Compare commits

...

9 Commits

41 changed files with 1313 additions and 522 deletions

5
.gitignore vendored
View File

@@ -1,4 +1,9 @@
*.bbl
*.synctex.gz
.auctex-auto/
_minted*
auto/
org/*.pdf
*.tex
nohup.out

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 KiB

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 163 KiB

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 125 KiB

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 200 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.3 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-04-23 ven. 13:22 -->
<!-- 2021-04-23 ven. 17:40 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Simscape Model of the Nano-Active-Stabilization-System</title>
<meta name="author" content="Dehaeze Thomas" />
@@ -242,7 +242,13 @@ In this file are gathered all studies about the control the Nano-Active-Stabiliz
<div id="outline-container-org9b612aa" class="outline-2">
<h2 id="org9b612aa"><span class="section-number-2">18</span> Nano-Hexapod Simscape Model (<a href="nano_hexapod.html">link</a>)</h2>
<div class="outline-text-2" id="text-18">
<p>
The nano-hexapod simscape model is described and used for simulations.
</p>
</div>
</div>
<div id="outline-container-org97e196a" class="outline-2">
<h2 id="org97e196a"><span class="section-number-2">19</span> Useful Matlab Functions (<a href="./functions.html">link</a>)</h2>
<div class="outline-text-2" id="text-19">
@@ -258,7 +264,7 @@ These functions are all defined <a href="./functions.html">here</a>.
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2021-04-23 ven. 13:22</p>
<p class="date">Created: 2021-04-23 ven. 17:40</p>
</div>
</body>
</html>

File diff suppressed because it is too large Load Diff

BIN
docs/nano_hexapod.pdf Normal file

Binary file not shown.

Binary file not shown.

View File

@@ -82,6 +82,8 @@ Active damping techniques are applied to the full Simscape model.
In this file are gathered all studies about the control the Nano-Active-Stabilization-System.
* Nano-Hexapod Simscape Model ([[file:nano_hexapod.org][link]])
The nano-hexapod simscape model is described and used for simulations.
* Useful Matlab Functions ([[./functions.org][link]])
Many matlab functions are shared among all the files of the projects.

File diff suppressed because it is too large Load Diff

View File

@@ -6,44 +6,51 @@ arguments
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
%% Top Flexible Joints
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
%% Jacobian - Location of frame {A} and {B}
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% Relative Motion Sensor
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
%% Actuators
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
args.actuator_Ga (6,1) double {mustBeNumeric} = ones(6,1)*1 % Actuator gain [N/V]
args.actuator_Gs (6,1) double {mustBeNumeric} = ones(6,1)*1 % Sensor gain [V/m]
% For 2DoF
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m]
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
% For 2DoF
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.38e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.75e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*3e7 % [N/m]
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)]
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
% For Flexible Frame
% For Flexible Frame
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
% For Flexible
% Misalignment
args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m]
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
%% Controller
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf'})} = 'none'
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none'
end
nano_hexapod = struct();
@@ -114,35 +121,65 @@ switch args.actuator_type
nano_hexapod.actuator.type = 3;
end
nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V]
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
%% Actuator gain [N/V]
if all(args.actuator_Ga == 0)
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.Ga = ones(6,1)*(-30.0);
case 'flexible frame'
nano_hexapod.actuator.Ga = ones(6,1); % TODO
case 'flexible'
nano_hexapod.actuator.Ga = ones(6,1)*23.4;
end
else
nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V]
end
nano_hexapod.actuator.k = args.actuator_k; % [N/m]
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]
nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
%% Sensor gain [V/m]
if all(args.actuator_Gs == 0)
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.Gs = ones(6,1)*0.098;
case 'flexible frame'
nano_hexapod.actuator.Gs = ones(6,1); % TODO
case 'flexible'
nano_hexapod.actuator.Gs = ones(6,1)*(-4674824);
end
else
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
end
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.k = args.actuator_k; % [N/m]
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]
nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
case 'flexible frame'
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
case 'flexible'
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
end
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
nano_hexapod.geometry = struct();
Fa = [[-86.05, -74.78, 22.49],
@@ -199,6 +236,8 @@ switch args.controller_type
nano_hexapod.controller.type = 2;
case 'dvf'
nano_hexapod.controller.type = 3;
case 'hac-iff-struts'
nano_hexapod.controller.type = 4;
end
if nargout == 0