Add few curves
This commit is contained in:
parent
7aa568e55d
commit
ec07f0b91e
@ -18,6 +18,8 @@
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:END:
|
||||
|
||||
* Experimental Setup
|
||||
|
||||
* Signal Processing
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
@ -33,19 +35,6 @@ Measurement =data_001.mat= corresponds to a measurement where the spindle is not
|
||||
data2 = load('mat/data_002.mat', 't', 'x1', 'x2');
|
||||
#+end_src
|
||||
|
||||
** Pre-processing
|
||||
#+begin_src matlab :results none
|
||||
imax = min([length(data1.t), length(data2.t)]);
|
||||
|
||||
data1.t = data1.t(1:imax);
|
||||
data1.x1 = data1.x1(1:imax);
|
||||
data1.x2 = data1.x2(1:imax);
|
||||
|
||||
data2.t = data2.t(1:imax);
|
||||
data2.x1 = data2.x1(1:imax);
|
||||
data2.x2 = data2.x2(1:imax);
|
||||
#+end_src
|
||||
|
||||
** Time domain Data
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
@ -67,17 +56,19 @@ Measurement =data_001.mat= corresponds to a measurement where the spindle is not
|
||||
#+begin_src matlab :results none
|
||||
dt = data1.t(2) - data1.t(1);
|
||||
Fs = 1/dt;
|
||||
windows_psd = hanning(ceil(10/dt));
|
||||
|
||||
windows_psd = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[pxx1m, f] = pwelch(data1.x1, windows_psd, [], [], Fs);
|
||||
[pxx1h, ~] = pwelch(data1.x2, windows_psd, [], [], Fs);
|
||||
[pxx1m, f] = pwelch(data1.x1, windows_psd, [], [], Fs); f(1) = []; pxx1m(1) = [];
|
||||
[pxx1h, ~] = pwelch(data1.x2, windows_psd, [], [], Fs); pxx1h(1) = [];
|
||||
|
||||
[pxx2m, ~] = pwelch(data2.x1, windows_psd, [], [], Fs);
|
||||
[pxx2h, ~] = pwelch(data2.x2, windows_psd, [], [], Fs);
|
||||
[pxx2m, ~] = pwelch(data2.x1, windows_psd, [], [], Fs); pxx2m(1) = [];
|
||||
[pxx2h, ~] = pwelch(data2.x2, windows_psd, [], [], Fs); pxx2h(1) = [];
|
||||
#+end_src
|
||||
|
||||
** Some plots
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
@ -120,3 +111,86 @@ Measurement =data_001.mat= corresponds to a measurement where the spindle is not
|
||||
set(gca, 'XScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('CAS [m]')
|
||||
#+end_src
|
||||
|
||||
** Scaling to take into account the sensibility of the geophone and the voltage amplifier
|
||||
The Geophone used are L22. Their sensibility is shown on figure [[fig:geophone_sensibility]].
|
||||
|
||||
#+begin_src matlab :results none
|
||||
S0 = 88; % Sensitivity [V/(m/s)]
|
||||
f0 = 2; % Cut-off frequnecy [Hz]
|
||||
|
||||
S = S0*(s/2/pi/f0)/(1+s/2/pi/f0);
|
||||
#+end_src
|
||||
|
||||
We also take into account the gain of the electronics which is here set to be $60dB$.
|
||||
|
||||
#+begin_src matlab :results none
|
||||
G0_db = 60; % [dB]
|
||||
|
||||
G0 = 10^(60/G0_db); % [abs]
|
||||
#+end_src
|
||||
|
||||
We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the gain of the voltage amplifier to obtain the ASD of the voltage across the geophone.
|
||||
We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
|
||||
|
||||
#+begin_src matlab :results none
|
||||
scaling = 1./squeeze(abs(freqresp(G0*S, f, 'Hz'))); scaling(1) = 0;
|
||||
#+end_src
|
||||
|
||||
** Computation of the ASD of the velocity
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxx1h).*scaling);
|
||||
plot(f, sqrt(pxx2h).*scaling);
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, (sqrt(pxx1).*scaling)./(2*pi*f));
|
||||
plot(f, (sqrt(pxx2).*scaling)./(2*pi*f));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the displacement $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
** RMS value of the difference between the two geophones
|
||||
We also compute the Power Spectral Density of the difference between the two geophones. This is done in order to estimate the relative displacement of the sample with respect to the granite.
|
||||
#+begin_src matlab :results none
|
||||
[pxxd1, ~] = pwelch(data1.x2-data1.x1, windows_psd, [], [], Fs); pxxd1(1) = [];
|
||||
[pxxd2, ~] = pwelch(data2.x2-data2.x1, windows_psd, [], [], Fs); pxxd2(1) = [];
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, (sqrt(pxxd1).*scaling)./(2*pi*f));
|
||||
plot(f, (sqrt(pxxd2).*scaling)./(2*pi*f));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the displacement $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
psd_d1 = ((sqrt(pxxd1).*scaling)./(2*pi*f)).^2;
|
||||
psd_d2 = ((sqrt(pxxd2).*scaling)./(2*pi*f)).^2;
|
||||
|
||||
df = f(2) - f(1);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(cumsum(df.*psd_d1, 'reverse')));
|
||||
plot(f, sqrt(cumsum(df.*psd_d2, 'reverse')));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('CAS $\left[m\right]$')
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
3
slip-ring-test/figs/.gitignore
vendored
Normal file
3
slip-ring-test/figs/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.tex
|
||||
*.pdf
|
||||
*.svg
|
BIN
slip-ring-test/figs/psd_noise.png
Normal file
BIN
slip-ring-test/figs/psd_noise.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 105 KiB |
Binary file not shown.
@ -82,7 +82,7 @@ We now look at the difference between the signal directly measured by the ADC an
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(sr_on.t, sr_on.x1 - sr_on.x2, 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
|
||||
plot(sr_on.t, sr_on.x1 - sr_on.x2, 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
|
||||
plot(sr_off.t, sr_off.x1 - sr_off.x2,'DisplayName', 'Slip-Ring off');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
@ -101,6 +101,41 @@ We now look at the difference between the signal directly measured by the ADC an
|
||||
#+RESULTS: fig:slipring_comp_signals
|
||||
[[file:figs/slipring_comp_signals.png]]
|
||||
|
||||
#+begin_src matlab :results none
|
||||
dt = sr_on.t(2) - sr_on.t(1);
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(1*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[pxx_on, f] = pwelch(sr_on.x1 - sr_on.x2, win, [], [], Fs);
|
||||
[pxx_off, ~] = pwelch(sr_off.x1 - sr_off.x2, win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxx_on), 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
|
||||
plot(f, sqrt(pxx_off),'DisplayName', 'Slip-Ring off');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
|
||||
legend('Location', 'northeast');
|
||||
xlim([1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:psd_noise
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/psd_noise.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:psd_noise
|
||||
#+CAPTION: ASD of the measured noise
|
||||
#+RESULTS: fig:psd_noise
|
||||
[[file:figs/psd_noise.png]]
|
||||
|
||||
* Conclusion
|
||||
#+begin_note
|
||||
*Remaining questions*:
|
||||
|
Loading…
Reference in New Issue
Block a user