Update rotational stiffness of joints

This commit is contained in:
Thomas Dehaeze 2021-06-09 18:15:11 +02:00
parent ef7d7a54d5
commit 571dfbffb4
2 changed files with 42 additions and 42 deletions

View File

@ -3436,24 +3436,24 @@ function [nano_hexapod] = initializeNanoHexapodFinal(args)
arguments
%% Bottom Flexible Joints
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
%% Top Flexible Joints
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
%% Jacobian - Location of frame {A} and {B}
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% Relative Motion Sensor
@ -3463,12 +3463,12 @@ arguments
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
% For 2DoF
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m]
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e0 % [N/(m/s)]
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.38e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.75e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*3e7 % [N/m]
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)]
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
% For Flexible Frame
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
@ -3588,7 +3588,7 @@ end
if all(args.actuator_Ga == 0)
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.Ga = ones(6,1)*(-46.4);
nano_hexapod.actuator.Ga = ones(6,1)*(-30.0);
case 'flexible frame'
nano_hexapod.actuator.Ga = ones(6,1); % TODO
case 'flexible'

View File

@ -3,24 +3,24 @@ function [nano_hexapod] = initializeNanoHexapodFinal(args)
arguments
%% Bottom Flexible Joints
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
%% Top Flexible Joints
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
%% Jacobian - Location of frame {A} and {B}
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% Relative Motion Sensor
@ -30,12 +30,12 @@ arguments
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
% For 2DoF
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m]
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e0 % [N/(m/s)]
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.38e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.75e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*3e7 % [N/m]
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)]
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
% For Flexible Frame
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
@ -118,7 +118,7 @@ end
if all(args.actuator_Ga == 0)
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.Ga = ones(6,1)*(-46.4);
nano_hexapod.actuator.Ga = ones(6,1)*(-30.0);
case 'flexible frame'
nano_hexapod.actuator.Ga = ones(6,1); % TODO
case 'flexible'