20nm FWHM (reference)
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Show picture or measurement of the beam size
|
||||
\end{itemize}
|
||||
crossed silicon compound refractive lenses, KB mirrors [17], zone plates [18], or multilayer Laue lenses [19]
|
||||
\cite{barrett16_reflec_optic_hard_x_ray}
|
||||
\end{itemize}
|
||||
|
||||
Higher flux density (+high energy of the ID31 beamline) => Radiation damage: needs to scan the sample quite fast with respect to the focused beam
|
||||
|
||||
\begin{itemize}
|
||||
\item Allowed by better detectors: higher sampling rates and lower noise => possible to scan fast
|
||||
\cite{hatsui15_x_ray_imagin_detec_synch_xfel_sourc}
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{\ldots{}Requires the use of dynamical positioning}
|
||||
``from traditional step by step scans to \emph{fly-scan}''
|
||||
|
||||
Fast scans + needs of high accuracy and stability => need mechatronics system with:
|
||||
\begin{itemize}
|
||||
\item accurate metrology
|
||||
\item multi degree of freedom positioning systems
|
||||
\item fast feedback loops
|
||||
\end{itemize}
|
||||
|
||||
Shift from step by step scan to \emph{fly-scan} \cite{huang15_fly_scan_ptych}
|
||||
\begin{itemize}
|
||||
\item Much lower pixel size + large image => takes of lot of time if captured step by step.
|
||||
Explain what is step by step scanning: move motors from point A to point B, stops, start detector acquisition, open shutter , close the shutter, move to point C, \ldots{}
|
||||
\end{itemize}
|
||||
|
||||
\cite{xu23_high_nsls_ii}
|
||||
\begin{quote}
|
||||
In traditional step scan mode, each exposure position requires the system to stop prior to data acquisition, which may become a limiting factor when fast data collection is required.
|
||||
Fly-scanning is chosen as a preferred solution that helps overcome such speed limitations [5, 6].
|
||||
In fly-scan mode, the sample keeps moving and a triggering system generates trigger signals based on the position of the sample or the time elapsed.
|
||||
The trigger signals are used to control detector exposure.
|
||||
\end{quote}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Make picture representing a typical experiment (maybe YZ scan?) with:
|
||||
Probably already shown earlier \texttt{introduction\_exp\_scanning}
|
||||
\begin{itemize}
|
||||
\item nano focusing optics (see the beam focused)
|
||||
\item positioning stage with displayed YZ motion (pixel by pixel in the YZ plane)
|
||||
\item detector
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy
|
||||
|
||||
\chapter{Challenge definition}
|
||||
\section{Multi DoF, Highly accurate, and Long stroke positioning end station?}
|
||||
\paragraph{Performance limitation of ``stacked stages'' end-stations}
|
||||
|
||||
Typical positioning end station:
|
||||
\begin{itemize}
|
||||
\item stacked stages
|
||||
\item ballscrew, linear guides, rotary motor
|
||||
\end{itemize}
|
||||
|
||||
|
||||
Explain the limitation of performances:
|
||||
\begin{itemize}
|
||||
\item Backlash, play, thermal expansion, guiding imperfections, \ldots{}
|
||||
\item Give some numbers: straightness of the Ty stage for instance, change of \(0.1^oC\) with steel gives x nm of motion
|
||||
\item Vibrations
|
||||
\item Explain that this micro-station can only have \textasciitilde{}10um of accuracy due to physical limitation
|
||||
\item Possibility to have linear/rotary encoders that correct the motion in the considered DoF, but does not change anything to the other 5DoF
|
||||
\end{itemize}
|
||||
|
||||
|
||||
Talk about flexure based positioning stations?
|
||||
Advantages: no backlash, etc\ldots{}
|
||||
But: limited to short stroke
|
||||
Picture of schematic of one positioning station based on flexure
|
||||
|
||||
\paragraph{The ID31 Micro-Station}
|
||||
|
||||
Presentation of the Micro-Station in details \ref{fig:introduction_id31_microstation_cad}:
|
||||
\begin{itemize}
|
||||
\item Goal of each stage (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
|
||||
\item Stroke
|
||||
\item Initial design objectives: as stiff as possible, smallest errors as possible
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{New positioning requirements}
|
||||
|
||||
\begin{itemize}
|
||||
\item To benefits from nano-focusing optics, new source, etc\ldots{} new positioning requirements
|
||||
\item Positioning requirements on ID31:
|
||||
\begin{itemize}
|
||||
\item Maybe make a table with the requirements and the associated performances of the micro-station
|
||||
\item Make tables with the wanted motion, stroke, accuracy in different DoF, etc..
|
||||
\end{itemize}
|
||||
\item Sample masses
|
||||
\end{itemize}
|
||||
|
||||
The goal in this thesis is to increase the positioning accuracy of the micro-station to fulfil the initial positioning requirements.
|
||||
|
||||
\textbf{Goal}: Improve accuracy of 6DoF long stroke position platform
|
||||
|
||||
\section{The Nano Active Stabilization System}
|
||||
\paragraph{NASS Concept}
|
||||
|
||||
Briefly describe the NASS concept.
|
||||
4 parts:
|
||||
\begin{itemize}
|
||||
\item Micro Station
|
||||
\item multi-DoF positioning system with good dynamics
|
||||
\item 5DoF metrology system
|
||||
\item Control system and associated instrumentation
|
||||
\end{itemize}
|
||||
|
||||
6DoF vibration control platform on top of a complex positioning platform that correct positioning errors based on an external metrology
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Add the control system in the schematic
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/introduction_nass_concept_schematic.png}
|
||||
\caption{\label{fig:nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology}
|
||||
\caption{\label{fig:introduction_nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology}
|
||||
\end{figure}
|
||||
|
||||
\paragraph{Metrology system}
|
||||
|
||||
Requirements:
|
||||
\begin{itemize}
|
||||
\item 6DoF vibration control platform on top of a complex positioning platform
|
||||
\item \textbf{Goal}: Improve accuracy of 6DoF long stroke position platform
|
||||
\item \textbf{Approach}: Mechatronic approach / model based / predictive
|
||||
\item \textbf{Control}: Robust control approach / various payloads.
|
||||
First hexapod with control bandwidth higher than the suspension modes that accepts various payloads?
|
||||
\item Rotation aspect
|
||||
\item Compactness? (more related to mechanical design)
|
||||
\item 5 DoF
|
||||
\item long stroke
|
||||
\item nano-meter accurate
|
||||
\item high bandwidth
|
||||
\end{itemize}
|
||||
|
||||
The accuracy of the NASS will only depend on the accuracy of the metrology system.
|
||||
|
||||
Concept:
|
||||
\begin{itemize}
|
||||
\item Fiber interferometers
|
||||
\item Spherical reflector with flat bottom
|
||||
\item Tracking system
|
||||
\end{itemize}
|
||||
|
||||
Complex mechatronics system on its own.
|
||||
|
||||
This metrology system is not further discussed in this thesis as it is still under active development.
|
||||
|
||||
In the following of this thesis, it is supposed that the metrology system is accurate, etc..
|
||||
|
||||
\begin{itemize}
|
||||
\item Say that there are several high precision sensors, but only interferometers for long stroke / high accuracy?
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{Multi-DoF Positioning stage for error compensation}
|
||||
|
||||
\begin{itemize}
|
||||
\item 5 DoF
|
||||
\item High dynamics
|
||||
\item nano-meter capable (no backlash,)
|
||||
\item Accept payloads up to 50kg
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{MIMO robust control strategies}
|
||||
|
||||
Explain the robustness need?
|
||||
\begin{itemize}
|
||||
\item 24 7/7 \ldots{}
|
||||
\item That is why most of end-stations are based on well-proven design (stepper motors, linear guides, ball bearing, \ldots{})
|
||||
\item Plant uncertainty: many different samples, use cases, rotating velocities, etc\ldots{}
|
||||
\end{itemize}
|
||||
|
||||
Trade-off between robustness and performance in the design of feedback system.
|
||||
|
||||
\section{Predictive Design}
|
||||
|
||||
\begin{itemize}
|
||||
\item The performances of the system will depend on many factors:
|
||||
\begin{itemize}
|
||||
\item sensors
|
||||
\item actuators
|
||||
\item mechanical design
|
||||
\item achievable bandwidth
|
||||
\item \ldots{}
|
||||
\end{itemize}
|
||||
\item Need to evaluate the different concepts, and predict the performances to guide the design
|
||||
\item The goal is to design, built and test this system such that it work as expected the first time.
|
||||
Very costly system, so much be correct.
|
||||
\end{itemize}
|
||||
|
||||
\section{Control Challenge}
|
||||
|
||||
High bandwidth, 6 DoF system for vibration control, fixed on top of a complex multi DoF positioning station, robust, \ldots{}
|
||||
|
||||
\begin{itemize}
|
||||
\item Many different configurations (tomography, Ty scans, slow fast, \ldots{})
|
||||
\item Complex MIMO system. Dynamics of the system could be coupled to the complex dynamics of the micro station
|
||||
\item Rotation aspect, gyroscopic effects, actuators are rotating with respect to the sensors
|
||||
\item Robustness to payload change: very critical.
|
||||
Say that high performance systems (lithography machines, etc\ldots{}) works with calibrated payloads.
|
||||
Being robust to change of payload inertia means large stability margins and therefore less performance.
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Literature Review}
|
||||
\section{Nano Positioning end-stations}
|
||||
\paragraph{End Station with Stacked Stages}
|
||||
|
||||
Stacked stages:
|
||||
\begin{itemize}
|
||||
\item errors are combined
|
||||
\end{itemize}
|
||||
|
||||
To have acceptable performances / stability:
|
||||
\begin{itemize}
|
||||
\item limited number of stages
|
||||
\item high performances stages (air bearing etc\ldots{})
|
||||
\end{itemize}
|
||||
|
||||
Examples:
|
||||
\begin{itemize}
|
||||
\item ID16b \cite{martinez-criado16_id16b}
|
||||
\item ID13 \cite{riekel10_progr_micro_nano_diffr_at}
|
||||
\item ID11 \cite{wright20_new_oppor_at_mater_scien}
|
||||
\item ID01 \cite{leake19_nanod_beaml_id01}
|
||||
\item[{$\square$}] Maybe make a table to compare stations
|
||||
\end{itemize}
|
||||
|
||||
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, \ldots{}
|
||||
|
||||
\paragraph{Online Metrology and Active Control of Positioning Errors}
|
||||
|
||||
The idea of having an external metrology to correct for errors is not new.
|
||||
|
||||
\begin{itemize}
|
||||
\item To have even better performances: online metrology are required.
|
||||
\item Several strategies:
|
||||
\begin{itemize}
|
||||
\item only used for measurements (post processing)
|
||||
\item for calibration
|
||||
\item for triggering detectors
|
||||
\item for real time positioning control
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] HXN \cite{xu23_high_nsls_ii}
|
||||
Laser interferometers on reference ring (on top of rotary stage).
|
||||
Used to trigger the detectors (ptychography, microscope)
|
||||
Similar to \cite{wang12_autom_marker_full_field_hard}
|
||||
\end{itemize}
|
||||
|
||||
\begin{table}[htbp]
|
||||
\caption{\label{tab:introduction_sample_stages}Table caption}
|
||||
\centering
|
||||
\begin{tabularx}{\linewidth}{lllllllX}
|
||||
\toprule
|
||||
Architecture & Sensors and measured DoFs & Actuators and controlled DoFs & Institute, BL & OL/CL (bandwidth) & Stroke, DoF & Samples & Ref\\
|
||||
\midrule
|
||||
XYZ, Spherical retroreflector, Sample & 3 interferometers\footnotemark, Y,Z & YZ piezo stages & PETRA III, P06 & OL & 100um & light & \cite{schroer17_ptynam,schropp20_ptynam}\\
|
||||
Spindle / Metrology Ring / XYZ Stage / Sample & 3 Capacitive, Y,Z,Rx & & NSLS, X8C & OL, post processing & & micron scale & \cite{wang12_autom_marker_full_field_hard}\\
|
||||
\textbf{Hexapod} / Spindle / Metrology Ring / Sample & 12 Capacitive\footnotemark, X,Y,Z,Rx,Ry & Piezo (Hexapod) & ESRF, ID16a & CL, 10Hz bandwidth & 50um, 500urad & light & \cite{villar18_nanop_esrf_id16a_nano_imagin_beaml}\\
|
||||
XYZ, Rz, XY, Cylindrical reference & 5 interferometers\footnotemark, X,Y,Z,Rx,Ry & XYZ linear motors & Soleil & CL & & light & \cite{engblom18_nanop_resul,stankevic17_inter_charac_rotat_stages_x_ray_nanot}\\
|
||||
XYZ, Rz, XYZ Spherical reference & 3 Interferometers\footnotemark, Y,Z,Rx & XYZ parallel piezo stage & PSI, OMNY & CL & 400um & light & \cite{holler18_omny_tomog_nano_cryo_stage,holler17_omny_pin_versat_sampl_holder}\\
|
||||
XYZ, mirrors/sample & 3 interferometers\textsuperscript{\ref{org12e9b3b}}, XYZ & XYZ piezo stage & APS & CL, 3 PID & 3mm & light & \cite{nazaretski15_pushin_limit}\\
|
||||
Rz, Parallel XYZ stage & 3 interferometers\textsuperscript{\ref{orgd8c7548}} & 3xVCM parallel stage & LNLS, CARNAUBA & CL, 100Hz bandwidth & YZ: 3mm, Rz: +-110deg & light & \cite{geraldes23_sapot_carnaub_sirius_lnls}\\
|
||||
Parallel XYZ stage & 3 interferometers\textsuperscript{\ref{org65d59ad}}, XYZ & 3xVCM parallel stage & Diamond, I14 & CL, 100Hz bandwidth & XYZ: 3mm & up to 350g & \cite{kelly22_delta_robot_long_travel_nano}\\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\end{table}\footnotetext[1]{\label{orgd8c7548}PicoScale SmarAct Michelson interferometers}\footnotetext[2]{\label{orgcd87c48}Capacitive sensors from Fogale Sensors}\footnotetext[3]{\label{org12e9b3b}Attocube FPS3010 Fabry-Pérot interferometers}\footnotetext[4]{\label{org65d59ad}Attocube IDS3010 Fabry-Pérot interferometers}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Figure with different stages
|
||||
\item[{$\square$}] Compared to the existing stages (see table), what are the challenges here? Rotation, large stroke, light to heavy payloads, lots of DoF (5 to be controlled)
|
||||
\item[{$\square$}] Comparison with NASS?
|
||||
\end{itemize}
|
||||
\begin{center}
|
||||
\begin{tabular}{llllllll}
|
||||
Architecture & Sensors & Actuators & Institute, BL & OL/CL (bandwidth) & Stroke, DoF & Samples & Ref\\
|
||||
\hline
|
||||
Ty,Ry,Rz,Hexapod,Sample & 6+ Interferometers & & ESRF, ID31 & CL & Ty, Ry, Rz, Hexa & up to 50kg & \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
|
||||
\paragraph{Long Stroke - Short Stroke architecture}
|
||||
|
||||
Speak about two stage control?
|
||||
\begin{itemize}
|
||||
\item Long stroke + short stroke
|
||||
\item Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner)
|
||||
\item Any application in 6DoF? Maybe new!
|
||||
\item In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil)
|
||||
\end{itemize}
|
||||
|
||||
\section{Multi-DoF dynamical positioning stations}
|
||||
\paragraph{Serial and Parallel Kinematics}
|
||||
|
||||
Example of several dynamical stations:
|
||||
\begin{itemize}
|
||||
\item XYZ piezo stages
|
||||
\item Delta robot? Octoglide?
|
||||
\item Stewart platform
|
||||
\end{itemize}
|
||||
|
||||
Serial vs parallel kinematics (table?)
|
||||
|
||||
\paragraph{Stewart platforms}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Explain the normal stewart platform architecture
|
||||
\item[{$\square$}] Make a table that compares the different stewart platforms for vibration control.
|
||||
Geometry (cubic), Actuator (soft, stiff), Sensor, Flexible joints, etc.
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
@ -110,60 +467,223 @@ First hexapod with control bandwidth higher than the suspension modes that accep
|
||||
\end{center}
|
||||
\subcaption{Stewart platform based on piezoelectric actuators}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:stewart_platform_examples}Examples of Stewart Platforms}
|
||||
\caption{\label{fig:introduction_stewart_platform_examples}Examples of Stewart Platforms}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Hexapods
|
||||
\cite{li01_simul_fault_vibrat_isolat_point}
|
||||
\cite{bishop02_devel_precis_point_contr_vibrat}
|
||||
\cite{hanieh03_activ_stewar}
|
||||
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
|
||||
\cite{naves20_desig}
|
||||
\item Positioning stations
|
||||
\item Mechatronic approach?
|
||||
\cite{rankers98_machin}
|
||||
\cite{monkhorst04_dynam_error_budget}
|
||||
\cite{jabben07_mechat}
|
||||
\end{itemize}
|
||||
\section{Mechatronics approach}
|
||||
\paragraph{Predicting performances using models}
|
||||
|
||||
\chapter{Outline of thesis / Thesis Summary / Thesis Contributions}
|
||||
|
||||
\textbf{Mechatronic Design Approach} / \textbf{Model Based Design}:
|
||||
\begin{itemize}
|
||||
\item \cite{monkhorst04_dynam_error_budget} high costs of the design process: the designed system must be \textbf{first time right}.
|
||||
\item \cite{monkhorst04_dynam_error_budget}
|
||||
\begin{quote}
|
||||
high costs of the design process: the designed system must be \textbf{first time right}.
|
||||
When the system is finally build, its performance level should satisfy the specifications.
|
||||
No significant changes are allowed in the post design phase.
|
||||
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
|
||||
\end{quote}
|
||||
\end{itemize}
|
||||
|
||||
|
||||
Can use several models:
|
||||
\begin{itemize}
|
||||
\item Lumped mass-spring-damper models
|
||||
\cite{rankers98_machin}
|
||||
\item Multi-Body Models
|
||||
\item Finite element models
|
||||
Sub structuring?
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{Closed-Loop Simulations}
|
||||
|
||||
\cite{schmidt20_desig_high_perfor_mechat_third_revis_edition}
|
||||
|
||||
Say what can limit the performances for a complex mechatronics systems as this one:
|
||||
\begin{itemize}
|
||||
\item disturbances
|
||||
\item measurement noise
|
||||
\item DAC / amplifier noise (actuator)
|
||||
\item feedback system / bandwidth
|
||||
\end{itemize}
|
||||
|
||||
Simulations can help evaluate the behavior of the system.
|
||||
|
||||
\paragraph{Dynamic Error Budgeting}
|
||||
|
||||
\begin{itemize}
|
||||
\item \cite{monkhorst04_dynam_error_budget}
|
||||
\begin{quote}
|
||||
high costs of the design process: the designed system must be \textbf{first time right}.
|
||||
When the system is finally build, its performance level should satisfy the specifications.
|
||||
No significant changes are allowed in the post design phase.
|
||||
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
|
||||
\end{quote}
|
||||
\item \cite{jabben07_mechat}
|
||||
\item \cite{okyay16_mechat_desig_dynam_contr_metrol}
|
||||
\begin{quote}
|
||||
Error budgets [23] are frequently used in the design of precision machines, in order to assess the
|
||||
contributions of different factors such as parasitic motions, thermal expansion, and servo accuracy, on
|
||||
the positioning accuracy of a machine. Dynamic Error Budgeting (DEB) or ‘Spectral Analysis’
|
||||
extends this concept to the realm of feedback control. Recognizing that the controller can provide
|
||||
only a finite attenuation of disturbance signals interfering with the servo, DEB provides a
|
||||
methodology for predicting the cumulative effect of such signals on the control error as a function of
|
||||
their spectral (frequency) content. The method can be used to predict the control accuracy of a system
|
||||
implemented using a set of certain devices under certain conditions before it is realized. Furthermore,
|
||||
as it is formulated in the frequency domain, it can be used to optimize the controller design as well,
|
||||
typically leading to an H2 - optimal control framework. In DEB, the disturbance signals are modeled
|
||||
with their power spectral density (PSD), assuming that they are stationary stochastic processes which
|
||||
are not correlated with each other. Then, these PSD’s are transmitted to the performance goal, most
|
||||
often the positioning error, using linear time invariant (LTI) system theory. The transmitted PSD’s are
|
||||
summed up into the variance of the performance goal, which constitutes a comparative measure of
|
||||
performance. Most importantly, the influence of different dynamic factors and disturbance sources,
|
||||
which have the greatest impact on the achievable performance (e.g., accuracy) can be easily spotted
|
||||
and improved, through this kind of analysis. An approach similar to DEB was followed to decompose
|
||||
the contribution of different noise sources on the hard disk position error in [1], [2], [45]. DEB has
|
||||
been used to assess the performance of a geophone and a vibration isolation system in [75]. Jabben
|
||||
[49] has used DEB in the mechatronic design of a magnetically suspended rotating platform. Aguirre
|
||||
et al. [3] have analyzed the performance of active aerostatic thrust bearings using DEB.
|
||||
\end{quote}
|
||||
\end{itemize}
|
||||
|
||||
\section{Control architecture}
|
||||
|
||||
Maybe make a simple review of control strategies for Stewart platform control.
|
||||
Based on \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
|
||||
|
||||
Broad subject (MIMO control), maybe talk only about vibration control based on external metrology.
|
||||
|
||||
\begin{itemize}
|
||||
\item Active Damping
|
||||
\item Decentralized
|
||||
\item Centralized
|
||||
\item Manually tuned: PID, lead lag, etc\ldots{}
|
||||
\item Automatic / Optimal: LQG, H-Infinity
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Original Contributions}
|
||||
This thesis proposes several contributions in the fields of Control, Mechatronics Design and Experimental validation.
|
||||
|
||||
\paragraph{Active Damping of rotating mechanical systems using Integral Force Feedback}
|
||||
|
||||
\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}
|
||||
\begin{quote}
|
||||
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems.
|
||||
Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects.
|
||||
To overcome this issue, two modifications of the classical IFF control scheme are proposed.
|
||||
The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors.
|
||||
Conditions for stability and optimal parameters are derived.
|
||||
The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes.
|
||||
\end{quote}
|
||||
|
||||
\paragraph{Design of complementary filters using \(\mathcal{H}_\infty\) Synthesis and sensor fusion}
|
||||
|
||||
\cite{dehaeze19_compl_filter_shapin_using_synth}
|
||||
\cite{verma20_virtual_sensor_fusion_high_precis_contr}
|
||||
\cite{tsang22_optim_sensor_fusion_method_activ}
|
||||
|
||||
\begin{itemize}
|
||||
\item Several uses (link to some papers).
|
||||
\item For the NASS, they could be use to further improve the robustness of the system.
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{Multi-body simulations with reduced order flexible bodies obtained by FEA}
|
||||
|
||||
\cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
|
||||
|
||||
Combined multi-body / FEA techniques and experimental validation on a Stewart platform containing amplified piezoelectric actuators
|
||||
Super-element of amplified piezoelectric actuator / combined multibody-FEA technique, experimental validation on an amplified piezoelectric actuator and further validated on a complete stewart platform
|
||||
|
||||
\begin{quote}
|
||||
We considered sub-components in the multi-body model as \emph{reduced order flexible bodies} representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models.
|
||||
These matrices were created from FEA models via modal reduction techniques, more specifically the \emph{component mode synthesis} (CMS).
|
||||
This makes this design approach a combined multibody-FEA technique.
|
||||
We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA).
|
||||
\end{quote}
|
||||
|
||||
\paragraph{Robustness by design}
|
||||
|
||||
\begin{itemize}
|
||||
\item Design of a Stewart platform and associated control architecture that is robust to large plant uncertainties due to large variety of payload and experimental conditions.
|
||||
\item Instead of relying on complex controller synthesis (such as \(\mathcal{H}_\infty\) synthesis or \(\mu\text{-synthesis}\)) to guarantee the robustness and performance.
|
||||
\item The approach here is to choose an adequate architecture (mechanics, sensors, actuators) such that controllers are robust by nature.
|
||||
\item Example: collocated actuator/sensor pair => controller can easily be made robust
|
||||
\item This is done by using models and using HAC-LAC architecture
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{Mechatronics design}
|
||||
|
||||
Conduct a rigorous mechatronics design approach for a nano active stabilization system
|
||||
\cite{dehaeze18_sampl_stabil_for_tomog_exper,dehaeze21_mechat_approac_devel_nano_activ_stabil_system}
|
||||
|
||||
Approach from start to finish:
|
||||
\begin{itemize}
|
||||
\item From first concepts using basic models, to concept validation
|
||||
\item Detailed design phase
|
||||
\item Experimental phase
|
||||
\end{itemize}
|
||||
|
||||
Complete design with clear choices based on models.
|
||||
Such approach, while not new, is here applied
|
||||
This can be used for the design of future end-stations.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/introduction_nass_mechatronics_approach.png}
|
||||
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png}
|
||||
\caption{\label{fig:introduction_nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
|
||||
\end{figure}
|
||||
|
||||
\textbf{Goals}:
|
||||
\paragraph{6DoF vibration control of a rotating platform}
|
||||
|
||||
Vibration control in 5DoF of a rotating stage
|
||||
To the author's knowledge, the use of a continuously rotating stewart platform for vibration control has not been proved in the literature.
|
||||
|
||||
\paragraph{Experimental validation of the Nano Active Stabilization System}
|
||||
|
||||
Demonstration of the improvement of the the positioning accuracy of a complex multi DoF (the micro-station) by several orders of magnitude (Section \ldots{}) using \ldots{}
|
||||
|
||||
\chapter{Thesis Outline - Mechatronics Design Approach}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/introduction_overview_chapters.png}
|
||||
\caption{\label{fig:introduction_overview_chapters}Overview of the sections}
|
||||
\end{figure}
|
||||
|
||||
This thesis
|
||||
\begin{itemize}
|
||||
\item Design \gls{nass} such that it is easy to control (and maintain).
|
||||
Have good performances by design and not by complex control strategies.
|
||||
\item has a structure that follows the mechatronics design approach
|
||||
\end{itemize}
|
||||
|
||||
Is structured in three chapters that corresponds to the three mains parts of the proposed mechatronics approach.
|
||||
|
||||
A brief overview of these three chapters is given bellow.
|
||||
|
||||
\paragraph{Conceptual design development}
|
||||
|
||||
\textbf{Models}:
|
||||
\begin{itemize}
|
||||
\item Uniaxial Model:
|
||||
\item Start with simple models for witch trade offs can be easily understood (uniaxial)
|
||||
\item Increase the model complexity if important physical phenomenon are to be modelled (cf the rotating model)
|
||||
\item Only when better understanding of the physical effects in play, and only if required, go for higher model complexity (here multi-body model)
|
||||
\item The system concept and main characteristics should be extracted from the different models and validated with closed-loop simulations with the most accurate model
|
||||
\item Once the concept is validated, the chosen concept can be design in mode details
|
||||
\end{itemize}
|
||||
|
||||
\paragraph{Detailed design}
|
||||
|
||||
\begin{itemize}
|
||||
\item Effect of limited support compliance
|
||||
\item Effect of change of payload
|
||||
\item During this detailed design phase, models are refined from the obtained CAD and using FEM
|
||||
\item The models are used to assists the design and to optimize each element based on dynamical analysis and closed-loop simulations
|
||||
\item The requirements for all the associated instrumentation can be determined from a dynamical noise budgeting
|
||||
\item After converging to a detailed design that give acceptable performance based on the models, the different parts can be ordered and the experimental phase begins
|
||||
\end{itemize}
|
||||
\item Rotating Model
|
||||
|
||||
\paragraph{Experimental validation}
|
||||
|
||||
\begin{itemize}
|
||||
\item Gyroscopic effects
|
||||
\end{itemize}
|
||||
\item Multi Body Model
|
||||
\item Finite Element Models
|
||||
\item It is advised that the important characteristics of the different elements are evaluated individually
|
||||
Systematic validation/refinement of models with experimental measurements
|
||||
\item The obtained characteristics can be used to refine the models
|
||||
\item Then, an accurate model of the system is obtained which can be used during experimental tests (for control synthesis for instance)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
\end{document}
|
||||
|