diff --git a/figs/introduction_endstation_id11.svg b/figs/introduction_endstation_id11.svg new file mode 100644 index 0000000..7087337 --- /dev/null +++ b/figs/introduction_endstation_id11.svg @@ -0,0 +1,1211 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/introduction_endstation_id16b.png b/figs/introduction_endstation_id16b.png new file mode 100644 index 0000000..c881fe7 Binary files /dev/null and b/figs/introduction_endstation_id16b.png differ diff --git a/figs/introduction_esrf_schematic.svg b/figs/introduction_esrf_schematic.svg new file mode 100644 index 0000000..30ac83e --- /dev/null +++ b/figs/introduction_esrf_schematic.svg @@ -0,0 +1,15098 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/introduction_id31_cad.jpg b/figs/introduction_id31_cad.jpg new file mode 100644 index 0000000..8b65df9 Binary files /dev/null and b/figs/introduction_id31_cad.jpg differ diff --git a/figs/introduction_id31_station_detector.jpg b/figs/introduction_id31_station_detector.jpg new file mode 100644 index 0000000..7c108fb Binary files /dev/null and b/figs/introduction_id31_station_detector.jpg differ diff --git a/figs/introduction_linear_stage.svg b/figs/introduction_linear_stage.svg new file mode 100644 index 0000000..c288d38 --- /dev/null +++ b/figs/introduction_linear_stage.svg @@ -0,0 +1,1175 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/introduction_moore_law.png b/figs/introduction_moore_law.png new file mode 100644 index 0000000..904ad5c Binary files /dev/null and b/figs/introduction_moore_law.png differ diff --git a/figs/introduction_nano_scan.png b/figs/introduction_nano_scan.png new file mode 100644 index 0000000..7f259dd Binary files /dev/null and b/figs/introduction_nano_scan.png differ diff --git a/figs/introduction_overview_chapters.pdf b/figs/introduction_overview_chapters.pdf new file mode 100644 index 0000000..e1cd128 Binary files /dev/null and b/figs/introduction_overview_chapters.pdf differ diff --git a/figs/introduction_overview_chapters.png b/figs/introduction_overview_chapters.png new file mode 100644 index 0000000..23448d1 Binary files /dev/null and b/figs/introduction_overview_chapters.png differ diff --git a/figs/introduction_overview_chapters.svg b/figs/introduction_overview_chapters.svg new file mode 100644 index 0000000..b05585c --- /dev/null +++ b/figs/introduction_overview_chapters.svg @@ -0,0 +1,592 @@ + + + + + + + + + + + Conceptual Design + Detailed Design + Experimental Validation + UniaxialRotatingMicro-Station MeasurementsModel: Micro Station + Nano-HexapodSimulation=> Concept validation + GeometryFlexible ElementsActuators, Flexible JointsInstrumentationObtained design=> Design validation + Test bench: APA, StrutsTest Bench: Flexible jointsNano-Hexapod MoutingValidation with rotationValidation on ID31 + + 1 + + 1.1 + + 1.2 + + 1.3 + + 1.4 + + 1.5 + + 1.6 + + 2.1 + + 2.2 + + 2.3 + + 2.4 + + 2.5 + + 2.6 + + + 3.1 + + 3.2 + + 3.3 + + 3.4 + + 3.5 + + 3.6 + + + 2 + + 3 + + diff --git a/figs/introduction_stacked_stages.svg b/figs/introduction_stacked_stages.svg new file mode 100644 index 0000000..91b7315 --- /dev/null +++ b/figs/introduction_stacked_stages.svg @@ -0,0 +1,2936 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/introduction_stages_engblom.png b/figs/introduction_stages_engblom.png new file mode 100644 index 0000000..4a4c1fa Binary files /dev/null and b/figs/introduction_stages_engblom.png differ diff --git a/figs/introduction_stages_geraldes.png b/figs/introduction_stages_geraldes.png new file mode 100644 index 0000000..8991d0d Binary files /dev/null and b/figs/introduction_stages_geraldes.png differ diff --git a/figs/introduction_stages_holler.png b/figs/introduction_stages_holler.png new file mode 100644 index 0000000..8368c88 Binary files /dev/null and b/figs/introduction_stages_holler.png differ diff --git a/figs/introduction_stages_kelly.png b/figs/introduction_stages_kelly.png new file mode 100644 index 0000000..60fe37d Binary files /dev/null and b/figs/introduction_stages_kelly.png differ diff --git a/figs/introduction_stages_nazaretski.png b/figs/introduction_stages_nazaretski.png new file mode 100644 index 0000000..bd20b86 Binary files /dev/null and b/figs/introduction_stages_nazaretski.png differ diff --git a/figs/introduction_stages_schroer.png b/figs/introduction_stages_schroer.png new file mode 100644 index 0000000..6d5d751 Binary files /dev/null and b/figs/introduction_stages_schroer.png differ diff --git a/figs/introduction_stages_villar.png b/figs/introduction_stages_villar.png new file mode 100644 index 0000000..37d932e Binary files /dev/null and b/figs/introduction_stages_villar.png differ diff --git a/figs/introduction_stages_wang.png b/figs/introduction_stages_wang.png new file mode 100644 index 0000000..1690039 Binary files /dev/null and b/figs/introduction_stages_wang.png differ diff --git a/figs/introduction_synchrotrons.png b/figs/introduction_synchrotrons.png new file mode 100644 index 0000000..bf2b0ae Binary files /dev/null and b/figs/introduction_synchrotrons.png differ diff --git a/figs/introduction_tomography_example.png b/figs/introduction_tomography_example.png new file mode 100644 index 0000000..a597697 Binary files /dev/null and b/figs/introduction_tomography_example.png differ diff --git a/figs/introduction_tomography_picture_id16a.png b/figs/introduction_tomography_picture_id16a.png new file mode 100644 index 0000000..60d9fbf Binary files /dev/null and b/figs/introduction_tomography_picture_id16a.png differ diff --git a/figs/introduction_two_stage_control_example.svg b/figs/introduction_two_stage_control_example.svg new file mode 100644 index 0000000..df522a0 --- /dev/null +++ b/figs/introduction_two_stage_control_example.svg @@ -0,0 +1,3691 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/introduction_two_stage_example.svg b/figs/introduction_two_stage_example.svg new file mode 100644 index 0000000..82dbd51 --- /dev/null +++ b/figs/introduction_two_stage_example.svg @@ -0,0 +1,5000 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/introduction_two_stage_schematic.svg b/figs/introduction_two_stage_schematic.svg new file mode 100644 index 0000000..f4cf9b9 --- /dev/null +++ b/figs/introduction_two_stage_schematic.svg @@ -0,0 +1,1846 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/nass_mechatronics_approach.pdf b/figs/nass_mechatronics_approach.pdf new file mode 100644 index 0000000..b9a609b Binary files /dev/null and b/figs/nass_mechatronics_approach.pdf differ diff --git a/figs/nass_mechatronics_approach.png b/figs/nass_mechatronics_approach.png new file mode 100644 index 0000000..d09192b Binary files /dev/null and b/figs/nass_mechatronics_approach.png differ diff --git a/figs/nass_mechatronics_approach.svg b/figs/nass_mechatronics_approach.svg new file mode 100644 index 0000000..ad8f47b --- /dev/null +++ b/figs/nass_mechatronics_approach.svg @@ -0,0 +1,2031 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/nass-introduction.bib b/nass-introduction.bib index 74d6216..31f025d 100644 --- a/nass-introduction.bib +++ b/nass-introduction.bib @@ -53,17 +53,1451 @@ -@phdthesis{rankers98_machin, - author = {Rankers, Adrian Mathias}, - keywords = {favorite}, - school = {University of Twente}, - title = {Machine dynamics in mechatronic systems: An engineering - approach.}, - year = 1998, +@article{xu12_desig_devel_flexur_based_dual, + author = {Xu, Qingsong}, + title = {Design and Development of a Flexure-Based Dual-Stage + Nanopositioning System With Minimum Interference Behavior}, + journal = {IEEE Transactions on Automation Science and Engineering}, + volume = 9, + number = 3, + pages = {554--563}, + year = 2012, + publisher = {IEEE}, + keywords = {Two Stage Actuator}, } +@article{pahk01_ultra_precis_posit_system_servo_motor, + author = {Pahk, Heui Jae and Lee, Dong Sung and Park, Jong Ho}, + title = {Ultra Precision Positioning System for Servo Motor--piezo + Actuator Using the Dual Servo Loop and Digital Filter + Implementation}, + journal = {International Journal of Machine Tools and Manufacture}, + volume = 41, + number = 1, + pages = {51--63}, + year = 2001, + publisher = {Elsevier}, + keywords = {Two Stage Actuator}, +} + + + +@article{kobayashi03_phase_stabil_servo_contr_dual, + author = {M. Kobayashi and S. Nakagawa and S. Nakamura}, + title = {A Phase-Stabilized Servo Controller for Dual-Stage + Actuators in Hard Disk Drives}, + journal = {IEEE Transactions on Magnetics}, + volume = 39, + number = 2, + pages = {844-850}, + year = 2003, + doi = {10.1109/tmag.2003.808938}, + url = {https://doi.org/10.1109/tmag.2003.808938}, + keywords = {Two Stage Actuator}, +} + + + +@inproceedings{michellod06_strat_contr_dual_nano_system_singl_metrol, + author = {Michellod, Yvan and Mullhaupt, Philippe and Gillet, Denis}, + title = {Strategy for the Control of a Dual-stage Nano-positioning + System with a Single Metrology}, + booktitle = {2006 IEEE Conference on Robotics, Automation and + Mechatronics}, + year = 2006, + pages = {1--8}, + organization = {IEEE}, + keywords = {Two Stage Actuator}, +} + + + +@article{woody06_desig_perfor_dual_drive_system, + author = {Shane Woody and Stuart Smith}, + title = {Design and Performance of a Dual Drive System for Tip-Tilt + Angular Control of a 300mm Diameter Mirror}, + journal = {Mechatronics}, + volume = 16, + number = 7, + pages = {389-397}, + year = 2006, + doi = {10.1016/j.mechatronics.2006.03.006}, + url = {https://doi.org/10.1016/j.mechatronics.2006.03.006}, + keywords = {Two Stage Actuator}, +} + + + +@article{chassagne07_nano_posit_system_with_sub, + author = {L Chassagne and M Wakim and S Xu and S Top{\c{c}}u and P + Ruaux and P Juncar and Y Alayli}, + title = {A 2d Nano-Positioning System With Sub-Nanometric + Repeatability Over the Millimetre Displacement Range}, + journal = {Measurement Science and Technology}, + volume = 18, + number = 11, + pages = {3267--3272}, + year = 2007, + doi = {10.1088/0957-0233/18/11/001}, + url = {https://doi.org/10.1088%2F0957-0233%2F18%2F11%2F001}, + keywords = {Two Stage Actuator}, + month = {sep}, + publisher = {{IOP} Publishing}, +} + + + +@inproceedings{schitter08_dual, + author = {Georg Schitter and Wouter F. Rijkee and Nghi Phan}, + title = {Dual actuation for high-bandwidth nanopositioning}, + booktitle = {2008 47th IEEE Conference on Decision and Control}, + year = 2008, + doi = {10.1109/cdc.2008.4738876}, + url = {https://doi.org/10.1109/cdc.2008.4738876}, + keywords = {Two Stage Actuator}, +} + + + +@article{buice09_desig_evaluat_singl_axis_precis, + author = {Eric S. Buice and David Otten and Raymond H. Yang and + Stuart T. Smith and Robert J. Hocken and David L. Trumper}, + title = {Design Evaluation of a Single-Axis Precision Controlled + Positioning Stage}, + journal = {Precision Engineering}, + volume = 33, + number = 4, + pages = {418-424}, + year = 2009, + doi = {10.1016/j.precisioneng.2008.11.001}, + url = {http://dx.doi.org/10.1016/j.precisioneng.2008.11.001}, + keywords = {Two Stage Actuator}, +} + + + +@article{liu10_desig_contr_long_travel_nano_posit_stage, + author = {Chien-Hung Liu and Wen-Yuh Jywe and Yeau-Ren Jeng and + Tung-Hui Hsu and Yi-tsung Li}, + title = {Design and Control of a Long-Traveling Nano-Positioning + Stage}, + journal = {Precision Engineering}, + volume = 34, + number = 3, + pages = {497-506}, + year = 2010, + doi = {10.1016/j.precisioneng.2010.01.003}, + url = {http://dx.doi.org/10.1016/j.precisioneng.2010.01.003}, + keywords = {Two Stage Actuator}, +} + + + + +@article{ting11_contr_desig_high_frequen_cuttin, + author = {Y. Ting and C.C. Li and C.M. Lin}, + title = {Controller Design for High-Frequency Cutting Using a + Piezo-Driven Microstage}, + journal = {Precision Engineering}, + volume = 35, + number = 3, + pages = {455--463}, + year = 2011, + doi = {10.1016/j.precisioneng.2011.02.004}, + url = {https://doi.org/10.1016%2Fj.precisioneng.2011.02.004}, + keywords = {Two Stage Actuator}, + month = {jul}, + publisher = {Elsevier {BV}}, +} + + + +@article{okazaki12_dual_servo_mechan_stage_contin_posit, + author = {Okazaki, Yuichi and Asano, Shin and Goto, Takayuki}, + title = {Dual-Servo Mechanical Stage for Continuous Positioning}, + journal = {International Journal of the Japan Society for Precision + Engineering}, + volume = 27, + number = 2, + pages = {172--173}, + year = 2012, + keywords = {Two Stage Actuator}, +} + + + +@article{ito13_high_precis_posit_system_using, + author = {Shingo Ito and Juergen Steininger and Peter I. Chang and + Georg Schitter}, + title = {High-Precision Positioning System Using a Low-Stiffness + Dual Stage Actuator}, + journal = {IFAC Proceedings Volumes}, + volume = 46, + number = 5, + pages = {20-27}, + year = 2013, + doi = {10.3182/20130410-3-cn-2034.00025}, + url = {https://doi.org/10.3182/20130410-3-cn-2034.00025}, + keywords = {Two Stage Actuator}, +} + + + +@book{yamaguchi13_advan_high_perfor_motion_contr_mechat_system, + author = {Takashi Yamaguchi and Mitsuo Hirata and C Pang}, + title = {Advances in High-Performance Motion Control of Mechatronic + Systems}, + year = 2013, + publisher = {CRC Press}, + url = {https://doi.org/10.1201/b15321-7}, + doi = {10.1201/b15321-7}, + keywords = {Two Stage Actuator}, +} + + + +@article{kim13_desig_contr_singl_stage_dual, + author = {Michael D. Kim and Kwang-Hee Lee and Kyung-Tae Nam and + Sang-Moo Lee}, + title = {Design and Control of a Single-Stage Dual-Actuator System + for High-Precision Manufacturing}, + journal = {Microsystem Technologies}, + volume = 20, + number = 2, + pages = {175--183}, + year = 2013, + doi = {10.1007/s00542-013-1979-5}, + url = {https://doi.org/10.1007%2Fs00542-013-1979-5}, + keywords = {Two Stage Actuator}, + month = {dec}, + publisher = {Springer Science and Business Media {LLC}}, +} + + + +@inproceedings{wu13_desig, + author = {R.C. Wu and I.H. Tsai and F.C. Wang and J.Y. Yen}, + title = {Design and control of a long-stroke nano-positioning stage}, + booktitle = {Proceedings of the 2013 IEEE/SICE International Symposium + on System Integration}, + year = 2013, + doi = {10.1109/sii.2013.6776643}, + url = {http://dx.doi.org/10.1109/SII.2013.6776643}, + month = 12, + keywords = {Two Stage Actuator}, +} + + + +@article{parmar14_large_dynam_range_nanop_using, + author = {Gaurav Parmar and Kira Barton and Shorya Awtar}, + title = {Large Dynamic Range Nanopositioning Using Iterative + Learning Control}, + journal = {Precision Engineering}, + volume = 38, + number = 1, + pages = {48--56}, + year = 2014, + doi = {10.1016/j.precisioneng.2013.07.003}, + url = {https://doi.org/10.1016%2Fj.precisioneng.2013.07.003}, + keywords = {Two Stage Actuator}, + month = {jan}, + publisher = {Elsevier {BV}}, +} + + + +@article{ito15_low_stiff_dual_stage_actuat, + author = {Shingo Ito and Juergen Steininger and Georg Schitter}, + title = {Low-Stiffness Dual Stage Actuator for Long Rage Positioning + With Nanometer Resolution}, + journal = {Mechatronics}, + volume = 29, + pages = {46-56}, + year = 2015, + doi = {10.1016/j.mechatronics.2015.05.007}, + url = {https://doi.org/10.1016/j.mechatronics.2015.05.007}, + keywords = {Two Stage Actuator}, +} + + + +@book{qingsong16_desig_implem_large_range_compl_microp_system, + author = {Qingsong, }, + title = {Design and Implementation of Large-Range Compliant + Micropositioning Systems}, + year = 2016, + publisher = {Wiley}, + address = {Singapore}, + isbn = 9781119131458, + keywords = {Two Stage Actuator}, +} + + + +@article{zhu17_flexur_based_paral_actuat_dual, + author = {Haiyue Zhu and Chee Khiang Pang and Tat Joo Teo}, + title = {A Flexure-Based Parallel Actuation Dual-Stage System for + Large-Stroke Nanopositioning}, + journal = {IEEE Transactions on Industrial Electronics}, + volume = 64, + number = 7, + pages = {5553-5563}, + year = 2017, + doi = {10.1109/tie.2017.2677306}, + url = {https://doi.org/10.1109/tie.2017.2677306}, + keywords = {Two Stage Actuator}, +} + + + +@article{wang17_devel_contr_long_strok_precis_stage, + author = {Kou-An Wang and Yi-Kai Peng and Fu-Cheng Wang}, + title = {The Development and Control of a Long-Stroke Precision + Stage}, + journal = {Smart Science}, + volume = 5, + number = 2, + pages = {85--93}, + year = 2017, + doi = {10.1080/23080477.2017.1313693}, + url = {https://doi.org/10.1080%2F23080477.2017.1313693}, + keywords = {Two Stage Actuator}, + month = {apr}, + publisher = {Informa {UK} Limited}, +} + + + +@article{okyay18_modal_analy_metrol_error_budget, + author = {Ahmet Okyay and Kaan Erkorkmaz and Mir Khamesee}, + title = {Modal Analysis, Metrology, and Error Budgeting of a + Precision Motion Stage}, + journal = {Journal of Manufacturing and Materials Processing}, + volume = 2, + number = 1, + pages = 8, + year = 2018, + doi = {10.3390/jmmp2010008}, + url = {https://doi.org/10.3390/jmmp2010008}, + keywords = {Two Stage Actuator}, +} + + + +@article{csencsics18_system_contr_desig_voice_coil, + author = {Ernst Csencsics and Markus Thier and Reinhard Hainisch and + Georg Schitter}, + title = {System and Control Design of a Voice Coil Actuated + Mechanically Decoupling Two-Body Vibration Isolation System}, + journal = {IEEE/ASME Transactions on Mechatronics}, + volume = 23, + number = 1, + pages = {321-330}, + year = 2018, + doi = {10.1109/tmech.2017.2771440}, + url = {https://doi.org/10.1109/tmech.2017.2771440}, + keywords = {Two Stage Actuator}, +} + + + +@article{okyay18_mechat_desig_actuat_optim_contr, + author = {Ahmet Okyay and Kaan Erkorkmaz and Mir Behrad Khamesee}, + title = {Mechatronic Design, Actuator Optimization, and Control of a + Long Stroke Linear Nano-Positioner}, + journal = {Precision Engineering}, + volume = 52, + pages = {308-322}, + year = 2018, + doi = {10.1016/j.precisioneng.2018.01.007}, + url = {https://doi.org/10.1016/j.precisioneng.2018.01.007}, + keywords = {Two Stage Actuator}, +} + + + +@article{kong18_vibrat_isolat_dual_stage_actuat, + author = {Yongfang Kong and Hai Huang}, + title = {Vibration Isolation and Dual-Stage Actuation Pointing + System for Space Precision Payloads}, + journal = {Acta Astronautica}, + volume = 143, + pages = {183-192}, + year = 2018, + doi = {10.1016/j.actaastro.2017.11.038}, + url = {https://doi.org/10.1016/j.actaastro.2017.11.038}, + keywords = {Two Stage Actuator, parallel robot}, +} + + + +@book{du19_multi_actuat_system_contr, + author = {Chunling Du and Chee Khiang Pang}, + title = {Multi-stage Actuation Systems and Control}, + year = 2019, + publisher = {CRC Press}, + address = {Boca Raton, FL}, + isbn = 9781138480759, + keywords = {Two Stage Actuator}, +} + + + +@article{yun20_inves_two_stage_vibrat_suppr, + author = {Hai Yun and Lei Liu and Qing Li and Hongjie Yang}, + title = {Investigation on Two-Stage Vibration Suppression and + Precision Pointing for Space Optical Payloads}, + journal = {Aerospace Science and Technology}, + volume = 96, + pages = 105543, + year = 2020, + doi = {10.1016/j.ast.2019.105543}, + url = {https://doi.org/10.1016/j.ast.2019.105543}, + keywords = {parallel robot, Two Stage Actuator}, +} + + + +@article{mukherjee20_hybrid_contr_precis_posit_applic, + author = {A MUKHERJEE and S K SHOME and P KARMAKAR and P + BHATTACHARJEE}, + title = {Hybrid Controller for Precision Positioning Application}, + journal = {S{\={a}}dhan{\={a}}}, + volume = 45, + number = 1, + year = 2020, + doi = {10.1007/s12046-020-1323-6}, + url = {https://doi.org/10.1007%2Fs12046-020-1323-6}, + keywords = {Two Stage Actuator}, + month = {mar}, + publisher = {Springer Science and Business Media {LLC}}, +} + + + +@inproceedings{barros21_feedf_contr_piezoel_dual_actuat_system, + author = {Barros, Clarisse P{\'e}tua Bosman and Butler, Hans and van + de Wijdeven, Jeroen and T{\'o}th, Roland}, + title = {On Feedforward Control of Piezoelectric Dual-stage Actuator + Systems}, + booktitle = {2021 60th IEEE Conference on Decision and Control (CDC)}, + year = 2021, + pages = {5588--5594}, + keywords = {Two Stage Actuator}, + organization = {IEEE}, +} + + + +@article{choi08_desig_contr_nanop_xy_theta_scann, + author = {Young-Man Choi and Jung Jae Kim and Jinwoo Kim and Dae-Gab + Gweon}, + title = {Design and Control of a Nanoprecision XY$\THETA$ Scanner}, + journal = {Review of Scientific Instruments}, + volume = 79, + number = 4, + pages = 045109, + year = 2008, + doi = {10.1063/1.2902276}, + url = {http://dx.doi.org/10.1063/1.2902276}, + keywords = {Two Stage Actuator}, +} + + + +@article{shinno11_newly_devel_long_range_posit, + author = {H. Shinno and H. Yoshioka and H. Sawano}, + title = {A Newly Developed Long Range Positioning Table System With + a Sub-Nanometer Resolution}, + journal = {CIRP Annals}, + volume = 60, + number = 1, + pages = {403-406}, + year = 2011, + doi = {10.1016/j.cirp.2011.03.027}, + url = {http://dx.doi.org/10.1016/j.cirp.2011.03.027}, + keywords = {Two Stage Actuator}, +} + + + +@article{shan15_contr_review, + author = {Guanqiao Shan and Yingzi Li and Liwen Zhang and Zhenyu Wang + and Yingxu Zhang and Jianqiang Qian}, + title = {Contributed Review: Application of Voice Coil Motors in + High-Precision Positioning Stages With Large Travel Ranges}, + journal = {Review of Scientific Instruments}, + volume = 86, + number = 10, + pages = 101501, + year = 2015, + doi = {10.1063/1.4932580}, + url = {https://doi.org/10.1063/1.4932580}, + keywords = {Two Stage Actuator}, +} + + + +@phdthesis{okyay16_mechat_desig_dynam_contr_metrol, + author = {Okyay, Ahmet}, + school = {University of Waterloo}, + title = {Mechatronic Design, Dynamics, Controls, and Metrology of a + Long-Stroke Linear Nano-Positioner}, + year = 2016, + keywords = {Two Stage Actuator}, +} + + + +@book{slocum92_precis_machin_desig, + author = {Slocum, Alexander H}, + title = {Precision Machine Design}, + year = 1992, + publisher = {Society of Manufacturing Engineers}, +} + + + +@book{schmidt20_desig_high_perfor_mechat_third_revis_edition, + author = {Schmidt, R Munnig and Schitter, Georg and Rankers, Adrian}, + title = {The Design of High Performance Mechatronics - Third Revised + Edition}, + year = 2020, + publisher = {Ios Press}, + keywords = {favorite}, +} + + + +@article{wang12_autom_marker_full_field_hard, + author = {Jun Wang and Yu-chen Karen Chen and Qingxi Yuan and Andrei + Tkachuk and Can Erdonmez and Benjamin Hornberger and Michael + Feser}, + title = {Automated Markerless Full Field Hard X-Ray Microscopic + Tomography At Sub-50 Nm 3-dimension Spatial Resolution}, + journal = {Applied Physics Letters}, + volume = 100, + number = 14, + pages = 143107, + year = 2012, + doi = {10.1063/1.3701579}, + url = {https://doi.org/10.1063/1.3701579}, + keywords = {nass}, +} + + + +@article{stankevic17_inter_charac_rotat_stages_x_ray_nanot, + author = {Tomas Stankevic and Christer Engblom and Florent Langlois + and Filipe Alves and Alain Lestrade and Nicolas Jobert and + Gilles Cauchon and Ulrich Vogt and Stefan Kubsky}, + title = {Interferometric Characterization of Rotation Stages for + X-Ray Nanotomography}, + journal = {Review of Scientific Instruments}, + volume = 88, + number = 5, + pages = 053703, + year = 2017, + doi = {10.1063/1.4983405}, + url = {https://doi.org/10.1063/1.4983405}, + keywords = {nass, metrology}, +} + + + +@inproceedings{schroer17_ptynam, + author = {Christian G. Schroer and Martin Seyrich and Maik Kahnt and + Stephan Botta and Ralph D{\"o}hrmann and Gerald Falkenberg and + Jan Garrevoet and Mikhail Lyubomirskiy and Maria Scholz and + Andreas Schropp and Felix Wittwer}, + title = {PtyNAMi: Ptychographic Nano-Analytical Microscope at PETRA + III: interferometrically tracking positions for 3D x-ray + scanning microscopy using a ball-lens retroreflector}, + booktitle = {X-Ray Nanoimaging: Instruments and Methods III}, + year = 2017, + doi = {10.1117/12.2273710}, + url = {https://doi.org/10.1117/12.2273710}, + keywords = {nass, metrology}, + month = 9, +} + + + +@article{nazaretski17_desig_perfor_x_ray_scann, + author = {E. Nazaretski and H. Yan and K. Lauer and N. Bouet and X. + Huang and W. Xu and J. Zhou and D. Shu and Y Hwu and Y. S. + Chu}, + title = {Design and Performance of an X-Ray Scanning Microscope At + the Hard X-Ray Nanoprobe Beamline of Nsls-Ii}, + journal = {Journal of Synchrotron Radiation}, + volume = 24, + number = 6, + pages = {1113-1119}, + year = 2017, + doi = {10.1107/s1600577517011183}, + url = {https://doi.org/10.1107/s1600577517011183}, + keywords = {nass}, +} + + + +@article{nazaretski15_pushin_limit, + author = {E. Nazaretski and K. Lauer and H. Yan and N. Bouet and J. + Zhou and R. Conley and X. Huang and W. Xu and M. Lu and K. + Gofron and S. Kalbfleisch and U. Wagner and C. Rau and Y. S. + Chu}, + title = {Pushing the Limits: an Instrument for Hard X-Ray Imaging + Below 20 Nm}, + journal = {Journal of Synchrotron Radiation}, + volume = 22, + number = 2, + pages = {336-341}, + year = 2015, + doi = {10.1107/s1600577514025715}, + url = {https://doi.org/10.1107/s1600577514025715}, + keywords = {nass}, +} + + + +@article{nazaretski22_new_kirkp_baez_based_scann, + author = {E. Nazaretski and D. S. Coburn and W. Xu and J. Ma and H. + Xu and R. Smith and X. Huang and Y. Yang and L. Huang and M. + Idir and A. Kiss and Y. S. Chu}, + title = {A New Kirkpatrick-Baez-Based Scanning Microscope for the + Submicron Resolution X-Ray Spectroscopy (SRX) Beamline At + Nsls-Ii}, + journal = {Journal of Synchrotron Radiation}, + volume = 29, + number = 5, + pages = {1284-1291}, + year = 2022, + doi = {10.1107/s1600577522007056}, + url = {http://dx.doi.org/10.1107/s1600577522007056}, + DATE_ADDED = {Thu May 2 16:33:47 2024}, +} + + + + +@inproceedings{naves20_t_flex, + author = {Naves, M and Hakvoort, WBJ and Nijenhuis, M and Brouwer, + DM}, + title = {T-Flex: A large range of motion fully flexure-based 6-DOF + hexapod}, + booktitle = {20th EUSPEN International Conference \& Exhibition, EUSPEN + 2020}, + year = 2020, + pages = {205--208}, + keywords = {parallel robot, nass}, + organization = {EUSPEN}, +} + + + +@article{kim13_compac_protot_appar_reduc_circl, + author = {Jungdae Kim and K. Lauer and H. Yan and Y. S. Chu and E. + Nazaretski}, + title = {Compact Prototype Apparatus for Reducing the Circle of + Confusion Down To 40 Nm for X-Ray Nanotomography}, + journal = {Review of Scientific Instruments}, + volume = 84, + number = 3, + pages = 035006, + year = 2013, + doi = {10.1063/1.4798546}, + url = {https://doi.org/10.1063/1.4798546}, + keywords = {nass}, +} + + + +@book{khaled18_pract_desig_applic_model_predic_contr, + author = {Nassim Khaled and Bibin Pattel}, + title = {Practical Design and Application of Model Predictive + Control}, + year = 2018, + publisher = {Butterworth-Heinemann}, +} + + + +@article{holler18_omny_tomog_nano_cryo_stage, + author = {M. Holler and J. Raabe and A. Diaz and M. Guizar-Sicairos + and R. Wepf and M. Odstrcil and F. R. Shaik and V. Panneels + and A. Menzel and B. Sarafimov and S. Maag and X. Wang and V. + Thominet and H. Walther and T. Lachat and M. Vitins and O. + Bunk}, + title = {Omny-A Tomography Nano Cryo Stage}, + journal = {Review of Scientific Instruments}, + volume = 89, + number = 4, + pages = 043706, + year = 2018, + doi = {10.1063/1.5020247}, + url = {https://doi.org/10.1063/1.5020247}, + keywords = {nass}, +} + + + +@article{holler17_omny_pin_versat_sampl_holder, + author = {M. Holler and J. Raabe and R. Wepf and S. H. Shahmoradian + and A. Diaz and B. Sarafimov and T. Lachat and H. Walther and + M. Vitins}, + title = {Omny Pin-A Versatile Sample Holder for Tomographic + Measurements At Room and Cryogenic Temperatures}, + journal = {Review of Scientific Instruments}, + volume = 88, + number = 11, + pages = 113701, + year = 2017, + doi = {10.1063/1.4996092}, + url = {https://doi.org/10.1063/1.4996092}, + keywords = {nass}, +} + + + +@inproceedings{engblom18_nanop_resul, + author = {C. Engblom and others}, + title = {Nanoprobe Results: Metrology \& Control in Stacked + Closed-Loop Systems}, + booktitle = {Proc. of International Conference on Accelerator and Large + Experimental Control Systems (ICALEPCS'17)}, + year = 2018, + doi = {10.18429/JACoW-ICALEPCS2017-WEAPL04}, + url = {https://doi.org/10.18429/JACoW-ICALEPCS2017-WEAPL04}, + isbn = {978-3-95450-193-9}, + month = {Jan.}, + publisher = {JACoW}, + keywords = {nass}, +} + + + +@inproceedings{dehaeze18_sampl_stabil_for_tomog_exper, + author = {Thomas Dehaeze and M. Magnin Mattenet and Christophe + Collette}, + title = {Sample Stabilization For Tomography Experiments In Presence + Of Large Plant Uncertainty}, + booktitle = {MEDSI'18}, + year = 2018, + number = 10, + pages = {153--157}, + doi = {10.18429/JACoW-MEDSI2018-WEOAMA02}, + url = {https://doi.org/10.18429/JACoW-MEDSI2018-WEOAMA02}, + address = {Geneva, Switzerland}, + isbn = {978-3-95450-207-3}, + keywords = {nass, esrf}, + language = {english}, + month = {Dec}, + publisher = {JACoW Publishing}, + series = {Mechanical Engineering Design of Synchrotron Radiation + Equipment and Instrumentation}, + venue = {Paris, France}, +} + + + +@inproceedings{xu23_high_nsls_ii, + author = {Weihe Xu and Huijuan Xu and Dmitri Gavrilov and Xiaojing + Huang and Hanfei Yan and Yong S. Chu and Evgeny Nazaretski}, + title = {High-speed fly-scan capabilities for x-ray microscopy + systems at NSLS-II}, + booktitle = {X-Ray Nanoimaging: Instruments and Methods VI}, + year = 2023, + pages = {nil}, + doi = {10.1117/12.2675940}, + url = {http://dx.doi.org/10.1117/12.2675940}, + DATE_ADDED = {Thu May 2 16:24:55 2024}, + month = 10, +} + + + + +@article{raimondi21_commis_hybrid_multib_achrom_lattic, + author = {P. Raimondi and N. Carmignani and L. R. Carver and J. + Chavanne and L. Farvacque and G. Le Bec and D. Martin and S. + M. Liuzzo and T. Perron and S. White}, + title = {Commissioning of the Hybrid Multibend Achromat Lattice At + the European Synchrotron Radiation Facility}, + journal = {Physical Review Accelerators and Beams}, + volume = 24, + number = 11, + pages = 110701, + year = 2021, + doi = {10.1103/physrevaccelbeams.24.110701}, + url = {http://dx.doi.org/10.1103/physrevaccelbeams.24.110701}, + keywords = {esrf}, +} + + + + +@article{cotte17_id21_x_ray_infrar_micros, + author = {Marine Cotte and Emeline Pouyet and Murielle Salom{\'e} and + Camille Rivard and Wout De Nolf and Hiram Castillo-Michel and + Tiphaine Fabris and Letizia Monico and Koen Janssens and Tian + Wang and Philippe Sciau and Louisiane Verger and Laurent + Cormier and Olivier Dargaud and Emmanuel Brun and David + Bugnazet and Barbara Fayard and Bernhard Hesse and Ana Elena + Pradas del Real and Giulia Veronesi and Juliette Langlois and + Nathalie Balcar and Yannick Vandenberghe and Vicente Armando + Sol{\'e} and J{\'e}rôme Kieffer and Ray Barrett and C{\'e}dric + Cohen and Claude Cornu and Robert Baker and Eric Gagliardini + and Emmanuel Papillon and Jean Susini}, + title = {The Id21 X-Ray and Infrared Microscopy Beamline At the + Esrf: Status and Recent Applications To Artistic Materials}, + journal = {Journal of Analytical Atomic Spectrometry}, + volume = 32, + number = 3, + pages = {477-493}, + year = 2017, + doi = {10.1039/c6ja00356g}, + url = {http://dx.doi.org/10.1039/c6ja00356g}, + keywords = {esrf}, +} + + + + +@article{martinez-criado16_id16b, + author = {Gema Mart{\'i}nez-Criado and Julie Villanova and R{\'e}mi + Tucoulou and Damien Salomon and Jussi-Petteri Suuronen and + Sylvain Labour{\'e} and Cyril Guilloud and Valentin Valls and + Raymond Barrett and Eric Gagliardini and Yves Dabin and Robert + Baker and Sylvain Bohic and C{\'e}dric Cohen and John Morse}, + title = {Id16b: a Hard X-Ray Nanoprobe Beamline At the Esrf for + Nano-Analysis}, + journal = {Journal of Synchrotron Radiation}, + volume = 23, + number = 1, + pages = {344-352}, + year = 2016, + doi = {10.1107/s1600577515019839}, + url = {http://dx.doi.org/10.1107/s1600577515019839}, + keywords = {esrf}, +} + + + + +@article{villar18_nanop_esrf_id16a_nano_imagin_beaml, + author = {F. Villar and L. Andre and R. Baker and S. Bohic and J. C. + da Silva and C. Guilloud and O. Hignette and J. Meyer and A. + Pacureanu and M. Perez and M. Salome and P. van der Linden and + Y. Yang and P. Cloetens}, + title = {Nanopositioning for the Esrf Id16a Nano-Imaging Beamline}, + journal = {Synchrotron Radiation News}, + volume = 31, + number = 5, + pages = {9-14}, + year = 2018, + doi = {10.1080/08940886.2018.1506234}, + url = {http://dx.doi.org/10.1080/08940886.2018.1506234}, + keywords = {esrf}, +} + + + + +@article{riekel10_progr_micro_nano_diffr_at, + author = {Christian Riekel and Manfred Burghammer and Richard Davies}, + title = {Progress in Micro- and Nano-Diffraction At the Esrf Id13 + Beamline}, + journal = {IOP Conference Series: Materials Science and Engineering}, + volume = 14, + number = {nil}, + pages = 012013, + year = 2010, + doi = {10.1088/1757-899x/14/1/012013}, + url = {http://dx.doi.org/10.1088/1757-899x/14/1/012013}, + keywords = {esrf}, +} + + + + +@article{wright20_new_oppor_at_mater_scien, + author = {Jonathan Wright and Carlotta Giacobbe and Marta Majkut}, + title = {New Opportunities At the Materials Science Beamline At Esrf + To Exploit High Energy Nano-Focus X-Ray Beams}, + journal = {Current Opinion in Solid State and Materials Science}, + volume = 24, + number = 2, + pages = 100818, + year = 2020, + doi = {10.1016/j.cossms.2020.100818}, + url = {http://dx.doi.org/10.1016/j.cossms.2020.100818}, + keywords = {esrf}, +} + + + + +@article{leake19_nanod_beaml_id01, + author = {Steven J. Leake and Gilbert A. Chahine and Hamid Djazouli + and Tao Zhou and Carsten Richter and Jan Hilhorst and Lucien + Petit and Marie-Ingrid Richard and Christian Morawe and + Raymond Barrett and Lin Zhang and Roberto A. Homs-Regojo and + Vincent Favre-Nicolin and Peter Boesecke and Tobias U. + Sch{\"u}lli}, + title = {The Nanodiffraction Beamline Id01/esrf: a Microscope for + Imaging Strain and Structure}, + journal = {Journal of Synchrotron Radiation}, + volume = 26, + number = 2, + pages = {571-584}, + year = 2019, + doi = {10.1107/s160057751900078x}, + url = {http://dx.doi.org/10.1107/s160057751900078x}, + keywords = {esrf}, +} + + + + +@misc{versteegen23_inser_devic_contr, + author = {Reine Versteegen}, + keywords = {esrf}, + publisher = {ASD Workshop}, + title = {Insertion Devices Control}, + year = 2023, +} + + + + +@inproceedings{marion04_hexap_esrf, + author = {Marion, Ph and Comin, F and Rostaining, G and others}, + title = {Hexapods at the ESRF: mechanical aspects results obtained}, + booktitle = {MEDSI 2004 proceedings}, + year = 2004, + pages = {1--9}, + keywords = {esrf}, +} + + + +@article{fajardo95_contr_six_degree_paral_manip, + author = {P. Fajardo and V. Rey‐Bakaikoa}, + title = {Control of Six Degree‐of‐freedom Parallel Manipulators for + Synchrotron Radiation Applications}, + journal = {Review of Scientific Instruments}, + volume = 66, + number = 2, + pages = {1758-1761}, + year = 1995, + doi = {10.1063/1.1145842}, + url = {http://dx.doi.org/10.1063/1.1145842}, + keywords = {esrf}, +} + + + +@article{cammarata09_chopp_system_time_resol_exper, + author = {Marco Cammarata and Laurent Eybert and Friederike Ewald and + Wolfgang Reichenbach and Michael Wulff and Philip Anfinrud and + Friedrich Schotte and Anton Plech and Qingyu Kong and Maciej + Lorenc and Bernd Lindenau and J{\"u}rgen R{\"a}biger and + Stephan Polachowski}, + title = {Chopper System for Time Resolved Experiments With + Synchrotron Radiation}, + journal = {Review of Scientific Instruments}, + volume = 80, + number = 1, + pages = 015101, + year = 2009, + doi = {10.1063/1.3036983}, + url = {http://dx.doi.org/10.1063/1.3036983}, + keywords = {esrf}, +} + + + + +@article{dabin02_mechan_desig_high_precis_posit, + author = {Dabin, Y and Rostaing, G and Gagliardini, E and Nicola, M + and Borrel, J}, + title = {The Mechanical Design of High Precision Positioning + Instruments, Used for X-Ray Microscopy At the Esrf}, + journal = {Proceedings of the 2nd Mechanical Engineering Design of + Synchrotron Radiation Equipment and Instrumentation}, + volume = {MEDSI2020}, + year = 2002, + keywords = {Stepper Motors, esrf}, +} + + + +@article{dabin03_precis_mechan_high_accur_beaml, + author = {Y. Dabin and G. Rostaing and E. Gagliardini and M. Nicola + and R. Barrett and J. Susini}, + title = {Precision-Mechanisms for High Accuracy Beamline Instruments + At the Esrf: a Review}, + journal = {Journal de Physique IV (Proceedings)}, + volume = 104, + pages = {109-112}, + year = 2003, + doi = {10.1051/jp4:200300040}, + url = {http://dx.doi.org/10.1051/jp4:200300040}, + keywords = {Stepper Motors, esrf}, +} + + + +@inproceedings{guijarro17_bliss_exper_contr_esrf_ebs_beaml, + author = {Guijarro, Matias and Beteva, Antonia and Coutinho, Tiago + and Dominguez, Marie-Christine and Guilloud, Cyril and Homs, + Alejandro and Meyer, Jens and Michel, Vincent and Papillon, + Emmanuel and Perez, Manuel and others}, + title = {BLISS-Experiments Control for ESRF EBS Beamlines}, + booktitle = {Proc. 16th Int. Conf. on Accelerator and Large Experimental + Control Systems (ICALEPCS'17)}, + year = 2017, + pages = {1060--1066}, + keywords = {esrf}, +} + + + + +@article{janvier13_icepap, + author = {Janvier, N and Clement, JM and Fajardo, P and Cun{\'\i}, G}, + title = {Icepap: an Advanced Motor Controller for Scientific + Applications in Large User Facilities}, + journal = {TUPPC081, ICALEPCS2013, San Francisco}, + volume = 2016, + year = 2013, + keywords = {esrf}, +} + + + +@article{baker18_esrf_doubl_cryst_monoc_protot_projec, + author = {Baker, Robert and Baboulin, Delphine and Barrett, Raymond + and Bernard, Pascal and Berruyer, Gilles and Bonnefoy, Julien + and Brendike, Maxim and Brumund, Philipp and Dabin, Yves and + Ducott{\'e}, Ludovic and others}, + title = {Esrf Double Crystal Monochromator Prototype Project}, + journal = {Proc. MEDSI'18}, + pages = {440--444}, + year = 2018, + keywords = {dcm, esrf}, +} + + + +@misc{dabin04_mecan, + author = {Yves Dabin}, + keywords = {flexure, esrf}, + note = {5eme rencontre national des M{\'e}caniciens du CNRS}, + title = {M{\'e}canismes et positionnement de haute pr{\'e}cision}, + year = 2004, +} + + + +@MastersThesis{reichert21_stiff_hexap, + author = {Reichert, Martin}, + school = {ESRF}, + title = {Stiffness validation of Hexapod flexures}, + year = 2021, + keywords = {flexure, esrf}, +} + + + +@inproceedings{dehaeze21_mechat_approac_devel_nano_activ_stabil_system, + author = {Dehaeze, T. and Bonnefoy, J. and Collette, C.}, + title = {Mechatronics Approach for the Development of a + Nano-Active-Stabilization-System}, + booktitle = {MEDSI'20}, + year = 2021, + language = {english}, + publisher = {JACoW Publishing}, + series = {Mechanical Engineering Design of Synchrotron Radiation + Equipment and Instrumentation}, + venue = {Chicago, USA}, + keywords = {nass, esrf}, +} + + + +@inproceedings{brumund21_multib_simul_reduc_order_flexib_bodies_fea, + author = {Philipp Brumund and Thomas Dehaeze}, + title = {Multibody Simulations with Reduced Order Flexible Bodies + obtained by FEA}, + booktitle = {MEDSI'20}, + year = 2021, + language = {english}, + publisher = {JACoW Publishing}, + series = {Mechanical Engineering Design of Synchrotron Radiation + Equipment and Instrumentation}, + venue = {Chicago, USA}, + keywords = {nass, esrf}, +} + + + +@article{dehaeze21_activ_dampin_rotat_platf_using, + author = {Thomas Dehaeze and Christophe Collette}, + title = {Active Damping of Rotating Platforms Using Integral Force + Feedback}, + journal = {Engineering Research Express}, + year = 2021, + doi = {10.1088/2631-8695/abe803}, + url = {https://doi.org/10.1088/2631-8695/abe803}, + month = {Feb}, + keywords = {nass, esrf}, +} + + + +@unpublished{zhang96_groun_vibrat_orme_meris_super_esrf, + author = {Zhang, L.}, + note = {Ground motion Measurements at Synchrotron sites}, + title = {Ground Vibrations at the sites of Orme des Merisiers, + SuperACO and ESRF}, + year = 1996, + keywords = {esrf}, +} + + + +@inproceedings{zelenika04_flexur_use_elast_sr_instr_desig, + author = {Zelenika, Sa{\v{s}}a}, + title = {Flexures-The Use of Elasticity in SR Instruments Design}, + booktitle = {3rd International Workshop on Mechanical Engineering Design + of Synchrotron Radiation Equipment and Instrumentation (MEDSI + 2004)}, + year = 2004, + keywords = {flexure, esrf}, +} + + + +@mastersthesis{youness20_concep, + author = {Benyakhlef Youness}, + school = {ULB}, + title = {Conception d'un banc de test opto-mecanique}, + year = 2020, + keywords = {esrf}, +} + + + +@unpublished{ravy18_shinin_light_synch_light, + author = {Sylvain RAVY}, + note = {MEDSI 2018}, + title = {Shining a Light on Synchrotron Light}, + year = 2018, + keywords = {esrf}, +} + + + +@article{dimper15_esrf_upgrad_progr_phase_ii, + author = {Dimper, R and Reichert, H and Raimondi, P and Ortiz, L + Sanchez and Sette, F and Susini, J}, + title = {Esrf Upgrade Programme Phase Ii (2015-2022) Technical + Design Study}, + journal = {The orange book, ESRF}, + year = 2015, + keywords = {esrf}, +} + + + +@InProceedings{brendike19_esrf_doubl_cryst_monoc_protot_contr_concep, + author = {M. Brendike and G. Berruyer and H. Gonzalez and L. + Ducott{\'e} and C. Guilloud and M. Perez, R. Baker}, + title = {ESRF-Double Crystal Monochromator Prototype - Control + Concept}, + year = {2019}, + keywords = {esrf, dcm}, +} + + + +@inbook{yong16_mechan_desig_high_speed_nanop_system, + author = {Yuen Kuan Yong and Kam K. Leang}, + booktitle = {Nanopositioning Technologies}, + doi = {10.1007/978-3-319-23853-1_3}, + pages = {61-121}, + publisher = {Springer International Publishing}, + series = {Nanopositioning Technologies}, + title = {Mechanical Design of High-Speed Nanopositioning Systems}, + url = {http://dx.doi.org/10.1007/978-3-319-23853-1_3}, + year = {2016}, + keywords = {flexure,nanostage}, +} + + + +@article{lee17_compac_compl_paral_xy_nano, + author = {Hak-Jun Lee and Siwoong Woo and Jaehyun Park and Jae-Heon + Jeong and Myeonghyeon Kim and Jiheun Ryu and Dae-Gab Gweon and + Young-Man Choi}, + title = {Compact Compliant Parallel Xy Nano-Positioning Stage With + High Dynamic Performance, Small Crosstalk, and Small Yaw + Motion}, + journal = {Microsystem Technologies}, + volume = 24, + number = 6, + pages = {2653-2662}, + year = 2017, + doi = {10.1007/s00542-017-3626-z}, + url = {http://dx.doi.org/10.1007/s00542-017-3626-z}, + keywords = {flexure,nanostage}, +} + + + +@article{awtar13_desig_large_range_xy_nanop_system, + author = {Shorya Awtar and Gaurav Parmar}, + title = {Design of a Large Range Xy Nanopositioning System}, + journal = {Journal of Mechanisms and Robotics}, + volume = 5, + number = 2, + pages = {nil}, + year = 2013, + doi = {10.1115/1.4023874}, + url = {http://dx.doi.org/10.1115/1.4023874}, + keywords = {flexure,nanostage}, +} + + + +@article{liu18_desig_trajec_track_contr_piezoel, + author = {Pengbo Liu and Peng Yan and Hitay {\"O}zbay}, + title = {Design and Trajectory Tracking Control of a Piezoelectric + Nano-Manipulator With Actuator Saturations}, + journal = {Mechanical Systems and Signal Processing}, + volume = 111, + number = {nil}, + pages = {529-544}, + year = 2018, + doi = {10.1016/j.ymssp.2018.04.002}, + url = {http://dx.doi.org/10.1016/j.ymssp.2018.04.002}, + keywords = {flexure,nanostage}, +} + + + +@article{yong09_desig_ident_contr_flexur_based, + author = {Yuen Kuan Yong and S.S. Aphale and S.O. Reza Moheimani}, + title = {Design, Identification, and Control of a Flexure-Based Xy + Stage for Fast Nanoscale Positioning}, + journal = {IEEE Transactions on Nanotechnology}, + volume = 8, + number = 1, + pages = {46-54}, + year = 2009, + doi = {10.1109/tnano.2008.2005829}, + url = {https://doi.org/10.1109/tnano.2008.2005829}, + keywords = {flexure,nanostage}, +} + + + +@article{fleming10_integ_strain_force_feedb_high, + author = {Fleming, Andrew J and Leang, Kam K}, + title = {Integrated Strain and Force Feedback for High-Performance + Control of Piezoelectric Actuators}, + journal = {Sensors and Actuators A: Physical}, + volume = 161, + number = {1-2}, + pages = {256--265}, + year = 2010, + publisher = {Elsevier}, + keywords = {flexure,nanostage}, +} + + + +@article{barillot99_desig_funct_tests_xy_piezoel, + author = {Barillot, F and Le Letty, R and Claeyssen, F and Lhermet, N + and Yorck, M and Ikoss, S}, + title = {Design and Functional Tests of a Xy Piezoelectric Stage for + the Rosetta/midas}, + journal = {EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP}, + volume = 438, + pages = {121--126}, + year = 1999, + publisher = {EUROPEAN SPACE AGENCY}, + keywords = {flexure,nanostage}, +} + + + +@article{holler15_error_motion_compen_track_inter, + author = {Mirko Holler and Jorg Raabe}, + title = {Error Motion Compensating Tracking Interferometer for the + Position Measurement of Objects With Rotational Degree of + Freedom}, + journal = {Optical Engineering}, + volume = 54, + number = 5, + pages = 054101, + year = 2015, + doi = {10.1117/1.oe.54.5.054101}, + url = {https://doi.org/10.1117/1.oe.54.5.054101}, + keywords = {metrology, calibration}, +} + + + +@article{holler12_instr_x_ray_nano_imagin, + author = {M. Holler and J. Raabe and A. Diaz and M. Guizar-Sicairos + and C. Quitmann and A. Menzel and O. Bunk}, + title = {An Instrument for 3d X-Ray Nano-Imaging}, + journal = {Review of Scientific Instruments}, + volume = 83, + number = 7, + pages = 073703, + year = 2012, + doi = {10.1063/1.4737624}, + url = {https://doi.org/10.1063/1.4737624}, +} + + + +@article{schropp20_ptynam, + author = {Andreas Schropp and Ralph D{\"o}hrmann and Stephan Botta + and Dennis Br{\"u}ckner and Maik Kahnt and Mikhail + Lyubomirskiy and Christina Ossig and Maria Scholz and Martin + Seyrich and Michael E. Stuckelberger and Patrik Wiljes and + Felix Wittwer and Jan Garrevoet and Gerald Falkenberg and + Yakub Fam and Thomas L. Sheppard and Jan-Dierk Grunwaldt and + Christian G. Schroer}, + title = {Ptynami: Ptychographic Nano-Analytical Microscope}, + journal = {Journal of Applied Crystallography}, + volume = 53, + number = 4, + pages = {957-971}, + year = 2020, + doi = {10.1107/s1600576720008420}, + url = {http://dx.doi.org/10.1107/s1600576720008420}, + DATE_ADDED = {Thu May 2 16:01:03 2024}, +} + + + +@article{schroeck01_compen_desig_linear_time_invar, + author = {S.J. Schroeck and W.C. Messner and R.J. McNab}, + title = {On Compensator Design for Linear Time-Invariant Dual-Input + Single-Output Systems}, + journal = {IEEE/ASME Transactions on Mechatronics}, + volume = 6, + number = 1, + pages = {50-57}, + year = 2001, + doi = {10.1109/3516.914391}, + url = {https://doi.org/10.1109/3516.914391}, +} + + + +@inproceedings{geraldes23_sapot_carnaub_sirius_lnls, + author = {Renan R. Geraldes and Gabriel B. Z. L. Moreno and Francesco + R. Lena and Erik O. Pereira and Matheus H. S. da Silva and + Gabriel G. Bas{\'i}lio and Pedro P. R. Proen{\c{c}}a and + Rodrigo C. Gomes and Cassiano S. N. C. Bueno and Sergio A. L. + Luiz and Artur C. Pinto and Bernd C. Meyer and Douglas Galante + and Carlos A. P{\'e}rez and Verônica C. Teixeira and Leonardo + M. Kofukuda and Anna P. S. Sotero and Theo A. M. Ruijl and + Walter Aarden and Piet Peters and Maryn Wijnhoven and Helio C. + N. Tolentino}, + title = {The high-dynamic cryogenic sample stage for + SAPOTI/CARNA{\'U}BA at Sirius/LNLS}, + booktitle = {PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON X-RAY + MICROSCOPY - XRM2022}, + year = 2023, + pages = {nil}, + doi = {10.1063/5.0168438}, + url = {http://dx.doi.org/10.1063/5.0168438}, + DATE_ADDED = {Thu May 2 18:09:04 2024}, + month = {-}, +} + + + + +@article{kelly22_delta_robot_long_travel_nano, + author = {Jon Kelly and Andrew Male and Nicholas Rubies and David + Mahoney and Jessica M. Walker and Miguel A. Gomez-Gonzalez and + Guy Wilkin and Julia E. Parker and Paul D. Quinn}, + title = {The Delta Robot-A Long Travel Nano-Positioning Stage for + Scanning X-Ray Microscopy}, + journal = {Review of Scientific Instruments}, + volume = 93, + number = 4, + pages = {nil}, + year = 2022, + doi = {10.1063/5.0084806}, + url = {http://dx.doi.org/10.1063/5.0084806}, + DATE_ADDED = {Thu May 2 20:27:54 2024}, +} + + + + +@article{barrett16_reflec_optic_hard_x_ray, + author = {R. Barrett and R. Baker and P. Cloetens and C. Morawe and + R. Tucoulou and A. Vivo}, + title = {Reflective Optics for Hard X-Ray Nanofocusing Applications + At the Esrf}, + journal = {Synchrotron Radiation News}, + volume = 29, + number = 4, + pages = {10-15}, + year = 2016, + doi = {10.1080/08940886.2016.1198668}, + url = {http://dx.doi.org/10.1080/08940886.2016.1198668}, + DATE_ADDED = {Sun May 5 16:53:18 2024}, +} + + + +@article{hatsui15_x_ray_imagin_detec_synch_xfel_sourc, + author = {Takaki Hatsui and Heinz Graafsma}, + title = {X-Ray Imaging Detectors for Synchrotron and Xfel Sources}, + journal = {IUCrJ}, + volume = 2, + number = 3, + pages = {371-383}, + year = 2015, + doi = {10.1107/s205225251500010x}, + url = {http://dx.doi.org/10.1107/s205225251500010x}, + DATE_ADDED = {Sun May 5 16:57:25 2024}, +} + + + +@article{huang15_fly_scan_ptych, + author = {Xiaojing Huang and Kenneth Lauer and Jesse N. Clark and + Weihe Xu and Evgeny Nazaretski and Ross Harder and Ian K. + Robinson and Yong S. Chu}, + title = {Fly-Scan Ptychography}, + journal = {Scientific Reports}, + volume = 5, + number = 1, + pages = 9074, + year = 2015, + doi = {10.1038/srep09074}, + url = {http://dx.doi.org/10.1038/srep09074}, + DATE_ADDED = {Thu May 2 16:30:55 2024}, +} + + + + @phdthesis{monkhorst04_dynam_error_budget, author = {Wouter Monkhorst}, school = {Delft University}, @@ -73,6 +1507,17 @@ +@phdthesis{rankers98_machin, + author = {Rankers, Adrian Mathias}, + keywords = {favorite}, + school = {University of Twente}, + title = {Machine dynamics in mechatronic systems: An engineering + approach.}, + year = 1998, +} + + + @phdthesis{jabben07_mechat, author = {Jabben, Leon}, school = {Delft University}, @@ -82,3 +1527,61 @@ keywords = {maglev}, } + + +@inproceedings{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb, + author = {Dehaeze, T. and Collette, C.}, + title = {Active Damping of Rotating Platforms using Integral Force + Feedback}, + booktitle = {Proceedings of the International Conference on Modal + Analysis Noise and Vibration Engineering (ISMA)}, + year = 2020, +} + + + +@inproceedings{dehaeze19_compl_filter_shapin_using_synth, + author = {Dehaeze, Thomas and Vermat, Mohit and Collette, Christophe}, + title = {Complementary Filters Shaping Using $\mathcal{H}_\infty$ + Synthesis}, + booktitle = {7th International Conference on Control, Mechatronics and + Automation (ICCMA)}, + year = 2019, + pages = {459-464}, + doi = {10.1109/ICCMA46720.2019.8988642}, + url = {https://doi.org/10.1109/ICCMA46720.2019.8988642}, + keywords = {complementary filters, sensor fusion}, + language = {english}, +} + + + +@article{verma20_virtual_sensor_fusion_high_precis_contr, + author = {Mohit Verma and Thomas Dehaeze and Guoying Zhao and + Jennifer Watchi and Christophe Collette}, + title = {Virtual Sensor Fusion for High Precision Control}, + journal = {Mechanical Systems and Signal Processing}, + volume = 150, + pages = 107241, + year = 2020, + doi = {10.1016/j.ymssp.2020.107241}, + url = {https://doi.org/10.1016/j.ymssp.2020.107241}, + keywords = {complementary filters}, +} + + + +@article{tsang22_optim_sensor_fusion_method_activ, + author = {T T L Tsang and T G F Li and T Dehaeze and C Collette}, + title = {Optimal Sensor Fusion Method for Active Vibration Isolation + Systems in Ground-Based Gravitational-Wave Detectors}, + journal = {Classical and Quantum Gravity}, + volume = 39, + number = 18, + pages = 185007, + year = 2022, + doi = {10.1088/1361-6382/ac8780}, + url = {http://dx.doi.org/10.1088/1361-6382/ac8780}, + DATE_ADDED = {Mon May 6 14:21:34 2024}, +} + diff --git a/nass-introduction.org b/nass-introduction.org index 1abe3c6..476a62c 100644 --- a/nass-introduction.org +++ b/nass-introduction.org @@ -88,16 +88,286 @@ Prefix is =introduction= -* Context of this thesis / Background and Motivation +** TODO [#C] Finish review about Stewart platforms -- \gls{esrf} (Figure [[fig:esrf_picture]]) +# [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]] -#+name: fig:esrf_picture +- [ ] cite:li01_simul_fault_vibrat_isolat_point +- [ ] cite:bishop02_devel_precis_point_contr_vibrat +- [ ] cite:hanieh03_activ_stewar +- [ ] cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies +- [ ] cite:naves20_desig + +** TODO [#C] Review of two stage control + +[[elisp:(helm-bibtex nil nil "Two Stage Actuator ")][Two Stage Actuator]]: +- [X] cite:&xu12_desig_devel_flexur_based_dual +- [ ] cite:&pahk01_ultra_precis_posit_system_servo_motor +- [ ] cite:&kobayashi03_phase_stabil_servo_contr_dual + disk drive +- [ ] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol +- [ ] cite:&woody06_desig_perfor_dual_drive_system +- [ ] cite:&chassagne07_nano_posit_system_with_sub +- [ ] cite:&schitter08_dual +- [X] cite:&buice09_desig_evaluat_singl_axis_precis +- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage +- [ ] cite:&ting11_contr_desig_high_frequen_cuttin +- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit +- [ ] cite:&ito13_high_precis_posit_system_using +- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system +- [ ] cite:&kim13_desig_contr_singl_stage_dual +- [ ] cite:&wu13_desig +- [ ] cite:&parmar14_large_dynam_range_nanop_using +- [ ] cite:&ito15_low_stiff_dual_stage_actuat +- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system +- [ ] cite:&zhu17_flexur_based_paral_actuat_dual +- [ ] cite:&wang17_devel_contr_long_strok_precis_stage +- [ ] cite:&okyay18_modal_analy_metrol_error_budget +- [ ] cite:&csencsics18_system_contr_desig_voice_coil +- [ ] cite:&okyay18_mechat_desig_actuat_optim_contr +- [ ] cite:&kong18_vibrat_isolat_dual_stage_actuat +- [ ] cite:&du19_multi_actuat_system_contr +- [ ] cite:&yun20_inves_two_stage_vibrat_suppr +- [ ] cite:&mukherjee20_hybrid_contr_precis_posit_applic +- [ ] cite:&barros21_feedf_contr_piezoel_dual_actuat_system + +*To read in details*: +- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann + *top* +- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]] +- [X] cite:&shinno11_newly_devel_long_range_posit +- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit +- [ ] cite:&shan15_contr_review + *good review* +- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol + *Good review* + #+begin_quote + The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred. +Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal. + #+end_quote +- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat + *only found example of dual stage with hexapod* + #+begin_quote + The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs. + #+end_quote + +#+name: tab:introduction_dual_stages +#+caption: for each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator). +#+attr_latex: :environment tabularx :width \linewidth :align lXX +#+attr_latex: :center t :booktabs t +| DoF | Long Stroke | Short Stroke | Bandwidth | | +|--------+---------------------------------+---------------+---------------+------------------------------------------------------| +| X,Y | 2 axis, linear motor | 2 piezo | | cite:&chassagne07_nano_posit_system_with_sub | +| X,Y,Rz | 1 axis, iron core linear motor | 4 VCM | 85Hz | cite:&choi08_desig_contr_nanop_xy_theta_scann | +| X | 1 axis, DC motor, feedscrew | 1 PZT | | cite:&buice09_desig_evaluat_singl_axis_precis | +| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo | 3 PID, few Hz | cite:&liu10_desig_contr_long_travel_nano_posit_stage | +| X | 1 axis, Servo motor, ball screw | 1 VCM | | cite:&shinno11_newly_devel_long_range_posit | +| X | 1 axis, VCM | 1 piezo stack | | cite:&xu12_desig_devel_flexur_based_dual | + +** TODO [#C] Make all the figures + +1. [ ] [[file:figs/introduction_esrf_schematic.svg]] + highlight Linac, Booster, Storage ring, ID31 beamline +2. [ ] Good Picture of ESRF: =introduction_esrf_picture= +3. [ ] Map with all the Synchrotrons in the World: =introduction_synchrotrons= + Show Synchrotron going to 4th generation, Highlight ESRF +4. [ ] Synchrotron Moore law =introduction_moore_law= +5. [ ] Picture of the beam =introduction_beam_3rd_generation= and =introduction_beam_4th_generation= +6. [ ] ID31/typical beamline layout with: =introduction_id31_layout= + - Insertion device +7. [ ] CAD view of the ID31 EH: =introduction_id31_cad= + - Highlight focussing optics, positioning station, sample, detector + - Show X-Y-Z vectors +8. [ ] Micro-Station with each stage in different color and associated motions + =introduction_id31_microstation_cad= + =introduction_id31_microstation_picture= +9. [ ] Typical experiment (ideally from ID31 experiments): + - [ ] tomography: =introduction_exp_tomography= and =introduction_exp_tomography_image= + - [ ] scanning: =introduction_exp_scanning= and =introduction_exp_scanning_image= +10. [ ] Typical linear stage =introduction_linear_stage= + - Show: stepper motor, ball screw, linear guides + - Show: straightness, flatness, etc... +11. [ ] Flexure based stage =introduction_flexure_stage= +12. [ ] NASS concept: =introduction_nass_concept_schematic= + - 4 elements: micro-station, nano-hexapod, metrology, control system +13. [ ] NASS metrology schematic: =introduction_nass_metrology= + - Nano-hexapod, sample, spherical mirror with flat bottom surface + - several fiber interferometers with tracking systems (arrows showing that they can move in Rx/Ry) +14. [ ] Show some passive end-stations =introduction_pass_stations= + - ID16b + - ID11 +15. [ ] Show active passive end-stations =introduction_acti_stations= + - ID16a +16. [ ] Two stage control =introduction_two_stage_control= + Schematic with the long stroke, short stroke, metrology and control architecture: trajectory generation => long stroke & short stroke + feedback on the short stroke +17. [ ] Examples of two stage control: + - =introduction_two_stage_control_h_bridge= from [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]] + - =introduction_two_stage_control_example= from [[cite:&shinno11_newly_devel_long_range_posit]] +18. [ ] Serial VS Parallel: comparison of X-Y-Rz stages + - =introduction_kinematics_serial= + - =introduction_kinematics_parallel= +19. [ ] Stewart platform architecture =introduction_stewart_platform= + Maybe two pose to show that by changing the length of each strut, it is possible to change the relative position between the two plates? + Maybe do that with Matlab and then editing with Inkscape +20. [ ] Different model types + - =introduction_model_lumped= + - =introduction_model_fem= + - =introduction_model_multi_body= +21. [ ] Dynamic Error Budgeting ?? + - feedback model with disturbances, noise, and performance signal + - PSD + CPS ? => understand what are the limitations?, similar to what is in [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]] ? + +** DONE [#B] Check these papers for literature review +CLOSED: [2024-05-05 Sun 16:22] + +Check these papers: +- [[elisp:(helm-bibtex nil nil "nass ")][Nano Active Stabilization System]] +- [[elisp:(helm-bibtex nil nil "esrf ")][ESRF]] +- [[elisp:(helm-bibtex nil nil "nanostage ")][Nano Positioning Stage]] + + +NASS: +- [X] cite:&wang12_autom_marker_full_field_hard + Calibration of spindle run-out errors, and correct the errors in post processing, for tomography +- [X] cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot +- [X] cite:&schroer17_ptynam +- [X] cite:&nazaretski17_desig_perfor_x_ray_scann +- [X] cite:&nazaretski15_pushin_limit +- [X] cite:nazaretski22_new_kirkp_baez_based_scann + +- [X] cite:&naves20_t_flex +- [X] cite:&kim13_compac_protot_appar_reduc_circl +- [X] cite:&khaled18_pract_desig_applic_model_predic_contr +- [X] cite:&holler18_omny_tomog_nano_cryo_stage +- [X] cite:&holler17_omny_pin_versat_sampl_holder +- [X] cite:&engblom18_nanop_resul +- [X] cite:&dehaeze18_sampl_stabil_for_tomog_exper +- [X] HXN [[cite:&xu23_high_nsls_ii]] + Laser interferometers on reference ring (on top of rotary stage). + Used to trigger the detectors (ptychography, microscope) + +ESRF: +- [X] cite:raimondi21_commis_hybrid_multib_achrom_lattic +- [X] cite:cotte17_id21_x_ray_infrar_micros +- [X] cite:martinez-criado16_id16b +- [X] cite:villar18_nanop_esrf_id16a_nano_imagin_beaml +- [X] cite:riekel10_progr_micro_nano_diffr_at +- [X] cite:wright20_new_oppor_at_mater_scien +- [X] cite:leake19_nanod_beaml_id01 +- [X] cite:versteegen23_inser_devic_contr +- [X] cite:marion04_hexap_esrf +- [X] cite:fajardo95_contr_six_degree_paral_manip +- [X] cite:cammarata09_chopp_system_time_resol_exper +- [X] cite:dabin02_mechan_desig_high_precis_posit +- [X] cite:dabin03_precis_mechan_high_accur_beaml +- [X] cite:guijarro17_bliss_exper_contr_esrf_ebs_beaml +- [X] cite:janvier13_icepap +- [X] cite:baker18_esrf_doubl_cryst_monoc_protot_projec +- [X] cite:dabin04_mecan +- [X] cite:reichert21_stiff_hexap +- [X] cite:dehaeze21_mechat_approac_devel_nano_activ_stabil_system +- [X] cite:brumund21_multib_simul_reduc_order_flexib_bodies_fea +- [X] cite:dehaeze21_activ_dampin_rotat_platf_using +- [X] cite:zhang96_groun_vibrat_orme_meris_super_esrf +- [X] cite:zelenika04_flexur_use_elast_sr_instr_desig +- [X] cite:youness20_concep +- [X] cite:ravy18_shinin_light_synch_light +- [X] cite:dimper15_esrf_upgrad_progr_phase_ii +- [X] cite:dehaeze18_sampl_stabil_for_tomog_exper +- [X] cite:dabin04_mecan +- [X] cite:brendike19_esrf_doubl_cryst_monoc_protot_contr_concep + +nanostage: +- [X] cite:&yong16_mechan_desig_high_speed_nanop_system +- [X] cite:&lee17_compac_compl_paral_xy_nano +- [X] cite:&awtar13_desig_large_range_xy_nanop_system +- [X] cite:&liu18_desig_trajec_track_contr_piezoel +- [X] cite:&yong09_desig_ident_contr_flexur_based +- [X] cite:&fleming10_integ_strain_force_feedb_high +- [X] cite:&barillot99_desig_funct_tests_xy_piezoel + +** DONE [#C] Table that compares nano positioning stations with metrology / feedback +CLOSED: [2024-05-05 Sun 11:55] + +- [X] ID16a: capacitive sensors, short stroke, spindle above the fix hexapod, light samples [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] +- [X] Soleil Nano probe [[cite:&engblom18_nanop_resul;&stankevic17_inter_charac_rotat_stages_x_ray_nanot]] +- [X] PSI OMNY [[cite:&holler18_omny_tomog_nano_cryo_stage;&holler17_omny_pin_versat_sampl_holder]] + [[cite:&holler15_error_motion_compen_track_inter;&holler12_instr_x_ray_nano_imagin]] +- [X] DESY PETRA III /PtyNAMi/ [[cite:&schropp20_ptynam;&schroer17_ptynam;&schroeck01_compen_desig_linear_time_invar]] + scanning microscope and tomography + tracking the mechanical stability of optics relative to the sample scanner + laser interferometer system to track the sample in the two directions transverse to the optical axis + #+begin_quote + For scanning microscopy and tomography it is essential to know where the beam hits the sample. + Position uncertainties can arise from vibrations of the focusing optics and of the sample. + The sample is scanned through the nanobeam, while the optics are kept fixed after initial alignment. + #+end_quote + Interferometers used for monitoring, not for closed-loop control +- [ ] APS/Diamond: +- [X] cite:&wang12_autom_marker_full_field_hard + Calibration of spindle run-out errors, and correct the errors in post processing, for tomography +- [X] [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] + SIRIUS, LNLS + #+begin_quote +Synchrotron scanning X-ray microscopes are generally based on piezo scanning stages, with motion range typically +limited to 100 µm, such that complementary long-stroke stages, with motion range of several millimeters, are often +required to comply with alignment and the search of regions of interest in typical millimeter-size samples or sample +mounts [3, 5–13, 15, 16]. However, potential limitations in this architecture include: 1) limited dynamics and stability, +with resonance modes in the order of 100 Hz (or less) resulting from multiple stacked stages; 2) parasitic motion +associated with coarse stages; and 3) deteriorated performance in continuous fly-scan beyond the piezo range, which +are caused by disturbances introduced by stepper motors or stick-slip piezos [43]. + #+end_quote +- [X] Delta robot, diamond [[cite:&kelly22_delta_robot_long_travel_nano]] + +Bandwidth is rarely specified + +Same table for nano positioning stages without integrated metrology? + + +* Context of this thesis +** Synchrotron Radiation Facilities +**** Accelerating electrons to produce intense X-ray + +- Explain what is a Synchrotron: light source +- Say how many there are in the world (~50) +- Electron part: LINAC, Booster, Storage Ring ref:fig:introduction_esrf_schematic +- Synchrotron radiation: Insertion device / Bending magnet +- Many beamlines (large diversity in terms of instrumentation and science) +- Science that can be performed: + - structural biology, structure of materials, matter at extreme, ... + +**** The European Synchrotron Radiation Facility + +#+name: fig:introduction_esrf_picture #+caption: European Synchrotron Radiation Facility #+attr_latex: :width 0.7\linewidth [[file:figs/introduction_esrf_picture.jpg]] -- ID31 and Micro Station (Figure [[fig:id31_microstation_picture]]) +#+name: fig:introduction_esrf_schematic +#+caption: Schematic of the ESRF - Over 40 beamlines. Booster, Linac, storage ring +#+attr_latex: :width 0.7\linewidth +[[file:figs/introduction_esrf_schematic.svg]] + +**** 3rd and 4th generation Synchrotrons + +- 4th generation light sources + - [[cite:&raimondi21_commis_hybrid_multib_achrom_lattic]] + - [ ] Picture of 3rd generation "beam source" vs 4th generation? +- [ ] Picture showing Synchrotron "moore's law" + +** The ID31 ESRF Beamline +**** Beamline Layout + +- [ ] Beamline layout (OH, EH) +- ID31 and Micro Station (Figure ref:fig:introduction_id31_microstation_picture) + Check https://www.esrf.fr/UsersAndScience/Experiments/StructMaterials/ID31 + https://www.wayforlight.eu/beamline/23244 +- X-ray beam + detectors + sample stage (Figure ref:fig:introduction_id31_beamline_schematic) +- Focusing optics +- Optical schematic with: source, lens, sample and detector. + Explain that what is the most important is the relative position between the sample and the lens. +- Explain the XYZ frame for all the thesis (ESRF convention: X: x-ray, Z gravity up) + - [ ] Add XYZ on figure ref:fig:introduction_id31_cad #+begin_src latex :file id31_microstation_picture.pdf \begin{tikzpicture} @@ -133,15 +403,19 @@ Prefix is =introduction= \end{tikzpicture} #+end_src -#+name: fig:id31_microstation_picture -#+caption: Picture of the ID31 Micro-Station with annotations -#+attr_latex: :width 0.49\linewidth -#+RESULTS: -[[file:figs/introduction_id31_microstation_picture.png]] +#+name: fig:introduction_id31_cad +#+caption: CAD view of the optical hutch with the nano-focusing optics, the micro-station +#+attr_latex: :width 0.8\linewidth +[[file:figs/introduction_id31_cad.jpg]] -Alternative: =id31_microstation_cad_view.png= (CAD view) +**** Positioning End Station: The Micro-Station -- X-ray beam + detectors + sample stage (Figure [[fig:id31_beamline_schematic]]) +Micro-Station: +- DoF with strokes: Ty, Ry, Rz, Hexapod +- Experiments: tomography, reflectivity, truncation rod, ... + Make a table to explain the different "experiments" +- Explain how it is used (positioning, scans), what it does. But not about the performances +- Different sample environments #+begin_src latex :file id31_beamline_schematic.pdf \begin{tikzpicture} @@ -278,53 +552,292 @@ Alternative: =id31_microstation_cad_view.png= (CAD view) \end{tikzpicture} #+end_src -#+name: fig:id31_beamline_schematic -#+caption: ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector. -#+attr_latex: :width \linewidth +- Alternative: =id31_microstation_cad_view.png= (CAD view) + +#+name: fig:introduction_id31_microstation_picture +#+caption: Picture of the ID31 Micro-Station with annotations +#+attr_latex: :width 0.49\linewidth #+RESULTS: -[[file:figs/introduction_id31_beamline_schematic.png]] +[[file:figs/introduction_id31_microstation_picture.png]] + +**** Science performed on ID31 - Few words about science made on ID31 and why nano-meter accuracy is required -- Typical experiments (tomography, ...), various samples (up to 50kg) -- Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...) -- Example of picture obtained (Figure [[fig:id31_tomography_result]]) +- Typical experiments (tomography, ...), various samples (up to 50kg), sample environments (high temp, cryo, etc..) + - Alignment of the sample, then + - Reflectivity + - Tomography + - Diffraction tomography: most critical +- Example of picture obtained (Figure ref:fig:introduction_id31_tomography_result) with resolution -#+name: fig:id31_tomography_result + +=introduction_exp_scanning= and =introduction_exp_scanning_image= + +#+name: fig:introduction_id31_tomography_result #+caption: Image obtained on the ID31 beamline #+attr_latex: :width 0.49\linewidth [[file:example-image-c.png]] -- Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, ...) +** Need of accurate positioning end stations with high dynamics +**** A push towards brighter and smaller beams... -- Speak about the metrology concept, and why it is not included in this thesis +Improvement of both the light source and the instrumentation: +- EBS: smaller source + higher flux +- Better focusing optic (add some links): beam size in the order of 10 to 20nm FWHM (reference) + - [ ] Show picture or measurement of the beam size + crossed silicon compound refractive lenses, KB mirrors [17], zone plates [18], or multilayer Laue lenses [19] + [[cite:&barrett16_reflec_optic_hard_x_ray]] + +Higher flux density (+high energy of the ID31 beamline) => Radiation damage: needs to scan the sample quite fast with respect to the focused beam + +- Allowed by better detectors: higher sampling rates and lower noise => possible to scan fast + [[cite:&hatsui15_x_ray_imagin_detec_synch_xfel_sourc]] + +**** ...Requires the use of dynamical positioning +"from traditional step by step scans to /fly-scan/" + +Fast scans + needs of high accuracy and stability => need mechatronics system with: +- accurate metrology +- multi degree of freedom positioning systems +- fast feedback loops + +Shift from step by step scan to /fly-scan/ cite:huang15_fly_scan_ptych +- Much lower pixel size + large image => takes of lot of time if captured step by step. + Explain what is step by step scanning: move motors from point A to point B, stops, start detector acquisition, open shutter , close the shutter, move to point C, ... + +[[cite:&xu23_high_nsls_ii]] +#+begin_quote +In traditional step scan mode, each exposure position requires the system to stop prior to data acquisition, which may become a limiting factor when fast data collection is required. +Fly-scanning is chosen as a preferred solution that helps overcome such speed limitations [5, 6]. +In fly-scan mode, the sample keeps moving and a triggering system generates trigger signals based on the position of the sample or the time elapsed. +The trigger signals are used to control detector exposure. +#+end_quote + +- [ ] Make picture representing a typical experiment (maybe YZ scan?) with: + Probably already shown earlier =introduction_exp_scanning= + - nano focusing optics (see the beam focused) + - positioning stage with displayed YZ motion (pixel by pixel in the YZ plane) + - detector + +Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy * Challenge definition +** Multi DoF, Highly accurate, and Long stroke positioning end station? +**** Performance limitation of "stacked stages" end-stations -#+name: fig:nass_concept_schematic +Typical positioning end station: +- stacked stages +- ballscrew, linear guides, rotary motor + + +Explain the limitation of performances: +- Backlash, play, thermal expansion, guiding imperfections, ... +- Give some numbers: straightness of the Ty stage for instance, change of $0.1^oC$ with steel gives x nm of motion +- Vibrations +- Explain that this micro-station can only have ~10um of accuracy due to physical limitation +- Possibility to have linear/rotary encoders that correct the motion in the considered DoF, but does not change anything to the other 5DoF + + +Talk about flexure based positioning stations? +Advantages: no backlash, etc... +But: limited to short stroke +Picture of schematic of one positioning station based on flexure + +**** The ID31 Micro-Station + +Presentation of the Micro-Station in details ref:fig:introduction_id31_microstation_cad: +- Goal of each stage (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...) +- Stroke +- Initial design objectives: as stiff as possible, smallest errors as possible + +**** New positioning requirements + +- To benefits from nano-focusing optics, new source, etc... new positioning requirements +- Positioning requirements on ID31: + - Maybe make a table with the requirements and the associated performances of the micro-station + - Make tables with the wanted motion, stroke, accuracy in different DoF, etc.. +- Sample masses + +The goal in this thesis is to increase the positioning accuracy of the micro-station to fulfil the initial positioning requirements. + +*Goal*: Improve accuracy of 6DoF long stroke position platform + +** The Nano Active Stabilization System +**** NASS Concept + +Briefly describe the NASS concept. +4 parts: +- Micro Station +- multi-DoF positioning system with good dynamics +- 5DoF metrology system +- Control system and associated instrumentation + +6DoF vibration control platform on top of a complex positioning platform that correct positioning errors based on an external metrology + +- [ ] Add the control system in the schematic + +#+name: fig:introduction_nass_concept_schematic #+caption: Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology [[file:figs/introduction_nass_concept_schematic.png]] -- 6DoF vibration control platform on top of a complex positioning platform -- *Goal*: Improve accuracy of 6DoF long stroke position platform -- *Approach*: Mechatronic approach / model based / predictive -- *Control*: Robust control approach / various payloads. - First hexapod with control bandwidth higher than the suspension modes that accepts various payloads? -- Rotation aspect -- Compactness? (more related to mechanical design) +**** Metrology system + +Requirements: +- 5 DoF +- long stroke +- nano-meter accurate +- high bandwidth + +The accuracy of the NASS will only depend on the accuracy of the metrology system. + +Concept: +- Fiber interferometers +- Spherical reflector with flat bottom +- Tracking system + +Complex mechatronics system on its own. + +This metrology system is not further discussed in this thesis as it is still under active development. + +In the following of this thesis, it is supposed that the metrology system is accurate, etc.. + +- Say that there are several high precision sensors, but only interferometers for long stroke / high accuracy? + +**** Multi-DoF Positioning stage for error compensation + +- 5 DoF +- High dynamics +- nano-meter capable (no backlash,) +- Accept payloads up to 50kg + +**** MIMO robust control strategies + +Explain the robustness need? +- 24 7/7 ... +- That is why most of end-stations are based on well-proven design (stepper motors, linear guides, ball bearing, ...) +- Plant uncertainty: many different samples, use cases, rotating velocities, etc... + +Trade-off between robustness and performance in the design of feedback system. + +** Predictive Design + +- The performances of the system will depend on many factors: + - sensors + - actuators + - mechanical design + - achievable bandwidth + - ... +- Need to evaluate the different concepts, and predict the performances to guide the design +- The goal is to design, built and test this system such that it work as expected the first time. + Very costly system, so much be correct. + +** Control Challenge + +High bandwidth, 6 DoF system for vibration control, fixed on top of a complex multi DoF positioning station, robust, ... + +- Many different configurations (tomography, Ty scans, slow fast, ...) +- Complex MIMO system. Dynamics of the system could be coupled to the complex dynamics of the micro station +- Rotation aspect, gyroscopic effects, actuators are rotating with respect to the sensors +- Robustness to payload change: very critical. + Say that high performance systems (lithography machines, etc...) works with calibrated payloads. + Being robust to change of payload inertia means large stability margins and therefore less performance. * Literature Review +** Nano Positioning end-stations +**** End Station with Stacked Stages -#+name: fig:stewart_platform_examples +Stacked stages: +- errors are combined + +To have acceptable performances / stability: +- limited number of stages +- high performances stages (air bearing etc...) + +Examples: +- ID16b [[cite:&martinez-criado16_id16b]] +- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]] +- ID11 cite:wright20_new_oppor_at_mater_scien +- ID01 [[cite:&leake19_nanod_beaml_id01]] +- [ ] Maybe make a table to compare stations + +Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ... + +**** Online Metrology and Active Control of Positioning Errors + +The idea of having an external metrology to correct for errors is not new. + +- To have even better performances: online metrology are required. +- Several strategies: + - only used for measurements (post processing) + - for calibration + - for triggering detectors + - for real time positioning control + + + +- [ ] HXN [[cite:&xu23_high_nsls_ii]] + Laser interferometers on reference ring (on top of rotary stage). + Used to trigger the detectors (ptychography, microscope) + Similar to cite:&wang12_autom_marker_full_field_hard + +#+name: tab:introduction_sample_stages +#+caption: Table caption +#+attr_latex: :environment tabularx :width \linewidth :align lllllllX +#+attr_latex: :center t :booktabs t +| Architecture | Sensors and measured DoFs | Actuators and controlled DoFs | Institute, BL | OL/CL (bandwidth) | Stroke, DoF | Samples | Ref | +|-----------------------------------------------+--------------------------------------+-------------------------------+----------------+---------------------+-----------------------+--------------+----------------------------------------------------------------------------------| +| XYZ, Spherical retroreflector, Sample | 3 interferometers[fn:1], Y,Z | YZ piezo stages | PETRA III, P06 | OL | 100um | light | [[cite:&schroer17_ptynam;&schropp20_ptynam]] | +| Spindle / Metrology Ring / XYZ Stage / Sample | 3 Capacitive, Y,Z,Rx | | NSLS, X8C | OL, post processing | | micron scale | cite:&wang12_autom_marker_full_field_hard | +| *Hexapod* / Spindle / Metrology Ring / Sample | 12 Capacitive[fn:4], X,Y,Z,Rx,Ry | Piezo (Hexapod) | ESRF, ID16a | CL, 10Hz bandwidth | 50um, 500urad | light | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] | +| XYZ, Rz, XY, Cylindrical reference | 5 interferometers[fn:3], X,Y,Z,Rx,Ry | XYZ linear motors | Soleil | CL | | light | [[cite:&engblom18_nanop_resul;&stankevic17_inter_charac_rotat_stages_x_ray_nanot]] | +| XYZ, Rz, XYZ Spherical reference | 3 Interferometers[fn:2], Y,Z,Rx | XYZ parallel piezo stage | PSI, OMNY | CL | 400um | light | [[cite:&holler18_omny_tomog_nano_cryo_stage;&holler17_omny_pin_versat_sampl_holder]] | +| XYZ, mirrors/sample | 3 interferometers[fn:3], XYZ | XYZ piezo stage | APS | CL, 3 PID | 3mm | light | [[cite:&nazaretski15_pushin_limit]] | +| Rz, Parallel XYZ stage | 3 interferometers[fn:1] | 3xVCM parallel stage | LNLS, CARNAUBA | CL, 100Hz bandwidth | YZ: 3mm, Rz: +-110deg | light | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] | +| Parallel XYZ stage | 3 interferometers[fn:2], XYZ | 3xVCM parallel stage | Diamond, I14 | CL, 100Hz bandwidth | XYZ: 3mm | up to 350g | [[cite:&kelly22_delta_robot_long_travel_nano]] | + +- [ ] Figure with different stages +- [ ] Compared to the existing stages (see table), what are the challenges here? Rotation, large stroke, light to heavy payloads, lots of DoF (5 to be controlled) +- [ ] Comparison with NASS? +| Architecture | Sensors | Actuators | Institute, BL | OL/CL (bandwidth) | Stroke, DoF | Samples | Ref | +|-------------------------+--------------------+-----------+---------------+-------------------+------------------+------------+-----| +| Ty,Ry,Rz,Hexapod,Sample | 6+ Interferometers | | ESRF, ID31 | CL | Ty, Ry, Rz, Hexa | up to 50kg | | + + +**** Long Stroke - Short Stroke architecture + +Speak about two stage control? +- Long stroke + short stroke +- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner) +- Any application in 6DoF? Maybe new! +- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil) + +** Multi-DoF dynamical positioning stations +**** Serial and Parallel Kinematics + +Example of several dynamical stations: +- XYZ piezo stages +- Delta robot? Octoglide? +- Stewart platform + +Serial vs parallel kinematics (table?) + +**** Stewart platforms + +- [ ] Explain the normal stewart platform architecture +- [ ] Make a table that compares the different stewart platforms for vibration control. + Geometry (cubic), Actuator (soft, stiff), Sensor, Flexible joints, etc. + +#+name: fig:introduction_stewart_platform_examples #+caption: Examples of Stewart Platforms #+begin_figure -#+name: fig:stewart_platform_a +#+name: fig:introduction_stewart_platform_a #+attr_latex: :caption \subcaption{Stewart platform based on voice coil actuators} #+attr_latex: :options {0.49\textwidth} #+begin_subfigure #+attr_latex: :width 0.8\linewidth [[file:example-image-a.png]] #+end_subfigure -#+name: fig:stewart_platform_a +#+name: fig:introduction_stewart_platform_a #+attr_latex: :options {0.49\textwidth} #+attr_latex: :caption \subcaption{Stewart platform based on piezoelectric actuators} #+begin_subfigure @@ -333,26 +846,146 @@ Alternative: =id31_microstation_cad_view.png= (CAD view) #+end_subfigure #+end_figure -- Hexapods - cite:li01_simul_fault_vibrat_isolat_point - cite:bishop02_devel_precis_point_contr_vibrat - cite:hanieh03_activ_stewar - cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies - cite:naves20_desig - # [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]] -- Positioning stations -- Mechatronic approach? - cite:rankers98_machin - cite:monkhorst04_dynam_error_budget - cite:jabben07_mechat +** Mechatronics approach +**** Predicting performances using models -* Outline of thesis / Thesis Summary / Thesis Contributions - -*Mechatronic Design Approach* / *Model Based Design*: -- [[cite:&monkhorst04_dynam_error_budget]] high costs of the design process: the designed system must be *first time right*. +- [[cite:&monkhorst04_dynam_error_budget]] + #+begin_quote + high costs of the design process: the designed system must be *first time right*. When the system is finally build, its performance level should satisfy the specifications. No significant changes are allowed in the post design phase. Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system. + #+end_quote + + +Can use several models: +- Lumped mass-spring-damper models + cite:rankers98_machin +- Multi-Body Models +- Finite element models + Sub structuring? + +**** Closed-Loop Simulations + +[[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]] + +Say what can limit the performances for a complex mechatronics systems as this one: +- disturbances +- measurement noise +- DAC / amplifier noise (actuator) +- feedback system / bandwidth + +Simulations can help evaluate the behavior of the system. + +**** Dynamic Error Budgeting + +- [[cite:&monkhorst04_dynam_error_budget]] + #+begin_quote + high costs of the design process: the designed system must be *first time right*. + When the system is finally build, its performance level should satisfy the specifications. + No significant changes are allowed in the post design phase. + Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system. + #+end_quote +- cite:jabben07_mechat +- [[cite:&okyay16_mechat_desig_dynam_contr_metrol]] + #+begin_quote +Error budgets [23] are frequently used in the design of precision machines, in order to assess the +contributions of different factors such as parasitic motions, thermal expansion, and servo accuracy, on +the positioning accuracy of a machine. Dynamic Error Budgeting (DEB) or ‘Spectral Analysis’ +extends this concept to the realm of feedback control. Recognizing that the controller can provide +only a finite attenuation of disturbance signals interfering with the servo, DEB provides a +methodology for predicting the cumulative effect of such signals on the control error as a function of +their spectral (frequency) content. The method can be used to predict the control accuracy of a system +implemented using a set of certain devices under certain conditions before it is realized. Furthermore, +as it is formulated in the frequency domain, it can be used to optimize the controller design as well, +typically leading to an H2 - optimal control framework. In DEB, the disturbance signals are modeled +with their power spectral density (PSD), assuming that they are stationary stochastic processes which +are not correlated with each other. Then, these PSD’s are transmitted to the performance goal, most +often the positioning error, using linear time invariant (LTI) system theory. The transmitted PSD’s are +summed up into the variance of the performance goal, which constitutes a comparative measure of +performance. Most importantly, the influence of different dynamic factors and disturbance sources, +which have the greatest impact on the achievable performance (e.g., accuracy) can be easily spotted +and improved, through this kind of analysis. An approach similar to DEB was followed to decompose +the contribution of different noise sources on the hard disk position error in [1], [2], [45]. DEB has +been used to assess the performance of a geophone and a vibration isolation system in [75]. Jabben +[49] has used DEB in the mechatronic design of a magnetically suspended rotating platform. Aguirre +et al. [3] have analyzed the performance of active aerostatic thrust bearings using DEB. + #+end_quote + +** Control architecture + +Maybe make a simple review of control strategies for Stewart platform control. +Based on [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]] + +Broad subject (MIMO control), maybe talk only about vibration control based on external metrology. + +- Active Damping +- Decentralized +- Centralized +- Manually tuned: PID, lead lag, etc... +- Automatic / Optimal: LQG, H-Infinity + +* Original Contributions +**** Introduction :ignore: + +This thesis proposes several contributions in the fields of Control, Mechatronics Design and Experimental validation. + +**** Active Damping of rotating mechanical systems using Integral Force Feedback + +[[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]] +#+begin_quote +This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems. +Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects. +To overcome this issue, two modifications of the classical IFF control scheme are proposed. +The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors. +Conditions for stability and optimal parameters are derived. +The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes. +#+end_quote + +**** Design of complementary filters using $\mathcal{H}_\infty$ Synthesis and sensor fusion + +[[cite:&dehaeze19_compl_filter_shapin_using_synth]] +[[cite:&verma20_virtual_sensor_fusion_high_precis_contr]] +[[cite:&tsang22_optim_sensor_fusion_method_activ]] + +- Several uses (link to some papers). +- For the NASS, they could be use to further improve the robustness of the system. + +**** Multi-body simulations with reduced order flexible bodies obtained by FEA + +[[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]] + +Combined multi-body / FEA techniques and experimental validation on a Stewart platform containing amplified piezoelectric actuators +Super-element of amplified piezoelectric actuator / combined multibody-FEA technique, experimental validation on an amplified piezoelectric actuator and further validated on a complete stewart platform + +#+begin_quote +We considered sub-components in the multi-body model as /reduced order flexible bodies/ representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models. +These matrices were created from FEA models via modal reduction techniques, more specifically the /component mode synthesis/ (CMS). +This makes this design approach a combined multibody-FEA technique. +We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA). +#+end_quote + +**** Robustness by design + +- Design of a Stewart platform and associated control architecture that is robust to large plant uncertainties due to large variety of payload and experimental conditions. +- Instead of relying on complex controller synthesis (such as $\mathcal{H}_\infty$ synthesis or $\mu\text{-synthesis}$) to guarantee the robustness and performance. +- The approach here is to choose an adequate architecture (mechanics, sensors, actuators) such that controllers are robust by nature. +- Example: collocated actuator/sensor pair => controller can easily be made robust +- This is done by using models and using HAC-LAC architecture + +**** Mechatronics design + +Conduct a rigorous mechatronics design approach for a nano active stabilization system +[[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] + +Approach from start to finish: +- From first concepts using basic models, to concept validation +- Detailed design phase +- Experimental phase + +Complete design with clear choices based on models. +Such approach, while not new, is here applied +This can be used for the design of future end-stations. #+begin_src latex :file nass_mechatronics_approach.pdf % \graphicspath{ {/home/thomas/Cloud/thesis/papers/dehaeze21_mechatronics_approach_nass/tikz/figs-tikz} } @@ -368,8 +1001,8 @@ Alternative: =id31_microstation_cad_view.png= (CAD view) \node[draw, fill=lightblue, align=center, label={[mylabel, text width=8.0cm] Dynamical Models}, minimum height = 4.5cm, text width = 8.0cm] (model) at (0, 0) {}; \node[myblock, fill=lightgreen, label={[mylabel] Disturbances}, left = 3 of model.west] (dist) {}; - \node[myblock, fill=lightgreen, label={[mylabel] $\mu$ Station}, below = 2pt of dist] (mustation) {}; - \node[myblock, fill=lightgreen, label={[mylabel] $\nu$ Hexapod}, above = 2pt of dist] (nanohexapod) {}; + \node[myblock, fill=lightgreen, label={[mylabel] Micro Station}, below = 2pt of dist] (mustation) {}; + \node[myblock, fill=lightgreen, label={[mylabel] Nano Hexapod}, above = 2pt of dist] (nanohexapod) {}; \node[myblock, fill=lightyellow, label={[mylabel] Mech. Design}, above = 1 of model.north] (mechanical) {}; \node[myblock, fill=lightyellow, label={[mylabel] Instrumentation}, left = 2pt of mechanical] (instrumentation) {}; @@ -392,7 +1025,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view) \node[mymodel] at (mounting.south) {Struts \\ Nano-Hexapod}; \node[mymodel] at (testbenches.south) {Instrumentation \\ APA, Struts}; - \node[mymodel] at (implementation.south) {Control tests \\ $\mu$ Station}; + \node[mymodel] at (implementation.south) {Control tests \\ Micro Station}; % Links \draw[->] (dist.east) -- node[above, midway]{{\small Measurements}} node[below,midway]{{\small Spectral Analysis}} (dist.east-|model.west); @@ -451,26 +1084,64 @@ Alternative: =id31_microstation_cad_view.png= (CAD view) \end{tikzpicture} #+end_src -#+name: fig:nass_mechatronics_approach +#+name: fig:introduction_nass_mechatronics_approach #+caption: Overview of the mechatronic approach used for the Nano-Active-Stabilization-System #+attr_latex: :width \linewidth #+RESULTS: -[[file:figs/introduction_nass_mechatronics_approach.png]] +[[file:figs/nass_mechatronics_approach.png]] -*Goals*: -- Design \gls{nass} such that it is easy to control (and maintain). - Have good performances by design and not by complex control strategies. +**** 6DoF vibration control of a rotating platform +Vibration control in 5DoF of a rotating stage +To the author's knowledge, the use of a continuously rotating stewart platform for vibration control has not been proved in the literature. + +**** Experimental validation of the Nano Active Stabilization System + +Demonstration of the improvement of the the positioning accuracy of a complex multi DoF (the micro-station) by several orders of magnitude (Section ...) using ... + +* Thesis Outline - Mechatronics Design Approach +**** Introduction :ignore: + +#+name: fig:introduction_overview_chapters +#+caption: Overview of the sections +#+attr_latex: :width \linewidth +[[file:figs/introduction_overview_chapters.png]] + +This thesis +- has a structure that follows the mechatronics design approach + +Is structured in three chapters that corresponds to the three mains parts of the proposed mechatronics approach. + +A brief overview of these three chapters is given bellow. + +**** Conceptual design development + +- Start with simple models for witch trade offs can be easily understood (uniaxial) +- Increase the model complexity if important physical phenomenon are to be modelled (cf the rotating model) +- Only when better understanding of the physical effects in play, and only if required, go for higher model complexity (here multi-body model) +- The system concept and main characteristics should be extracted from the different models and validated with closed-loop simulations with the most accurate model +- Once the concept is validated, the chosen concept can be design in mode details + +**** Detailed design + +- During this detailed design phase, models are refined from the obtained CAD and using FEM +- The models are used to assists the design and to optimize each element based on dynamical analysis and closed-loop simulations +- The requirements for all the associated instrumentation can be determined from a dynamical noise budgeting +- After converging to a detailed design that give acceptable performance based on the models, the different parts can be ordered and the experimental phase begins + +**** Experimental validation + +- It is advised that the important characteristics of the different elements are evaluated individually + Systematic validation/refinement of models with experimental measurements +- The obtained characteristics can be used to refine the models +- Then, an accurate model of the system is obtained which can be used during experimental tests (for control synthesis for instance) -*Models*: -- Uniaxial Model: - - Effect of limited support compliance - - Effect of change of payload -- Rotating Model - - Gyroscopic effects -- Multi Body Model -- Finite Element Models * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] +* Footnotes +[fn:4]Capacitive sensors from Fogale Sensors +[fn:3]Attocube FPS3010 Fabry-Pérot interferometers +[fn:2]Attocube IDS3010 Fabry-Pérot interferometers +[fn:1]PicoScale SmarAct Michelson interferometers diff --git a/nass-introduction.pdf b/nass-introduction.pdf index 25b12ff..ce1f0c7 100644 Binary files a/nass-introduction.pdf and b/nass-introduction.pdf differ diff --git a/nass-introduction.tex b/nass-introduction.tex index cd8d72c..71e2862 100644 --- a/nass-introduction.tex +++ b/nass-introduction.tex @@ -1,4 +1,4 @@ -% Created 2024-04-17 Wed 11:35 +% Created 2024-05-06 Mon 14:50 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -7,10 +7,10 @@ \bibliography{nass-introduction.bib} \author{Dehaeze Thomas} \date{\today} -\title{NASS - Introduction} +\title{Nano Active Stabilization System - Introduction} \hypersetup{ pdfauthor={Dehaeze Thomas}, - pdftitle={NASS - Introduction}, + pdftitle={Nano Active Stabilization System - Introduction}, pdfkeywords={}, pdfsubject={}, pdfcreator={Emacs 29.3 (Org mode 9.6)}, @@ -24,78 +24,435 @@ \clearpage -\chapter{Context of this thesis / Background and Motivation} +\chapter{Context of this thesis} +\section{Synchrotron Radiation Facilities} +\paragraph{Accelerating electrons to produce intense X-ray} \begin{itemize} -\item \gls{esrf} (Figure \ref{fig:esrf_picture}) +\item Explain what is a Synchrotron: light source +\item Say how many there are in the world (\textasciitilde{}50) +\item Electron part: LINAC, Booster, Storage Ring \ref{fig:introduction_esrf_schematic} +\item Synchrotron radiation: Insertion device / Bending magnet +\item Many beamlines (large diversity in terms of instrumentation and science) +\item Science that can be performed: +\begin{itemize} +\item structural biology, structure of materials, matter at extreme, \ldots{} \end{itemize} +\end{itemize} + +\paragraph{The European Synchrotron Radiation Facility} \begin{figure}[htbp] \centering \includegraphics[scale=1,width=0.7\linewidth]{figs/introduction_esrf_picture.jpg} -\caption{\label{fig:esrf_picture}European Synchrotron Radiation Facility} +\caption{\label{fig:introduction_esrf_picture}European Synchrotron Radiation Facility} \end{figure} +\begin{figure}[htbp] +\centering +\includesvg[scale=1,width=0.7\linewidth]{figs/introduction_esrf_schematic} +\caption{\label{fig:introduction_esrf_schematic}Schematic of the ESRF - Over 40 beamlines. Booster, Linac, storage ring} +\end{figure} + +\paragraph{3rd and 4th generation Synchrotrons} + \begin{itemize} -\item ID31 and Micro Station (Figure \ref{fig:id31_microstation_picture}) +\item 4th generation light sources +\begin{itemize} +\item \cite{raimondi21_commis_hybrid_multib_achrom_lattic} +\item[{$\square$}] Picture of 3rd generation ``beam source'' vs 4th generation? +\end{itemize} +\item[{$\square$}] Picture showing Synchrotron ``moore's law'' +\end{itemize} + +\section{The ID31 ESRF Beamline} +\paragraph{Beamline Layout} + +\begin{itemize} +\item[{$\square$}] Beamline layout (OH, EH) +\item ID31 and Micro Station (Figure \ref{fig:introduction_id31_microstation_picture}) +Check \url{https://www.esrf.fr/UsersAndScience/Experiments/StructMaterials/ID31} +\url{https://www.wayforlight.eu/beamline/23244} +\item X-ray beam + detectors + sample stage (Figure \ref{fig:introduction_id31_beamline_schematic}) +\item Focusing optics +\item Optical schematic with: source, lens, sample and detector. +Explain that what is the most important is the relative position between the sample and the lens. +\item Explain the XYZ frame for all the thesis (ESRF convention: X: x-ray, Z gravity up) +\begin{itemize} +\item[{$\square$}] Add XYZ on figure \ref{fig:introduction_id31_cad} +\end{itemize} +\end{itemize} + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1,width=0.8\linewidth]{figs/introduction_id31_cad.jpg} +\caption{\label{fig:introduction_id31_cad}CAD view of the optical hutch with the nano-focusing optics, the micro-station} +\end{figure} + +\paragraph{Positioning End Station: The Micro-Station} + +Micro-Station: +\begin{itemize} +\item DoF with strokes: Ty, Ry, Rz, Hexapod +\item Experiments: tomography, reflectivity, truncation rod, \ldots{} +Make a table to explain the different ``experiments'' +\item Explain how it is used (positioning, scans), what it does. But not about the performances +\item Different sample environments + +\item Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view) \end{itemize} \begin{figure}[htbp] \centering \includegraphics[scale=1,width=0.49\linewidth]{figs/introduction_id31_microstation_picture.png} -\caption{\label{fig:id31_microstation_picture}Picture of the ID31 Micro-Station with annotations} +\caption{\label{fig:introduction_id31_microstation_picture}Picture of the ID31 Micro-Station with annotations} \end{figure} -Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view) - -\begin{itemize} -\item X-ray beam + detectors + sample stage (Figure \ref{fig:id31_beamline_schematic}) -\end{itemize} - -\begin{figure}[htbp] -\centering -\includegraphics[scale=1,width=\linewidth]{figs/introduction_id31_beamline_schematic.png} -\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.} -\end{figure} +\paragraph{Science performed on ID31} \begin{itemize} \item Few words about science made on ID31 and why nano-meter accuracy is required -\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg) -\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{}) -\item Example of picture obtained (Figure \ref{fig:id31_tomography_result}) +\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg), sample environments (high temp, cryo, etc..) +\begin{itemize} +\item Alignment of the sample, then +\item Reflectivity +\item Tomography +\item Diffraction tomography: most critical \end{itemize} +\item Example of picture obtained (Figure \ref{fig:introduction_id31_tomography_result}) with resolution +\end{itemize} + + +\texttt{introduction\_exp\_scanning} and \texttt{introduction\_exp\_scanning\_image} \begin{figure}[htbp] \centering \includegraphics[scale=1,width=0.49\linewidth]{example-image-c.png} -\caption{\label{fig:id31_tomography_result}Image obtained on the ID31 beamline} +\caption{\label{fig:introduction_id31_tomography_result}Image obtained on the ID31 beamline} \end{figure} -\begin{itemize} -\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{}) +\section{Need of accurate positioning end stations with high dynamics} +\paragraph{A push towards brighter and smaller beams\ldots{}} -\item Speak about the metrology concept, and why it is not included in this thesis +Improvement of both the light source and the instrumentation: +\begin{itemize} +\item EBS: smaller source + higher flux +\item Better focusing optic (add some links): beam size in the order of 10 to 20nm FWHM (reference) +\begin{itemize} +\item[{$\square$}] Show picture or measurement of the beam size +\end{itemize} +crossed silicon compound refractive lenses, KB mirrors [17], zone plates [18], or multilayer Laue lenses [19] +\cite{barrett16_reflec_optic_hard_x_ray} \end{itemize} +Higher flux density (+high energy of the ID31 beamline) => Radiation damage: needs to scan the sample quite fast with respect to the focused beam + +\begin{itemize} +\item Allowed by better detectors: higher sampling rates and lower noise => possible to scan fast +\cite{hatsui15_x_ray_imagin_detec_synch_xfel_sourc} +\end{itemize} + +\paragraph{\ldots{}Requires the use of dynamical positioning} +``from traditional step by step scans to \emph{fly-scan}'' + +Fast scans + needs of high accuracy and stability => need mechatronics system with: +\begin{itemize} +\item accurate metrology +\item multi degree of freedom positioning systems +\item fast feedback loops +\end{itemize} + +Shift from step by step scan to \emph{fly-scan} \cite{huang15_fly_scan_ptych} +\begin{itemize} +\item Much lower pixel size + large image => takes of lot of time if captured step by step. +Explain what is step by step scanning: move motors from point A to point B, stops, start detector acquisition, open shutter , close the shutter, move to point C, \ldots{} +\end{itemize} + +\cite{xu23_high_nsls_ii} +\begin{quote} +In traditional step scan mode, each exposure position requires the system to stop prior to data acquisition, which may become a limiting factor when fast data collection is required. +Fly-scanning is chosen as a preferred solution that helps overcome such speed limitations [5, 6]. +In fly-scan mode, the sample keeps moving and a triggering system generates trigger signals based on the position of the sample or the time elapsed. +The trigger signals are used to control detector exposure. +\end{quote} + +\begin{itemize} +\item[{$\square$}] Make picture representing a typical experiment (maybe YZ scan?) with: +Probably already shown earlier \texttt{introduction\_exp\_scanning} +\begin{itemize} +\item nano focusing optics (see the beam focused) +\item positioning stage with displayed YZ motion (pixel by pixel in the YZ plane) +\item detector +\end{itemize} +\end{itemize} + +Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy + \chapter{Challenge definition} +\section{Multi DoF, Highly accurate, and Long stroke positioning end station?} +\paragraph{Performance limitation of ``stacked stages'' end-stations} + +Typical positioning end station: +\begin{itemize} +\item stacked stages +\item ballscrew, linear guides, rotary motor +\end{itemize} + + +Explain the limitation of performances: +\begin{itemize} +\item Backlash, play, thermal expansion, guiding imperfections, \ldots{} +\item Give some numbers: straightness of the Ty stage for instance, change of \(0.1^oC\) with steel gives x nm of motion +\item Vibrations +\item Explain that this micro-station can only have \textasciitilde{}10um of accuracy due to physical limitation +\item Possibility to have linear/rotary encoders that correct the motion in the considered DoF, but does not change anything to the other 5DoF +\end{itemize} + + +Talk about flexure based positioning stations? +Advantages: no backlash, etc\ldots{} +But: limited to short stroke +Picture of schematic of one positioning station based on flexure + +\paragraph{The ID31 Micro-Station} + +Presentation of the Micro-Station in details \ref{fig:introduction_id31_microstation_cad}: +\begin{itemize} +\item Goal of each stage (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{}) +\item Stroke +\item Initial design objectives: as stiff as possible, smallest errors as possible +\end{itemize} + +\paragraph{New positioning requirements} + +\begin{itemize} +\item To benefits from nano-focusing optics, new source, etc\ldots{} new positioning requirements +\item Positioning requirements on ID31: +\begin{itemize} +\item Maybe make a table with the requirements and the associated performances of the micro-station +\item Make tables with the wanted motion, stroke, accuracy in different DoF, etc.. +\end{itemize} +\item Sample masses +\end{itemize} + +The goal in this thesis is to increase the positioning accuracy of the micro-station to fulfil the initial positioning requirements. + +\textbf{Goal}: Improve accuracy of 6DoF long stroke position platform + +\section{The Nano Active Stabilization System} +\paragraph{NASS Concept} + +Briefly describe the NASS concept. +4 parts: +\begin{itemize} +\item Micro Station +\item multi-DoF positioning system with good dynamics +\item 5DoF metrology system +\item Control system and associated instrumentation +\end{itemize} + +6DoF vibration control platform on top of a complex positioning platform that correct positioning errors based on an external metrology + +\begin{itemize} +\item[{$\square$}] Add the control system in the schematic +\end{itemize} \begin{figure}[htbp] \centering \includegraphics[scale=1]{figs/introduction_nass_concept_schematic.png} -\caption{\label{fig:nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology} +\caption{\label{fig:introduction_nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology} \end{figure} +\paragraph{Metrology system} + +Requirements: \begin{itemize} -\item 6DoF vibration control platform on top of a complex positioning platform -\item \textbf{Goal}: Improve accuracy of 6DoF long stroke position platform -\item \textbf{Approach}: Mechatronic approach / model based / predictive -\item \textbf{Control}: Robust control approach / various payloads. -First hexapod with control bandwidth higher than the suspension modes that accepts various payloads? -\item Rotation aspect -\item Compactness? (more related to mechanical design) +\item 5 DoF +\item long stroke +\item nano-meter accurate +\item high bandwidth +\end{itemize} + +The accuracy of the NASS will only depend on the accuracy of the metrology system. + +Concept: +\begin{itemize} +\item Fiber interferometers +\item Spherical reflector with flat bottom +\item Tracking system +\end{itemize} + +Complex mechatronics system on its own. + +This metrology system is not further discussed in this thesis as it is still under active development. + +In the following of this thesis, it is supposed that the metrology system is accurate, etc.. + +\begin{itemize} +\item Say that there are several high precision sensors, but only interferometers for long stroke / high accuracy? +\end{itemize} + +\paragraph{Multi-DoF Positioning stage for error compensation} + +\begin{itemize} +\item 5 DoF +\item High dynamics +\item nano-meter capable (no backlash,) +\item Accept payloads up to 50kg +\end{itemize} + +\paragraph{MIMO robust control strategies} + +Explain the robustness need? +\begin{itemize} +\item 24 7/7 \ldots{} +\item That is why most of end-stations are based on well-proven design (stepper motors, linear guides, ball bearing, \ldots{}) +\item Plant uncertainty: many different samples, use cases, rotating velocities, etc\ldots{} +\end{itemize} + +Trade-off between robustness and performance in the design of feedback system. + +\section{Predictive Design} + +\begin{itemize} +\item The performances of the system will depend on many factors: +\begin{itemize} +\item sensors +\item actuators +\item mechanical design +\item achievable bandwidth +\item \ldots{} +\end{itemize} +\item Need to evaluate the different concepts, and predict the performances to guide the design +\item The goal is to design, built and test this system such that it work as expected the first time. +Very costly system, so much be correct. +\end{itemize} + +\section{Control Challenge} + +High bandwidth, 6 DoF system for vibration control, fixed on top of a complex multi DoF positioning station, robust, \ldots{} + +\begin{itemize} +\item Many different configurations (tomography, Ty scans, slow fast, \ldots{}) +\item Complex MIMO system. Dynamics of the system could be coupled to the complex dynamics of the micro station +\item Rotation aspect, gyroscopic effects, actuators are rotating with respect to the sensors +\item Robustness to payload change: very critical. +Say that high performance systems (lithography machines, etc\ldots{}) works with calibrated payloads. +Being robust to change of payload inertia means large stability margins and therefore less performance. \end{itemize} \chapter{Literature Review} +\section{Nano Positioning end-stations} +\paragraph{End Station with Stacked Stages} + +Stacked stages: +\begin{itemize} +\item errors are combined +\end{itemize} + +To have acceptable performances / stability: +\begin{itemize} +\item limited number of stages +\item high performances stages (air bearing etc\ldots{}) +\end{itemize} + +Examples: +\begin{itemize} +\item ID16b \cite{martinez-criado16_id16b} +\item ID13 \cite{riekel10_progr_micro_nano_diffr_at} +\item ID11 \cite{wright20_new_oppor_at_mater_scien} +\item ID01 \cite{leake19_nanod_beaml_id01} +\item[{$\square$}] Maybe make a table to compare stations +\end{itemize} + +Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, \ldots{} + +\paragraph{Online Metrology and Active Control of Positioning Errors} + +The idea of having an external metrology to correct for errors is not new. + +\begin{itemize} +\item To have even better performances: online metrology are required. +\item Several strategies: +\begin{itemize} +\item only used for measurements (post processing) +\item for calibration +\item for triggering detectors +\item for real time positioning control +\end{itemize} +\end{itemize} + + + +\begin{itemize} +\item[{$\square$}] HXN \cite{xu23_high_nsls_ii} +Laser interferometers on reference ring (on top of rotary stage). +Used to trigger the detectors (ptychography, microscope) +Similar to \cite{wang12_autom_marker_full_field_hard} +\end{itemize} + +\begin{table}[htbp] +\caption{\label{tab:introduction_sample_stages}Table caption} +\centering +\begin{tabularx}{\linewidth}{lllllllX} +\toprule +Architecture & Sensors and measured DoFs & Actuators and controlled DoFs & Institute, BL & OL/CL (bandwidth) & Stroke, DoF & Samples & Ref\\ +\midrule +XYZ, Spherical retroreflector, Sample & 3 interferometers\footnotemark, Y,Z & YZ piezo stages & PETRA III, P06 & OL & 100um & light & \cite{schroer17_ptynam,schropp20_ptynam}\\ +Spindle / Metrology Ring / XYZ Stage / Sample & 3 Capacitive, Y,Z,Rx & & NSLS, X8C & OL, post processing & & micron scale & \cite{wang12_autom_marker_full_field_hard}\\ +\textbf{Hexapod} / Spindle / Metrology Ring / Sample & 12 Capacitive\footnotemark, X,Y,Z,Rx,Ry & Piezo (Hexapod) & ESRF, ID16a & CL, 10Hz bandwidth & 50um, 500urad & light & \cite{villar18_nanop_esrf_id16a_nano_imagin_beaml}\\ +XYZ, Rz, XY, Cylindrical reference & 5 interferometers\footnotemark, X,Y,Z,Rx,Ry & XYZ linear motors & Soleil & CL & & light & \cite{engblom18_nanop_resul,stankevic17_inter_charac_rotat_stages_x_ray_nanot}\\ +XYZ, Rz, XYZ Spherical reference & 3 Interferometers\footnotemark, Y,Z,Rx & XYZ parallel piezo stage & PSI, OMNY & CL & 400um & light & \cite{holler18_omny_tomog_nano_cryo_stage,holler17_omny_pin_versat_sampl_holder}\\ +XYZ, mirrors/sample & 3 interferometers\textsuperscript{\ref{org12e9b3b}}, XYZ & XYZ piezo stage & APS & CL, 3 PID & 3mm & light & \cite{nazaretski15_pushin_limit}\\ +Rz, Parallel XYZ stage & 3 interferometers\textsuperscript{\ref{orgd8c7548}} & 3xVCM parallel stage & LNLS, CARNAUBA & CL, 100Hz bandwidth & YZ: 3mm, Rz: +-110deg & light & \cite{geraldes23_sapot_carnaub_sirius_lnls}\\ +Parallel XYZ stage & 3 interferometers\textsuperscript{\ref{org65d59ad}}, XYZ & 3xVCM parallel stage & Diamond, I14 & CL, 100Hz bandwidth & XYZ: 3mm & up to 350g & \cite{kelly22_delta_robot_long_travel_nano}\\ +\bottomrule +\end{tabularx} +\end{table}\footnotetext[1]{\label{orgd8c7548}PicoScale SmarAct Michelson interferometers}\footnotetext[2]{\label{orgcd87c48}Capacitive sensors from Fogale Sensors}\footnotetext[3]{\label{org12e9b3b}Attocube FPS3010 Fabry-Pérot interferometers}\footnotetext[4]{\label{org65d59ad}Attocube IDS3010 Fabry-Pérot interferometers} + +\begin{itemize} +\item[{$\square$}] Figure with different stages +\item[{$\square$}] Compared to the existing stages (see table), what are the challenges here? Rotation, large stroke, light to heavy payloads, lots of DoF (5 to be controlled) +\item[{$\square$}] Comparison with NASS? +\end{itemize} +\begin{center} +\begin{tabular}{llllllll} +Architecture & Sensors & Actuators & Institute, BL & OL/CL (bandwidth) & Stroke, DoF & Samples & Ref\\ +\hline +Ty,Ry,Rz,Hexapod,Sample & 6+ Interferometers & & ESRF, ID31 & CL & Ty, Ry, Rz, Hexa & up to 50kg & \\ +\end{tabular} +\end{center} + + +\paragraph{Long Stroke - Short Stroke architecture} + +Speak about two stage control? +\begin{itemize} +\item Long stroke + short stroke +\item Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner) +\item Any application in 6DoF? Maybe new! +\item In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil) +\end{itemize} + +\section{Multi-DoF dynamical positioning stations} +\paragraph{Serial and Parallel Kinematics} + +Example of several dynamical stations: +\begin{itemize} +\item XYZ piezo stages +\item Delta robot? Octoglide? +\item Stewart platform +\end{itemize} + +Serial vs parallel kinematics (table?) + +\paragraph{Stewart platforms} + +\begin{itemize} +\item[{$\square$}] Explain the normal stewart platform architecture +\item[{$\square$}] Make a table that compares the different stewart platforms for vibration control. +Geometry (cubic), Actuator (soft, stiff), Sensor, Flexible joints, etc. +\end{itemize} \begin{figure} \begin{subfigure}{0.49\textwidth} @@ -110,60 +467,223 @@ First hexapod with control bandwidth higher than the suspension modes that accep \end{center} \subcaption{Stewart platform based on piezoelectric actuators} \end{subfigure} -\caption{\label{fig:stewart_platform_examples}Examples of Stewart Platforms} +\caption{\label{fig:introduction_stewart_platform_examples}Examples of Stewart Platforms} \end{figure} -\begin{itemize} -\item Hexapods -\cite{li01_simul_fault_vibrat_isolat_point} -\cite{bishop02_devel_precis_point_contr_vibrat} -\cite{hanieh03_activ_stewar} -\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies} -\cite{naves20_desig} -\item Positioning stations -\item Mechatronic approach? -\cite{rankers98_machin} -\cite{monkhorst04_dynam_error_budget} -\cite{jabben07_mechat} -\end{itemize} +\section{Mechatronics approach} +\paragraph{Predicting performances using models} -\chapter{Outline of thesis / Thesis Summary / Thesis Contributions} - -\textbf{Mechatronic Design Approach} / \textbf{Model Based Design}: \begin{itemize} -\item \cite{monkhorst04_dynam_error_budget} high costs of the design process: the designed system must be \textbf{first time right}. +\item \cite{monkhorst04_dynam_error_budget} +\begin{quote} +high costs of the design process: the designed system must be \textbf{first time right}. When the system is finally build, its performance level should satisfy the specifications. No significant changes are allowed in the post design phase. Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system. +\end{quote} \end{itemize} + +Can use several models: +\begin{itemize} +\item Lumped mass-spring-damper models +\cite{rankers98_machin} +\item Multi-Body Models +\item Finite element models +Sub structuring? +\end{itemize} + +\paragraph{Closed-Loop Simulations} + +\cite{schmidt20_desig_high_perfor_mechat_third_revis_edition} + +Say what can limit the performances for a complex mechatronics systems as this one: +\begin{itemize} +\item disturbances +\item measurement noise +\item DAC / amplifier noise (actuator) +\item feedback system / bandwidth +\end{itemize} + +Simulations can help evaluate the behavior of the system. + +\paragraph{Dynamic Error Budgeting} + +\begin{itemize} +\item \cite{monkhorst04_dynam_error_budget} +\begin{quote} +high costs of the design process: the designed system must be \textbf{first time right}. +When the system is finally build, its performance level should satisfy the specifications. +No significant changes are allowed in the post design phase. +Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system. +\end{quote} +\item \cite{jabben07_mechat} +\item \cite{okyay16_mechat_desig_dynam_contr_metrol} +\begin{quote} +Error budgets [23] are frequently used in the design of precision machines, in order to assess the +contributions of different factors such as parasitic motions, thermal expansion, and servo accuracy, on +the positioning accuracy of a machine. Dynamic Error Budgeting (DEB) or ‘Spectral Analysis’ +extends this concept to the realm of feedback control. Recognizing that the controller can provide +only a finite attenuation of disturbance signals interfering with the servo, DEB provides a +methodology for predicting the cumulative effect of such signals on the control error as a function of +their spectral (frequency) content. The method can be used to predict the control accuracy of a system +implemented using a set of certain devices under certain conditions before it is realized. Furthermore, +as it is formulated in the frequency domain, it can be used to optimize the controller design as well, +typically leading to an H2 - optimal control framework. In DEB, the disturbance signals are modeled +with their power spectral density (PSD), assuming that they are stationary stochastic processes which +are not correlated with each other. Then, these PSD’s are transmitted to the performance goal, most +often the positioning error, using linear time invariant (LTI) system theory. The transmitted PSD’s are +summed up into the variance of the performance goal, which constitutes a comparative measure of +performance. Most importantly, the influence of different dynamic factors and disturbance sources, +which have the greatest impact on the achievable performance (e.g., accuracy) can be easily spotted +and improved, through this kind of analysis. An approach similar to DEB was followed to decompose +the contribution of different noise sources on the hard disk position error in [1], [2], [45]. DEB has +been used to assess the performance of a geophone and a vibration isolation system in [75]. Jabben +[49] has used DEB in the mechatronic design of a magnetically suspended rotating platform. Aguirre +et al. [3] have analyzed the performance of active aerostatic thrust bearings using DEB. +\end{quote} +\end{itemize} + +\section{Control architecture} + +Maybe make a simple review of control strategies for Stewart platform control. +Based on \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org} + +Broad subject (MIMO control), maybe talk only about vibration control based on external metrology. + +\begin{itemize} +\item Active Damping +\item Decentralized +\item Centralized +\item Manually tuned: PID, lead lag, etc\ldots{} +\item Automatic / Optimal: LQG, H-Infinity +\end{itemize} + +\chapter{Original Contributions} +This thesis proposes several contributions in the fields of Control, Mechatronics Design and Experimental validation. + +\paragraph{Active Damping of rotating mechanical systems using Integral Force Feedback} + +\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using} +\begin{quote} +This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical systems. +Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic effects. +To overcome this issue, two modifications of the classical IFF control scheme are proposed. +The first consists of slightly modifying the control law while the second consists of adding springs in parallel with the force sensors. +Conditions for stability and optimal parameters are derived. +The results reveal that, despite their different implementations, both modified IFF control scheme have almost identical damping authority on the suspension modes. +\end{quote} + +\paragraph{Design of complementary filters using \(\mathcal{H}_\infty\) Synthesis and sensor fusion} + +\cite{dehaeze19_compl_filter_shapin_using_synth} +\cite{verma20_virtual_sensor_fusion_high_precis_contr} +\cite{tsang22_optim_sensor_fusion_method_activ} + +\begin{itemize} +\item Several uses (link to some papers). +\item For the NASS, they could be use to further improve the robustness of the system. +\end{itemize} + +\paragraph{Multi-body simulations with reduced order flexible bodies obtained by FEA} + +\cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea} + +Combined multi-body / FEA techniques and experimental validation on a Stewart platform containing amplified piezoelectric actuators +Super-element of amplified piezoelectric actuator / combined multibody-FEA technique, experimental validation on an amplified piezoelectric actuator and further validated on a complete stewart platform + +\begin{quote} +We considered sub-components in the multi-body model as \emph{reduced order flexible bodies} representing the component’s modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models. +These matrices were created from FEA models via modal reduction techniques, more specifically the \emph{component mode synthesis} (CMS). +This makes this design approach a combined multibody-FEA technique. +We validated the technique with a test bench that confirmed the good modelling capabilities using reduced order flexible body models obtained from FEA for an amplified piezoelectric actuator (APA). +\end{quote} + +\paragraph{Robustness by design} + +\begin{itemize} +\item Design of a Stewart platform and associated control architecture that is robust to large plant uncertainties due to large variety of payload and experimental conditions. +\item Instead of relying on complex controller synthesis (such as \(\mathcal{H}_\infty\) synthesis or \(\mu\text{-synthesis}\)) to guarantee the robustness and performance. +\item The approach here is to choose an adequate architecture (mechanics, sensors, actuators) such that controllers are robust by nature. +\item Example: collocated actuator/sensor pair => controller can easily be made robust +\item This is done by using models and using HAC-LAC architecture +\end{itemize} + +\paragraph{Mechatronics design} + +Conduct a rigorous mechatronics design approach for a nano active stabilization system +\cite{dehaeze18_sampl_stabil_for_tomog_exper,dehaeze21_mechat_approac_devel_nano_activ_stabil_system} + +Approach from start to finish: +\begin{itemize} +\item From first concepts using basic models, to concept validation +\item Detailed design phase +\item Experimental phase +\end{itemize} + +Complete design with clear choices based on models. +Such approach, while not new, is here applied +This can be used for the design of future end-stations. + \begin{figure}[htbp] \centering -\includegraphics[scale=1,width=\linewidth]{figs/introduction_nass_mechatronics_approach.png} -\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System} +\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png} +\caption{\label{fig:introduction_nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System} \end{figure} -\textbf{Goals}: +\paragraph{6DoF vibration control of a rotating platform} + +Vibration control in 5DoF of a rotating stage +To the author's knowledge, the use of a continuously rotating stewart platform for vibration control has not been proved in the literature. + +\paragraph{Experimental validation of the Nano Active Stabilization System} + +Demonstration of the improvement of the the positioning accuracy of a complex multi DoF (the micro-station) by several orders of magnitude (Section \ldots{}) using \ldots{} + +\chapter{Thesis Outline - Mechatronics Design Approach} +\begin{figure}[htbp] +\centering +\includegraphics[scale=1,width=\linewidth]{figs/introduction_overview_chapters.png} +\caption{\label{fig:introduction_overview_chapters}Overview of the sections} +\end{figure} + +This thesis \begin{itemize} -\item Design \gls{nass} such that it is easy to control (and maintain). -Have good performances by design and not by complex control strategies. +\item has a structure that follows the mechatronics design approach \end{itemize} +Is structured in three chapters that corresponds to the three mains parts of the proposed mechatronics approach. + +A brief overview of these three chapters is given bellow. + +\paragraph{Conceptual design development} -\textbf{Models}: \begin{itemize} -\item Uniaxial Model: +\item Start with simple models for witch trade offs can be easily understood (uniaxial) +\item Increase the model complexity if important physical phenomenon are to be modelled (cf the rotating model) +\item Only when better understanding of the physical effects in play, and only if required, go for higher model complexity (here multi-body model) +\item The system concept and main characteristics should be extracted from the different models and validated with closed-loop simulations with the most accurate model +\item Once the concept is validated, the chosen concept can be design in mode details +\end{itemize} + +\paragraph{Detailed design} + \begin{itemize} -\item Effect of limited support compliance -\item Effect of change of payload +\item During this detailed design phase, models are refined from the obtained CAD and using FEM +\item The models are used to assists the design and to optimize each element based on dynamical analysis and closed-loop simulations +\item The requirements for all the associated instrumentation can be determined from a dynamical noise budgeting +\item After converging to a detailed design that give acceptable performance based on the models, the different parts can be ordered and the experimental phase begins \end{itemize} -\item Rotating Model + +\paragraph{Experimental validation} + \begin{itemize} -\item Gyroscopic effects -\end{itemize} -\item Multi Body Model -\item Finite Element Models +\item It is advised that the important characteristics of the different elements are evaluated individually +Systematic validation/refinement of models with experimental measurements +\item The obtained characteristics can be used to refine the models +\item Then, an accurate model of the system is obtained which can be used during experimental tests (for control synthesis for instance) \end{itemize} + \printbibliography[heading=bibintoc,title={Bibliography}] \end{document}