Add data analysis of 03/05
@ -1,9 +0,0 @@
|
||||
* TODO [#B] Find the documentation of the amplifier to know the order of the filters
|
||||
* TODO [#A] Shake a little bit the geophones to see if we have better measurements on X and Y axis
|
||||
* Measurements
|
||||
|
||||
| Filename | Description |
|
||||
|--------------+-------------|
|
||||
| data_001.mat | Z axis |
|
||||
| data_002.mat | East |
|
||||
| data_003.mat | North |
|
BIN
slip-ring-test/figs/ac_dc_option_asd.png
Normal file
After Width: | Height: | Size: 158 KiB |
BIN
slip-ring-test/figs/ac_dc_option_asd_zoom.png
Normal file
After Width: | Height: | Size: 172 KiB |
BIN
slip-ring-test/figs/ac_dc_option_time.png
Normal file
After Width: | Height: | Size: 47 KiB |
BIN
slip-ring-test/figs/ampli_noise_psd.png
Normal file
After Width: | Height: | Size: 144 KiB |
BIN
slip-ring-test/figs/ampli_noise_time.png
Normal file
After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 105 KiB After Width: | Height: | Size: 90 KiB |
BIN
slip-ring-test/figs/sr_direct_time.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
slip-ring-test/figs/sr_geophone_asd.png
Normal file
After Width: | Height: | Size: 160 KiB |
BIN
slip-ring-test/figs/sr_geophone_asd_zoom.png
Normal file
After Width: | Height: | Size: 218 KiB |
BIN
slip-ring-test/figs/sr_geophone_time_off.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
slip-ring-test/figs/sr_geophone_time_on.png
Normal file
After Width: | Height: | Size: 43 KiB |
BIN
slip-ring-test/figs/sr_psd_compare.png
Normal file
After Width: | Height: | Size: 190 KiB |
BIN
slip-ring-test/figs/sr_slipring_time.png
Normal file
After Width: | Height: | Size: 60 KiB |
@ -1,4 +1,4 @@
|
||||
#+TITLE:Effect of the rotation of the Slip-Ring
|
||||
#+TITLE: Measurements
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
@ -18,7 +18,22 @@
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:END:
|
||||
|
||||
* Measurement Description
|
||||
* Effect of the rotation of the Slip-Ring
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_effect_sr.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
zip data/meas_effect_sr \
|
||||
mat/data_001.mat \
|
||||
mat/data_002.mat \
|
||||
meas_effect_sr.m
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_effect_sr.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
Random Signal is generated by one DAC of the SpeedGoat.
|
||||
|
||||
The signal going out of the DAC is split into two:
|
||||
@ -42,19 +57,19 @@ The goal is to determine is the signal is altered when the spindle is rotating.
|
||||
|
||||
Here, the rotation speed of the Slip-Ring is set to 1rpm.
|
||||
|
||||
* Matlab Init :noexport:ignore:
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
* Load data
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
sr_off = load('mat/data_001.mat', 't', 'x1', 'x2');
|
||||
sr_on = load('mat/data_002.mat', 't', 'x1', 'x2');
|
||||
#+end_src
|
||||
|
||||
* Analysis
|
||||
** Analysis
|
||||
Let's first look at the signal produced by the DAC (figure [[fig:random_signal]]).
|
||||
|
||||
#+begin_src matlab :results none
|
||||
@ -122,7 +137,7 @@ We now look at the difference between the signal directly measured by the ADC an
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
|
||||
legend('Location', 'northeast');
|
||||
xlim([1, 500]);
|
||||
xlim([1, 500]); ylim([1e-5, 1e-3])
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:psd_noise
|
||||
@ -136,9 +151,587 @@ We now look at the difference between the signal directly measured by the ADC an
|
||||
#+RESULTS: fig:psd_noise
|
||||
[[file:figs/psd_noise.png]]
|
||||
|
||||
* Conclusion
|
||||
** Conclusion
|
||||
#+begin_note
|
||||
*Remaining questions*:
|
||||
- Should the measurement be redone using voltage amplifiers?
|
||||
- Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
|
||||
#+end_note
|
||||
* Measure of the noise of the Voltage Amplifier
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_volt_amp.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
zip data/meas_volt_amp \
|
||||
mat/data_003.mat \
|
||||
mat/data_004.mat \
|
||||
mat/data_005.mat \
|
||||
mat/data_006.mat \
|
||||
meas_volt_amp.m
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_volt_amp.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Determine the Voltage Amplifier noise
|
||||
|
||||
*Setup*:
|
||||
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
|
||||
- The AC/DC option of the Voltage amplifier is on AC
|
||||
- The low pass filter is set to 1hHz
|
||||
- We measure the output of the voltage amplifier with a 16bits ADC of the Speedgoat
|
||||
|
||||
*Measurements*:
|
||||
- =data_003=: Ampli OFF
|
||||
- =data_004=: Ampli ON set to 20dB
|
||||
- =data_005=: Ampli ON set to 40dB
|
||||
- =data_006=: Ampli ON set to 60dB
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
#+begin_src matlab :results none
|
||||
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
||||
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
||||
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
||||
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
||||
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
||||
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
||||
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ampli_noise_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_time
|
||||
#+CAPTION: Output of the amplifier
|
||||
#+RESULTS: fig:ampli_noise_time
|
||||
[[file:figs/ampli_noise_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = amp_off(2, 2)-amp_off(1, 2);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
||||
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
||||
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
||||
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compute the theoretical ADC noise.
|
||||
#+begin_src matlab :results none
|
||||
q = 20/2^16; % quantization
|
||||
Sq = q^2/12/1000; % PSD of the ADC noise
|
||||
#+end_src
|
||||
|
||||
Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
||||
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
||||
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
||||
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
||||
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_psd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ampli_noise_psd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_psd
|
||||
#+CAPTION: Amplitude Spectral Density of the measured voltage at the output of the voltage amplifier
|
||||
#+RESULTS: fig:ampli_noise_psd
|
||||
[[file:figs/ampli_noise_psd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
Noise induced by the voltage amplifiers is not a limiting factor.
|
||||
#+end_important
|
||||
|
||||
* Measure of the noise induced by the Slip-Ring
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_slip_ring.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
zip data/meas_slip_ring \
|
||||
mat/data_008.mat \
|
||||
mat/data_009.mat \
|
||||
mat/data_010.mat \
|
||||
mat/data_011.mat \
|
||||
meas_slip_ring.m
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_slip_ring.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Determine the noise induced by the slip-ring
|
||||
|
||||
*Setup*:
|
||||
- 0V is generated by the DAC of the Speedgoat
|
||||
- Using a T, one part goes directly to the ADC
|
||||
- The other part goes to the slip-ring 2 times and then to the ADC
|
||||
- The parameters of the Voltage Amplifier are: 80dB, AC, 1kHz
|
||||
- Every stage of the station is OFF
|
||||
|
||||
First column: Direct measure
|
||||
Second column: Slip-ring measure
|
||||
|
||||
|
||||
*Measurements*:
|
||||
- =data_008=: Slip-Ring OFF
|
||||
- =data_009=: Slip-Ring ON
|
||||
- =data_010=: Slip-Ring ON and omega=6rpm
|
||||
- =data_011=: Slip-Ring ON and omega=60rpm
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
sr_off = load('mat/data_008.mat', 'data'); sr_off = sr_off.data;
|
||||
sr_on = load('mat/data_009.mat', 'data'); sr_on = sr_on.data;
|
||||
sr_6r = load('mat/data_010.mat', 'data'); sr_6r = sr_6r.data;
|
||||
sr_60r = load('mat/data_011.mat', 'data'); sr_60r = sr_60r.data;
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
We plot the time domain data for the direct measurement (figure [[fig:sr_direct_time]]) and for the signal going through the slip-ring (figure [[fig:sr_slipring_time]]);
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(sr_60r(:, 3), sr_60r(:, 1), 'DisplayName', '60rpm');
|
||||
plot(sr_6r(:, 3), sr_6r(:, 1), 'DisplayName', '6rpm');
|
||||
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'ON');
|
||||
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'OFF');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
legend('Location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_direct_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_direct_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_direct_time
|
||||
#+CAPTION: Direct measurement
|
||||
#+RESULTS: fig:sr_direct_time
|
||||
[[file:figs/sr_direct_time.png]]
|
||||
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(sr_60r(:, 3), sr_60r(:, 2), 'DisplayName', '60rpm');
|
||||
plot(sr_6r(:, 3), sr_6r(:, 2), 'DisplayName', '6rpm');
|
||||
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'ON');
|
||||
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'OFF');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
legend('Location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_slipring_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_slipring_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_slipring_time
|
||||
#+CAPTION: Measurement of the signal going through the Slip-Ring
|
||||
#+RESULTS: fig:sr_slipring_time
|
||||
[[file:figs/sr_slipring_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = sr_off(2, 3)-sr_off(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxdir, f] = pwelch(sr_off(:, 1), win, [], [], Fs);
|
||||
[pxoff, ~] = pwelch(sr_off(:, 2), win, [], [], Fs);
|
||||
[pxon, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
|
||||
[px6r, ~] = pwelch(sr_6r(:, 2), win, [], [], Fs);
|
||||
[px60r, ~] = pwelch(sr_60r(:, 2), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
||||
plot(f, sqrt(pxon), 'DisplayName', 'ON');
|
||||
plot(f, sqrt(px6r), 'DisplayName', '6rpm');
|
||||
plot(f, sqrt(px60r), 'DisplayName', '60rpm');
|
||||
plot(f, sqrt(pxdir), 'k-', 'DisplayName', 'Direct');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_psd_compare
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_psd_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_psd_compare
|
||||
#+CAPTION: Comparison of the ASD of the measured signals when the slip-ring is ON, OFF and turning
|
||||
#+RESULTS: fig:sr_psd_compare
|
||||
[[file:figs/sr_psd_compare.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
|
||||
#+end_important
|
||||
|
||||
* Measure of the noise induced by the slip ring when using a geophone
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_sr_geophone.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
zip data/meas_sr_geophone \
|
||||
mat/data_012.mat \
|
||||
mat/data_013.mat \
|
||||
meas_sr_geophone.m
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_sr_geophone.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Determine if the noise induced by the slip-ring is a limiting factor when measuring the signal coming from a geophone
|
||||
|
||||
*Setup*:
|
||||
- The geophone is located at the sample location
|
||||
- The two Voltage amplifiers have the following settings:
|
||||
- AC
|
||||
- 60dB
|
||||
- 1kHz
|
||||
- The signal from the geophone is split into two using a T-BNC:
|
||||
- One part goes directly to the voltage amplifier and then to the ADC.
|
||||
- The other part goes to the slip-ring=>voltage amplifier=>ADC.
|
||||
|
||||
First column: Direct measure
|
||||
Second column: Slip-ring measure
|
||||
|
||||
*Measurements*:
|
||||
- =data_012=: Slip-Ring OFF
|
||||
- =data_013=: Slip-Ring ON
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
sr_off = load('mat/data_012.mat', 'data'); sr_off = sr_off.data;
|
||||
sr_on = load('mat/data_013.mat', 'data'); sr_on = sr_on.data;
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_geophone_time_off]]) and when it is ON (figure [[fig:sr_geophone_time_on]]).
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'Direct');
|
||||
plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'Slip-Ring');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_time_off
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_geophone_time_off.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_time_off
|
||||
#+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
|
||||
#+RESULTS: fig:sr_geophone_time_off
|
||||
[[file:figs/sr_geophone_time_off.png]]
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(sr_on(:, 3), sr_on(:, 1), 'DisplayName', 'Direct');
|
||||
plot(sr_on(:, 3), sr_on(:, 2), 'DisplayName', 'Slip-Ring');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_time_on
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_geophone_time_on.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_time_on
|
||||
#+CAPTION: Comparison of the time domain signals when the slip-ring is ON
|
||||
#+RESULTS: fig:sr_geophone_time_on
|
||||
[[file:figs/sr_geophone_time_on.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = sr_off(2, 3)-sr_off(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
% Direct measure
|
||||
[pxdoff, ~] = pwelch(sr_off(:, 1), win, [], [], Fs);
|
||||
[pxdon, ~] = pwelch(sr_on(:, 1), win, [], [], Fs);
|
||||
|
||||
% Slip-Ring measure
|
||||
[pxsroff, f] = pwelch(sr_off(:, 2), win, [], [], Fs);
|
||||
[pxsron, ~] = pwelch(sr_on(:, 2), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
Finally, we compare the Amplitude Spectral Density of the signals (figure [[]]);
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxdoff), 'DisplayName', 'Direct - OFF');
|
||||
plot(f, sqrt(pxsroff), 'DisplayName', 'Slip-Ring - OFF');
|
||||
plot(f, sqrt(pxdon), 'DisplayName', 'Direct - ON');
|
||||
plot(f, sqrt(pxsron), 'DisplayName', 'Slip-Ring - ON');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_asd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_geophone_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_asd
|
||||
#+CAPTION: Comparison of the Amplitude Spectral Sensity
|
||||
#+RESULTS: fig:sr_geophone_asd
|
||||
[[file:figs/sr_geophone_asd.png]]
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
xlim([100, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_asd_zoom
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sr_geophone_asd_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sr_geophone_asd_zoom
|
||||
#+CAPTION: Comparison of the Amplitude Spectral Sensity - Zoom
|
||||
#+RESULTS: fig:sr_geophone_asd_zoom
|
||||
[[file:figs/sr_geophone_asd_zoom.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
- When the slip-ring is OFF, it does not add any noise to the measurement
|
||||
- When the slip-ring is ON, it adds significant noise to the signal
|
||||
#+end_important
|
||||
|
||||
* Measure of the influence of the AC/DC option on the voltage amplifiers
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_noise_ac_dc.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
zip data/meas_noise_ac_dc \
|
||||
mat/data_012.mat \
|
||||
mat/data_013.mat \
|
||||
meas_noise_ac_dc.m
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_noise_ac_dc.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Measure the influence of the high-pass filter option of the voltage amplifiers
|
||||
|
||||
*Setup*:
|
||||
- One geophone is located on the marble.
|
||||
- It's signal goes to two voltage amplifiers with a gain of 60dB.
|
||||
- One voltage amplifier is on the AC option, the other is on the DC option.
|
||||
|
||||
*Measurements*:
|
||||
First measurement (=mat/data_014.mat= file):
|
||||
| Column | Signal |
|
||||
|--------+----------------------------|
|
||||
| 1 | Amplifier 1 with AC option |
|
||||
| 2 | Amplifier 2 with DC option |
|
||||
| 3 | Time |
|
||||
|
||||
Second measurement (=mat/data_015.mat= file):
|
||||
| Column | Signal |
|
||||
|--------+----------------------------|
|
||||
| 1 | Amplifier 1 with DC option |
|
||||
| 2 | Amplifier 2 with AC option |
|
||||
| 3 | Time |
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
||||
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
The signals are shown on figure [[fig:ac_dc_option_time]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
||||
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
xlim([0, 100]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ac_dc_option_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_time
|
||||
#+CAPTION: Comparison of the signals going through the Voltage amplifiers
|
||||
#+RESULTS: fig:ac_dc_option_time
|
||||
[[file:figs/ac_dc_option_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = meas14(2, 3)-meas14(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
||||
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
||||
|
||||
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
||||
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
||||
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
||||
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
||||
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_asd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ac_dc_option_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_asd
|
||||
#+CAPTION: Amplitude Spectral Density of the measured signals
|
||||
#+RESULTS: fig:ac_dc_option_asd
|
||||
[[file:figs/ac_dc_option_asd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
|
||||
#+end_important
|
||||
|
@ -1,4 +1,5 @@
|
||||
* Measure of the noise of the Voltage Amplifier
|
||||
* DONE Measure of the noise of the Voltage Amplifier
|
||||
CLOSED: [2019-05-06 lun. 09:00]
|
||||
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
|
||||
- The AC/DC option of the Voltage amplifier is on AC
|
||||
- The low pass filter is set to 1hHz
|
||||
@ -11,7 +12,8 @@ meas5: Ampli ON 40dB
|
||||
meas6: Ampli ON 60dB
|
||||
meas7: Ampli ON 80dB
|
||||
|
||||
* Measure of the noise induced by the Slip-Ring
|
||||
* DONE Measure of the noise induced by the Slip-Ring
|
||||
CLOSED: [2019-05-06 lun. 09:28]
|
||||
Setup:
|
||||
- 0V is generated by the DAC of the Speedgoat
|
||||
- Using a T, one part goes to ADC
|
||||
@ -30,8 +32,8 @@ Measurements:
|
||||
- meas10: Slip-Ring ON and omega=6rpm
|
||||
- meas11: Slip-Ring ON and omega=60rpm
|
||||
|
||||
* Measure of the noise induced by the slip ring when using a geophone
|
||||
|
||||
* DONE Measure of the noise induced by the slip ring when using a geophone
|
||||
CLOSED: [2019-05-06 lun. 09:28]
|
||||
The geophone is located at the sample location
|
||||
The two Voltage amplifiers have the following settings:
|
||||
- AC
|
||||
@ -51,8 +53,8 @@ Second column: Slip-ring measure
|
||||
- meas12: Slip-Ring OFF
|
||||
- meas13: Slip-Ring ON
|
||||
|
||||
* Measure of the influence of the AC/DC option on the voltage amplifiers
|
||||
|
||||
* DONE Measure of the influence of the AC/DC option on the voltage amplifiers
|
||||
CLOSED: [2019-05-06 lun. 09:28]
|
||||
One geophone is located on the marble.
|
||||
It's signal goes to two voltage amplifiers with a gain of 60dB.
|
||||
On voltage amplifier is on the AC option, the other on the DC option.
|
||||
@ -62,4 +64,3 @@ Second column: DC
|
||||
|
||||
- meas14: col-1 = amp1+AC. col-2 = amp2+DC.
|
||||
- meas15: col-1 = amp1+DC. col-2 = amp2+AC.
|
||||
|
||||
|