Update html file

This commit is contained in:
Thomas Dehaeze 2019-05-17 10:04:35 +02:00
parent a382cc1952
commit 48e3b909d0
2 changed files with 192 additions and 133 deletions

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2019-05-16 jeu. 13:39 --> <!-- 2019-05-17 ven. 10:04 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Measurements On the Slip-Ring - Electrical Noise</title> <title>Measurements On the Slip-Ring - Electrical Noise</title>
@ -280,49 +280,51 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#org705b8cd">1. Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</a> <li><a href="#orgd65df36">1. Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</a>
<ul> <ul>
<li><a href="#org27dcdf9">1.1. Experimental Setup</a></li> <li><a href="#org452b75e">1.1. Experimental Setup</a></li>
<li><a href="#orgba60edf">1.2. Load data</a></li> <li><a href="#org022d10a">1.2. Load data</a></li>
<li><a href="#orgbf72b36">1.3. Analysis - Time Domain</a></li> <li><a href="#org0e16286">1.3. Analysis - Time Domain</a></li>
<li><a href="#org71bcce4">1.4. Analysis - Frequency Domain</a></li> <li><a href="#org56d1423">1.4. Analysis - Frequency Domain</a></li>
<li><a href="#orge2e072d">1.5. Conclusion</a></li> <li><a href="#org0148c7b">1.5. Conclusion</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org3ccfaf0">2. Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</a> <li><a href="#orgc83e3c2">2. Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</a>
<ul> <ul>
<li><a href="#org6a0af97">2.1. First Measurement without LPF</a> <li><a href="#org4234d00">2.1. First Measurement without LPF</a>
<ul> <ul>
<li><a href="#org8149c88">2.1.1. Measurement Description</a></li> <li><a href="#orgb3448f0">2.1.1. Measurement Description</a></li>
<li><a href="#orgb24a472">2.1.2. Load data</a></li> <li><a href="#org769f767">2.1.2. Load data</a></li>
<li><a href="#org1ed7f66">2.1.3. Time Domain</a></li> <li><a href="#orgab936f6">2.1.3. Time Domain</a></li>
<li><a href="#orgfb4b1b3">2.1.4. Frequency Domain</a></li> <li><a href="#orga860ebc">2.1.4. Frequency Domain</a></li>
<li><a href="#org8df486d">2.1.5. Conclusion</a></li> <li><a href="#org2f13e1b">2.1.5. Conclusion</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org5a500b8">2.2. Measurement using an oscilloscope</a> <li><a href="#org09f7fe0">2.2. Measurement using an oscilloscope</a>
<ul> <ul>
<li><a href="#orgb213fc5">2.2.1. Measurement Setup</a></li> <li><a href="#org05d3686">2.2.1. Measurement Setup</a></li>
<li><a href="#orgc19f828">2.2.2. Observations</a></li> <li><a href="#org31ccfad">2.2.2. Observations</a></li>
<li><a href="#org61930e6">2.2.3. Conclusion</a></li> <li><a href="#org6b078b2">2.2.3. Conclusion</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgb00f95d">2.3. New measurements with a LPF before the Voltage Amplifiers</a> <li><a href="#org70c9bc1">2.3. New measurements with a LPF before the Voltage Amplifiers</a>
<ul> <ul>
<li><a href="#org9fa4c9c">2.3.1. Setup description</a></li> <li><a href="#org64b7d09">2.3.1. Setup description</a></li>
<li><a href="#org56ffeb4">2.3.2. Load data</a></li> <li><a href="#org5426009">2.3.2. Load data</a></li>
<li><a href="#orgcabd836">2.3.3. Time Domain</a></li> <li><a href="#orgb76acbe">2.3.3. Time Domain</a></li>
<li><a href="#org50b3d2c">2.3.4. Frequency Domain</a></li> <li><a href="#orgbef3f23">2.3.4. Frequency Domain</a></li>
<li><a href="#org2a4f07d">2.3.5. Conclusion</a></li> <li><a href="#orgc1fcca7">2.3.5. Conclusion</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgd55b3f8">2.4. Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</a> <li><a href="#orga70c2df">2.4. Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</a>
<ul> <ul>
<li><a href="#org469d03f">2.4.1. Measurement description</a></li> <li><a href="#orgc629012">2.4.1. Measurement description</a></li>
<li><a href="#org6bf316b">2.4.2. Load data</a></li> <li><a href="#org04e8d20">2.4.2. Load data</a></li>
<li><a href="#orga099a0e">2.4.3. Time Domain</a></li> <li><a href="#org8394ea8">2.4.3. Pre-processing</a></li>
<li><a href="#org879b6b3">2.4.4. Frequency Domain</a></li> <li><a href="#orgd37877e">2.4.4. Time Domain</a></li>
<li><a href="#orgc1bf114">2.4.5. Conclusion</a></li> <li><a href="#orgc77f23c">2.4.5. Frequency Domain</a></li>
<li><a href="#org92d0230">2.4.6. Difference between the direct signal and the signal going through the slip-ring</a></li>
<li><a href="#orga9ca1a2">2.4.7. Conclusion</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
@ -335,12 +337,12 @@ for the JavaScript code in this tag.
The noise induced by the slip-ring is measured when using geophones: The noise induced by the slip-ring is measured when using geophones:
</p> </p>
<ul class="org-ul"> <ul class="org-ul">
<li>Section <a href="#org6429a42">1</a>: <li>Section <a href="#org3ad3d26">1</a>:
<ul class="org-ul"> <ul class="org-ul">
<li>A geophone located at the sample location is measured with its signal going directly to the ADC and going through the slip-ring</li> <li>A geophone located at the sample location is measured with its signal going directly to the ADC and going through the slip-ring</li>
<li>The voltage amplifiers where saturating due to high frequency noise</li> <li>The voltage amplifiers where saturating due to high frequency noise</li>
</ul></li> </ul></li>
<li>Section <a href="#org76451eb">2</a>: <li>Section <a href="#orgd23ef9b">2</a>:
<ul class="org-ul"> <ul class="org-ul">
<li>A Low Pass Filter is added before the voltage amplifiers</li> <li>A Low Pass Filter is added before the voltage amplifiers</li>
<li>Using a Oscilloscope, high frequency noise at 40kHz generated by the slip-ring has been identified</li> <li>Using a Oscilloscope, high frequency noise at 40kHz generated by the slip-ring has been identified</li>
@ -348,11 +350,11 @@ The noise induced by the slip-ring is measured when using geophones:
</ul></li> </ul></li>
</ul> </ul>
<div id="outline-container-org705b8cd" class="outline-2"> <div id="outline-container-orgd65df36" class="outline-2">
<h2 id="org705b8cd"><span class="section-number-2">1</span> Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</h2> <h2 id="orgd65df36"><span class="section-number-2">1</span> Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
<p> <p>
<a id="org6429a42"></a> <a id="org3ad3d26"></a>
</p> </p>
<div class="note"> <div class="note">
<p> <p>
@ -362,8 +364,8 @@ All the files (data and Matlab scripts) are accessible <a href="data/meas_slip_r
</div> </div>
</div> </div>
<div id="outline-container-org27dcdf9" class="outline-3"> <div id="outline-container-org452b75e" class="outline-3">
<h3 id="org27dcdf9"><span class="section-number-3">1.1</span> Experimental Setup</h3> <h3 id="org452b75e"><span class="section-number-3">1.1</span> Experimental Setup</h3>
<div class="outline-text-3" id="text-1-1"> <div class="outline-text-3" id="text-1-1">
<p> <p>
<b>Goal</b>: <b>Goal</b>:
@ -377,7 +379,7 @@ Two measurements are made with the control systems of all the stages turned OFF.
</p> </p>
<p> <p>
One geophone is located on the marble while the other is located at the sample location (figure <a href="#org8bb3417">1</a>). One geophone is located on the marble while the other is located at the sample location (figure <a href="#org37037f9">1</a>).
</p> </p>
<p> <p>
@ -390,7 +392,7 @@ The two signals from the geophones are amplified with voltage amplifiers with th
</ul> </ul>
<div id="org8bb3417" class="figure"> <div id="org37037f9" class="figure">
<p><img src="./img/IMG_20190430_112615.jpg" alt="IMG_20190430_112615.jpg" width="500px" /> <p><img src="./img/IMG_20190430_112615.jpg" alt="IMG_20190430_112615.jpg" width="500px" />
</p> </p>
<p><span class="figure-number">Figure 1: </span>Experimental Setup</p> <p><span class="figure-number">Figure 1: </span>Experimental Setup</p>
@ -465,8 +467,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div> </div>
</div> </div>
<div id="outline-container-orgba60edf" class="outline-3"> <div id="outline-container-org022d10a" class="outline-3">
<h3 id="orgba60edf"><span class="section-number-3">1.2</span> Load data</h3> <h3 id="org022d10a"><span class="section-number-3">1.2</span> Load data</h3>
<div class="outline-text-3" id="text-1-2"> <div class="outline-text-3" id="text-1-2">
<p> <p>
We load the data of the z axis of two geophones. We load the data of the z axis of two geophones.
@ -480,11 +482,11 @@ meas_di = load<span class="org-rainbow-delimiters-depth-1">(</span>'mat<span cla
</div> </div>
</div> </div>
<div id="outline-container-orgbf72b36" class="outline-3"> <div id="outline-container-org0e16286" class="outline-3">
<h3 id="orgbf72b36"><span class="section-number-3">1.3</span> Analysis - Time Domain</h3> <h3 id="org0e16286"><span class="section-number-3">1.3</span> Analysis - Time Domain</h3>
<div class="outline-text-3" id="text-1-3"> <div class="outline-text-3" id="text-1-3">
<p> <p>
First, we compare the time domain signals for the two experiments (figure <a href="#org3f972d3">2</a>). First, we compare the time domain signals for the two experiments (figure <a href="#org5c6d734">2</a>).
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
@ -500,7 +502,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
<div id="org3f972d3" class="figure"> <div id="org5c6d734" class="figure">
<p><img src="figs/slipring_time.png" alt="slipring_time.png" /> <p><img src="figs/slipring_time.png" alt="slipring_time.png" />
</p> </p>
<p><span class="figure-number">Figure 2: </span>Effect of the Slip-Ring on the measured signal of the geophone at the sample location - Time domain</p> <p><span class="figure-number">Figure 2: </span>Effect of the Slip-Ring on the measured signal of the geophone at the sample location - Time domain</p>
@ -508,11 +510,11 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
</div> </div>
<div id="outline-container-org71bcce4" class="outline-3"> <div id="outline-container-org56d1423" class="outline-3">
<h3 id="org71bcce4"><span class="section-number-3">1.4</span> Analysis - Frequency Domain</h3> <h3 id="org56d1423"><span class="section-number-3">1.4</span> Analysis - Frequency Domain</h3>
<div class="outline-text-3" id="text-1-4"> <div class="outline-text-3" id="text-1-4">
<p> <p>
We then compute the Power Spectral Density of the two signals and we compare them (figure <a href="#orgf7500fb">3</a>). We then compute the Power Spectral Density of the two signals and we compare them (figure <a href="#org50a7973">3</a>).
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
@ -544,7 +546,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
<div id="orgf7500fb" class="figure"> <div id="org50a7973" class="figure">
<p><img src="figs/slipring_asd.png" alt="slipring_asd.png" /> <p><img src="figs/slipring_asd.png" alt="slipring_asd.png" />
</p> </p>
<p><span class="figure-number">Figure 3: </span>Effect of the Slip-Ring on the measured signal of the geophone at the sample location - Frequency domain</p> <p><span class="figure-number">Figure 3: </span>Effect of the Slip-Ring on the measured signal of the geophone at the sample location - Frequency domain</p>
@ -552,12 +554,12 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
</div> </div>
<div id="outline-container-orge2e072d" class="outline-3"> <div id="outline-container-org0148c7b" class="outline-3">
<h3 id="orge2e072d"><span class="section-number-3">1.5</span> Conclusion</h3> <h3 id="org0148c7b"><span class="section-number-3">1.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-5"> <div class="outline-text-3" id="text-1-5">
<div class="important"> <div class="important">
<ul class="org-ul"> <ul class="org-ul">
<li>The voltage amplifiers are saturating during the measurements (as shown by the LED on figure <a href="#org8bb3417">1</a>)</li> <li>The voltage amplifiers are saturating during the measurements (as shown by the LED on figure <a href="#org37037f9">1</a>)</li>
<li>This saturation is mainly due to high frequency noise =&gt; a LPF will be added at the input of the voltage amplifiers in the further measurements</li> <li>This saturation is mainly due to high frequency noise =&gt; a LPF will be added at the input of the voltage amplifiers in the further measurements</li>
<li>The measurements will be redone</li> <li>The measurements will be redone</li>
</ul> </ul>
@ -567,11 +569,11 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
</div> </div>
<div id="outline-container-org3ccfaf0" class="outline-2"> <div id="outline-container-orgc83e3c2" class="outline-2">
<h2 id="org3ccfaf0"><span class="section-number-2">2</span> Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</h2> <h2 id="orgc83e3c2"><span class="section-number-2">2</span> Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</h2>
<div class="outline-text-2" id="text-2"> <div class="outline-text-2" id="text-2">
<p> <p>
<a id="org76451eb"></a> <a id="orgd23ef9b"></a>
</p> </p>
<div class="note"> <div class="note">
<p> <p>
@ -581,12 +583,12 @@ All the files (data and Matlab scripts) are accessible <a href="data/meas_sr_geo
</div> </div>
</div> </div>
<div id="outline-container-org6a0af97" class="outline-3"> <div id="outline-container-org4234d00" class="outline-3">
<h3 id="org6a0af97"><span class="section-number-3">2.1</span> First Measurement without LPF</h3> <h3 id="org4234d00"><span class="section-number-3">2.1</span> First Measurement without LPF</h3>
<div class="outline-text-3" id="text-2-1"> <div class="outline-text-3" id="text-2-1">
</div> </div>
<div id="outline-container-org8149c88" class="outline-4"> <div id="outline-container-orgb3448f0" class="outline-4">
<h4 id="org8149c88"><span class="section-number-4">2.1.1</span> Measurement Description</h4> <h4 id="orgb3448f0"><span class="section-number-4">2.1.1</span> Measurement Description</h4>
<div class="outline-text-4" id="text-2-1-1"> <div class="outline-text-4" id="text-2-1-1">
<p> <p>
<b>Goal</b>: <b>Goal</b>:
@ -679,8 +681,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div> </div>
</div> </div>
<div id="outline-container-orgb24a472" class="outline-4"> <div id="outline-container-org769f767" class="outline-4">
<h4 id="orgb24a472"><span class="section-number-4">2.1.2</span> Load data</h4> <h4 id="org769f767"><span class="section-number-4">2.1.2</span> Load data</h4>
<div class="outline-text-4" id="text-2-1-2"> <div class="outline-text-4" id="text-2-1-2">
<p> <p>
We load the data of the z axis of two geophones. We load the data of the z axis of two geophones.
@ -693,22 +695,22 @@ sr_on = load<span class="org-rainbow-delimiters-depth-1">(</span><span class="o
</div> </div>
</div> </div>
<div id="outline-container-org1ed7f66" class="outline-4"> <div id="outline-container-orgab936f6" class="outline-4">
<h4 id="org1ed7f66"><span class="section-number-4">2.1.3</span> Time Domain</h4> <h4 id="orgab936f6"><span class="section-number-4">2.1.3</span> Time Domain</h4>
<div class="outline-text-4" id="text-2-1-3"> <div class="outline-text-4" id="text-2-1-3">
<p> <p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#org441e74d">4</a>) and when it is ON (figure <a href="#org3a186ee">5</a>). We compare the signal when the Slip-Ring is OFF (figure <a href="#org85ec7c3">4</a>) and when it is ON (figure <a href="#orgbd68395">5</a>).
</p> </p>
<div id="org441e74d" class="figure"> <div id="org85ec7c3" class="figure">
<p><img src="figs/sr_geophone_time_off.png" alt="sr_geophone_time_off.png" /> <p><img src="figs/sr_geophone_time_off.png" alt="sr_geophone_time_off.png" />
</p> </p>
<p><span class="figure-number">Figure 4: </span>Comparison of the time domain signals when the slip-ring is OFF</p> <p><span class="figure-number">Figure 4: </span>Comparison of the time domain signals when the slip-ring is OFF</p>
</div> </div>
<div id="org3a186ee" class="figure"> <div id="orgbd68395" class="figure">
<p><img src="figs/sr_geophone_time_on.png" alt="sr_geophone_time_on.png" /> <p><img src="figs/sr_geophone_time_on.png" alt="sr_geophone_time_on.png" />
</p> </p>
<p><span class="figure-number">Figure 5: </span>Comparison of the time domain signals when the slip-ring is ON</p> <p><span class="figure-number">Figure 5: </span>Comparison of the time domain signals when the slip-ring is ON</p>
@ -716,8 +718,8 @@ We compare the signal when the Slip-Ring is OFF (figure <a href="#org441e74d">4<
</div> </div>
</div> </div>
<div id="outline-container-orgfb4b1b3" class="outline-4"> <div id="outline-container-orga860ebc" class="outline-4">
<h4 id="orgfb4b1b3"><span class="section-number-4">2.1.4</span> Frequency Domain</h4> <h4 id="orga860ebc"><span class="section-number-4">2.1.4</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-1-4"> <div class="outline-text-4" id="text-2-1-4">
<p> <p>
We first compute some parameters that will be used for the PSD computation. We first compute some parameters that will be used for the PSD computation.
@ -746,7 +748,7 @@ Then we compute the Power Spectral Density using <code>pwelch</code> function.
</div> </div>
<p> <p>
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org95029b1">6</a>); Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org5744581">6</a>);
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
@ -766,14 +768,14 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div> </div>
<div id="org95029b1" class="figure"> <div id="org5744581" class="figure">
<p><img src="figs/sr_geophone_asd.png" alt="sr_geophone_asd.png" /> <p><img src="figs/sr_geophone_asd.png" alt="sr_geophone_asd.png" />
</p> </p>
<p><span class="figure-number">Figure 6: </span>Comparison of the Amplitude Spectral Sensity</p> <p><span class="figure-number">Figure 6: </span>Comparison of the Amplitude Spectral Sensity</p>
</div> </div>
<div id="org1cbbe97" class="figure"> <div id="org61603cc" class="figure">
<p><img src="figs/sr_geophone_asd_zoom.png" alt="sr_geophone_asd_zoom.png" /> <p><img src="figs/sr_geophone_asd_zoom.png" alt="sr_geophone_asd_zoom.png" />
</p> </p>
<p><span class="figure-number">Figure 7: </span>Comparison of the Amplitude Spectral Sensity - Zoom</p> <p><span class="figure-number">Figure 7: </span>Comparison of the Amplitude Spectral Sensity - Zoom</p>
@ -781,8 +783,8 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div> </div>
</div> </div>
<div id="outline-container-org8df486d" class="outline-4"> <div id="outline-container-org2f13e1b" class="outline-4">
<h4 id="org8df486d"><span class="section-number-4">2.1.5</span> Conclusion</h4> <h4 id="org2f13e1b"><span class="section-number-4">2.1.5</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-1-5"> <div class="outline-text-4" id="text-2-1-5">
<div class="important"> <div class="important">
<ul class="org-ul"> <ul class="org-ul">
@ -795,7 +797,7 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
<b>Questions</b>: <b>Questions</b>:
</p> </p>
<ul class="org-ul"> <ul class="org-ul">
<li>Can the sharp peak on figure <a href="#org1cbbe97">7</a> be due to the Aliasing?</li> <li>Can the sharp peak on figure <a href="#org61603cc">7</a> be due to the Aliasing?</li>
</ul> </ul>
</div> </div>
@ -803,12 +805,12 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div> </div>
</div> </div>
<div id="outline-container-org5a500b8" class="outline-3"> <div id="outline-container-org09f7fe0" class="outline-3">
<h3 id="org5a500b8"><span class="section-number-3">2.2</span> Measurement using an oscilloscope</h3> <h3 id="org09f7fe0"><span class="section-number-3">2.2</span> Measurement using an oscilloscope</h3>
<div class="outline-text-3" id="text-2-2"> <div class="outline-text-3" id="text-2-2">
</div> </div>
<div id="outline-container-orgb213fc5" class="outline-4"> <div id="outline-container-org05d3686" class="outline-4">
<h4 id="orgb213fc5"><span class="section-number-4">2.2.1</span> Measurement Setup</h4> <h4 id="org05d3686"><span class="section-number-4">2.2.1</span> Measurement Setup</h4>
<div class="outline-text-4" id="text-2-2-1"> <div class="outline-text-4" id="text-2-2-1">
<p> <p>
We are now measuring the same signals than in the previous section, but with an oscilloscope instead of with the Speedgoat ADC. We are now measuring the same signals than in the previous section, but with an oscilloscope instead of with the Speedgoat ADC.
@ -816,26 +818,26 @@ We are now measuring the same signals than in the previous section, but with an
</div> </div>
</div> </div>
<div id="outline-container-orgc19f828" class="outline-4"> <div id="outline-container-org31ccfad" class="outline-4">
<h4 id="orgc19f828"><span class="section-number-4">2.2.2</span> Observations</h4> <h4 id="org31ccfad"><span class="section-number-4">2.2.2</span> Observations</h4>
<div class="outline-text-4" id="text-2-2-2"> <div class="outline-text-4" id="text-2-2-2">
<p> <p>
Then the Slip-Ring is ON (figure <a href="#org6d55390">8</a>), we observe a signal at 40kHz with a peak-to-peak amplitude of 200mV for the direct measure and 100mV for the signal going through the Slip-Ring. Then the Slip-Ring is ON (figure <a href="#org233fc3b">8</a>), we observe a signal at 40kHz with a peak-to-peak amplitude of 200mV for the direct measure and 100mV for the signal going through the Slip-Ring.
</p> </p>
<p> <p>
Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure <a href="#org4e31dbe">9</a>). Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure <a href="#org69c8279">9</a>).
</p> </p>
<div id="org6d55390" class="figure"> <div id="org233fc3b" class="figure">
<p><img src="./img/IMG_20190506_160420.jpg" alt="IMG_20190506_160420.jpg" width="500px" /> <p><img src="./img/IMG_20190506_160420.jpg" alt="IMG_20190506_160420.jpg" width="500px" />
</p> </p>
<p><span class="figure-number">Figure 8: </span>Signals measured by the oscilloscope - Slip-Ring ON - Yellow: Direct measure - Blue: Through Slip-Ring</p> <p><span class="figure-number">Figure 8: </span>Signals measured by the oscilloscope - Slip-Ring ON - Yellow: Direct measure - Blue: Through Slip-Ring</p>
</div> </div>
<div id="org4e31dbe" class="figure"> <div id="org69c8279" class="figure">
<p><img src="./img/IMG_20190506_160438.jpg" alt="IMG_20190506_160438.jpg" width="500px" /> <p><img src="./img/IMG_20190506_160438.jpg" alt="IMG_20190506_160438.jpg" width="500px" />
</p> </p>
<p><span class="figure-number">Figure 9: </span>Signals measured by the oscilloscope - Slip-Ring OFF - Yellow: Direct measure - Blue: Through Slip-Ring</p> <p><span class="figure-number">Figure 9: </span>Signals measured by the oscilloscope - Slip-Ring OFF - Yellow: Direct measure - Blue: Through Slip-Ring</p>
@ -843,8 +845,8 @@ Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure
</div> </div>
</div> </div>
<div id="outline-container-org61930e6" class="outline-4"> <div id="outline-container-org6b078b2" class="outline-4">
<h4 id="org61930e6"><span class="section-number-4">2.2.3</span> Conclusion</h4> <h4 id="org6b078b2"><span class="section-number-4">2.2.3</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-2-3"> <div class="outline-text-4" id="text-2-2-3">
<div class="important"> <div class="important">
<ul class="org-ul"> <ul class="org-ul">
@ -858,12 +860,12 @@ Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure
</div> </div>
</div> </div>
<div id="outline-container-orgb00f95d" class="outline-3"> <div id="outline-container-org70c9bc1" class="outline-3">
<h3 id="orgb00f95d"><span class="section-number-3">2.3</span> New measurements with a LPF before the Voltage Amplifiers</h3> <h3 id="org70c9bc1"><span class="section-number-3">2.3</span> New measurements with a LPF before the Voltage Amplifiers</h3>
<div class="outline-text-3" id="text-2-3"> <div class="outline-text-3" id="text-2-3">
</div> </div>
<div id="outline-container-org9fa4c9c" class="outline-4"> <div id="outline-container-org64b7d09" class="outline-4">
<h4 id="org9fa4c9c"><span class="section-number-4">2.3.1</span> Setup description</h4> <h4 id="org64b7d09"><span class="section-number-4">2.3.1</span> Setup description</h4>
<div class="outline-text-4" id="text-2-3-1"> <div class="outline-text-4" id="text-2-3-1">
<p> <p>
<b>Goal</b>: <b>Goal</b>:
@ -963,8 +965,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div> </div>
</div> </div>
<div id="outline-container-org56ffeb4" class="outline-4"> <div id="outline-container-org5426009" class="outline-4">
<h4 id="org56ffeb4"><span class="section-number-4">2.3.2</span> Load data</h4> <h4 id="org5426009"><span class="section-number-4">2.3.2</span> Load data</h4>
<div class="outline-text-4" id="text-2-3-2"> <div class="outline-text-4" id="text-2-3-2">
<p> <p>
We load the data of the z axis of two geophones. We load the data of the z axis of two geophones.
@ -977,22 +979,22 @@ sr_lpf_on = load<span class="org-rainbow-delimiters-depth-1">(</span><span clas
</div> </div>
</div> </div>
<div id="outline-container-orgcabd836" class="outline-4"> <div id="outline-container-orgb76acbe" class="outline-4">
<h4 id="orgcabd836"><span class="section-number-4">2.3.3</span> Time Domain</h4> <h4 id="orgb76acbe"><span class="section-number-4">2.3.3</span> Time Domain</h4>
<div class="outline-text-4" id="text-2-3-3"> <div class="outline-text-4" id="text-2-3-3">
<p> <p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#org81b0ec6">10</a>) and when it is ON (figure <a href="#org677a685">11</a>). We compare the signal when the Slip-Ring is OFF (figure <a href="#orge5ff08d">10</a>) and when it is ON (figure <a href="#org1ea0e78">11</a>).
</p> </p>
<div id="org81b0ec6" class="figure"> <div id="orge5ff08d" class="figure">
<p><img src="figs/sr_lpf_geophone_time_off.png" alt="sr_lpf_geophone_time_off.png" /> <p><img src="figs/sr_lpf_geophone_time_off.png" alt="sr_lpf_geophone_time_off.png" />
</p> </p>
<p><span class="figure-number">Figure 10: </span>Comparison of the time domain signals when the slip-ring is OFF</p> <p><span class="figure-number">Figure 10: </span>Comparison of the time domain signals when the slip-ring is OFF</p>
</div> </div>
<div id="org677a685" class="figure"> <div id="org1ea0e78" class="figure">
<p><img src="figs/sr_lpf_geophone_time_on.png" alt="sr_lpf_geophone_time_on.png" /> <p><img src="figs/sr_lpf_geophone_time_on.png" alt="sr_lpf_geophone_time_on.png" />
</p> </p>
<p><span class="figure-number">Figure 11: </span>Comparison of the time domain signals when the slip-ring is ON</p> <p><span class="figure-number">Figure 11: </span>Comparison of the time domain signals when the slip-ring is ON</p>
@ -1000,8 +1002,8 @@ We compare the signal when the Slip-Ring is OFF (figure <a href="#org81b0ec6">10
</div> </div>
</div> </div>
<div id="outline-container-org50b3d2c" class="outline-4"> <div id="outline-container-orgbef3f23" class="outline-4">
<h4 id="org50b3d2c"><span class="section-number-4">2.3.4</span> Frequency Domain</h4> <h4 id="orgbef3f23"><span class="section-number-4">2.3.4</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-3-4"> <div class="outline-text-4" id="text-2-3-4">
<p> <p>
We first compute some parameters that will be used for the PSD computation. We first compute some parameters that will be used for the PSD computation.
@ -1030,7 +1032,7 @@ Then we compute the Power Spectral Density using <code>pwelch</code> function.
</div> </div>
<p> <p>
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org3d43bfc">12</a>); Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org90a80c6">12</a>);
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
@ -1049,14 +1051,14 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
<div id="org3d43bfc" class="figure"> <div id="org90a80c6" class="figure">
<p><img src="figs/sr_lpf_geophone_asd.png" alt="sr_lpf_geophone_asd.png" /> <p><img src="figs/sr_lpf_geophone_asd.png" alt="sr_lpf_geophone_asd.png" />
</p> </p>
<p><span class="figure-number">Figure 12: </span>Comparison of the Amplitude Spectral Sensity</p> <p><span class="figure-number">Figure 12: </span>Comparison of the Amplitude Spectral Sensity</p>
</div> </div>
<div id="org10ad34a" class="figure"> <div id="org98cd9ed" class="figure">
<p><img src="figs/sr_lpf_geophone_asd_zoom.png" alt="sr_lpf_geophone_asd_zoom.png" /> <p><img src="figs/sr_lpf_geophone_asd_zoom.png" alt="sr_lpf_geophone_asd_zoom.png" />
</p> </p>
<p><span class="figure-number">Figure 13: </span>Comparison of the Amplitude Spectral Sensity - Zoom</p> <p><span class="figure-number">Figure 13: </span>Comparison of the Amplitude Spectral Sensity - Zoom</p>
@ -1064,8 +1066,8 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
</div> </div>
<div id="outline-container-org2a4f07d" class="outline-4"> <div id="outline-container-orgc1fcca7" class="outline-4">
<h4 id="org2a4f07d"><span class="section-number-4">2.3.5</span> Conclusion</h4> <h4 id="orgc1fcca7"><span class="section-number-4">2.3.5</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-3-5"> <div class="outline-text-4" id="text-2-3-5">
<div class="important"> <div class="important">
<ul class="org-ul"> <ul class="org-ul">
@ -1079,12 +1081,12 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
</div> </div>
<div id="outline-container-orgd55b3f8" class="outline-3"> <div id="outline-container-orga70c2df" class="outline-3">
<h3 id="orgd55b3f8"><span class="section-number-3">2.4</span> Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</h3> <h3 id="orga70c2df"><span class="section-number-3">2.4</span> Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</h3>
<div class="outline-text-3" id="text-2-4"> <div class="outline-text-3" id="text-2-4">
</div> </div>
<div id="outline-container-org469d03f" class="outline-4"> <div id="outline-container-orgc629012" class="outline-4">
<h4 id="org469d03f"><span class="section-number-4">2.4.1</span> Measurement description</h4> <h4 id="orgc629012"><span class="section-number-4">2.4.1</span> Measurement description</h4>
<div class="outline-text-4" id="text-2-4-1"> <div class="outline-text-4" id="text-2-4-1">
<p> <p>
<b>Setup</b>: <b>Setup</b>:
@ -1186,8 +1188,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div> </div>
</div> </div>
<div id="outline-container-org6bf316b" class="outline-4"> <div id="outline-container-org04e8d20" class="outline-4">
<h4 id="org6bf316b"><span class="section-number-4">2.4.2</span> Load data</h4> <h4 id="org04e8d20"><span class="section-number-4">2.4.2</span> Load data</h4>
<div class="outline-text-4" id="text-2-4-2"> <div class="outline-text-4" id="text-2-4-2">
<p> <p>
We load the data of the z axis of two geophones. We load the data of the z axis of two geophones.
@ -1200,22 +1202,44 @@ sr_lpf_1khz_on = load<span class="org-rainbow-delimiters-depth-1">(</span><span
</div> </div>
</div> </div>
<div id="outline-container-orga099a0e" class="outline-4"> <div id="outline-container-org8394ea8" class="outline-4">
<h4 id="orga099a0e"><span class="section-number-4">2.4.3</span> Time Domain</h4> <h4 id="org8394ea8"><span class="section-number-4">2.4.3</span> Pre-processing</h4>
<div class="outline-text-4" id="text-2-4-3"> <div class="outline-text-4" id="text-2-4-3">
<p> <p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#orga7f22df">14</a>) and when it is ON (figure <a href="#org33a10ec">15</a>). There is a sign difference between the signal going directly to the ADC and the signal going through the slip-ring. We add a minus sign on the signal going through the slip-ring.
</p>
<p>
We also subtract the mean value as the voltage amplifiers were on the DC option.
</p>
<div class="org-src-container">
<pre class="src src-matlab">sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-type">-</span><span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-2">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-type">-</span><span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-2">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd37877e" class="outline-4">
<h4 id="orgd37877e"><span class="section-number-4">2.4.4</span> Time Domain</h4>
<div class="outline-text-4" id="text-2-4-4">
<p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#orga139aa7">14</a>) and when it is ON (figure <a href="#orgd1e1d23">15</a>).
</p> </p>
<div id="orga7f22df" class="figure"> <div id="orga139aa7" class="figure">
<p><img src="figs/sr_lpf_1khz_geophone_time_off.png" alt="sr_lpf_1khz_geophone_time_off.png" /> <p><img src="figs/sr_lpf_1khz_geophone_time_off.png" alt="sr_lpf_1khz_geophone_time_off.png" />
</p> </p>
<p><span class="figure-number">Figure 14: </span>Comparison of the time domain signals when the slip-ring is OFF</p> <p><span class="figure-number">Figure 14: </span>Comparison of the time domain signals when the slip-ring is OFF</p>
</div> </div>
<div id="org33a10ec" class="figure"> <div id="orgd1e1d23" class="figure">
<p><img src="figs/sr_lpf_1khz_geophone_time_on.png" alt="sr_lpf_1khz_geophone_time_on.png" /> <p><img src="figs/sr_lpf_1khz_geophone_time_on.png" alt="sr_lpf_1khz_geophone_time_on.png" />
</p> </p>
<p><span class="figure-number">Figure 15: </span>Comparison of the time domain signals when the slip-ring is ON</p> <p><span class="figure-number">Figure 15: </span>Comparison of the time domain signals when the slip-ring is ON</p>
@ -1223,9 +1247,9 @@ We compare the signal when the Slip-Ring is OFF (figure <a href="#orga7f22df">14
</div> </div>
</div> </div>
<div id="outline-container-org879b6b3" class="outline-4"> <div id="outline-container-orgc77f23c" class="outline-4">
<h4 id="org879b6b3"><span class="section-number-4">2.4.4</span> Frequency Domain</h4> <h4 id="orgc77f23c"><span class="section-number-4">2.4.5</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-4-4"> <div class="outline-text-4" id="text-2-4-5">
<p> <p>
We first compute some parameters that will be used for the PSD computation. We first compute some parameters that will be used for the PSD computation.
</p> </p>
@ -1253,7 +1277,7 @@ Then we compute the Power Spectral Density using <code>pwelch</code> function.
</div> </div>
<p> <p>
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#orgb2f9278">16</a>); Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org5c47e51">16</a>);
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
@ -1264,7 +1288,7 @@ plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxdi_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', 'Direct - ON'</span><span class="org-rainbow-delimiters-depth-1">)</span>; plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxdi_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', 'Direct - ON'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxsr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', 'Slip-Ring - ON'</span><span class="org-rainbow-delimiters-depth-1">)</span>; plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxsr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', 'Slip-Ring - ON'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
hold off; hold off;
xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">500</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>; xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">500</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-type">set</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">gca</span>, <span class="org-string">'xscale', 'log'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; set</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">gca, 'yscale', 'log'</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-type">set</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">gca</span>, <span class="org-string">'xscale', 'log'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; set</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">gca, 'yscale', 'log'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
xlabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Frequency </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">Hz</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; ylabel</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">'</span>ASD of the measured Voltage $<span class="org-type">\</span>left<span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">\</span>frac<span class="org-rainbow-delimiters-depth-3">{</span>V<span class="org-rainbow-delimiters-depth-3">}{</span><span class="org-type">\</span>sqrt<span class="org-rainbow-delimiters-depth-4">{</span>Hz<span class="org-rainbow-delimiters-depth-4">}</span><span class="org-rainbow-delimiters-depth-3">}</span><span class="org-type">\</span>right<span class="org-rainbow-delimiters-depth-2">]</span>$'<span class="org-rainbow-delimiters-depth-1">)</span> xlabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Frequency </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">Hz</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; ylabel</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">'</span>ASD of the measured Voltage $<span class="org-type">\</span>left<span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">\</span>frac<span class="org-rainbow-delimiters-depth-3">{</span>V<span class="org-rainbow-delimiters-depth-3">}{</span><span class="org-type">\</span>sqrt<span class="org-rainbow-delimiters-depth-4">{</span>Hz<span class="org-rainbow-delimiters-depth-4">}</span><span class="org-rainbow-delimiters-depth-3">}</span><span class="org-type">\</span>right<span class="org-rainbow-delimiters-depth-2">]</span>$'<span class="org-rainbow-delimiters-depth-1">)</span>
legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Location', 'southwest'</span><span class="org-rainbow-delimiters-depth-1">)</span>; legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Location', 'southwest'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
@ -1272,7 +1296,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
<div id="orgb2f9278" class="figure"> <div id="org5c47e51" class="figure">
<p><img src="figs/sr_lpf_1khz_geophone_asd.png" alt="sr_lpf_1khz_geophone_asd.png" /> <p><img src="figs/sr_lpf_1khz_geophone_asd.png" alt="sr_lpf_1khz_geophone_asd.png" />
</p> </p>
<p><span class="figure-number">Figure 16: </span>Comparison of the Amplitude Spectral Sensity</p> <p><span class="figure-number">Figure 16: </span>Comparison of the Amplitude Spectral Sensity</p>
@ -1280,13 +1304,46 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
</div> </div>
<div id="outline-container-orgc1bf114" class="outline-4"> <div id="outline-container-org92d0230" class="outline-4">
<h4 id="orgc1bf114"><span class="section-number-4">2.4.5</span> Conclusion</h4> <h4 id="org92d0230"><span class="section-number-4">2.4.6</span> Difference between the direct signal and the signal going through the slip-ring</h4>
<div class="outline-text-4" id="text-2-4-5"> <div class="outline-text-4" id="text-2-4-6">
<p>
We subtract the signal coming from the direct wire to the signal going through the slip-ring when the slip-ring is ON and when it is OFF (figure <a href="#org5cffaa8">17</a>).
</p>
<div id="org5cffaa8" class="figure">
<p><img src="figs/diff_sr_direct.png" alt="diff_sr_direct.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Difference between the signal going directly to the ADC and the signal going through the slip-ring before the ADC</p>
</div>
<p>
Then we compute the Power Spectral Density using <code>pwelch</code> function (figure <a href="#orgc534526">18</a>).
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-comment">% Direct measure</span>
<span class="org-rainbow-delimiters-depth-1">[</span>px_diff_lpf_1khz_of, f<span class="org-rainbow-delimiters-depth-1">]</span> = pwelch<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, win, <span class="org-rainbow-delimiters-depth-2">[]</span>, <span class="org-rainbow-delimiters-depth-2">[]</span>, Fs<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-rainbow-delimiters-depth-1">[</span>px_diff_lpf_1khz_on, <span class="org-type">~</span><span class="org-rainbow-delimiters-depth-1">]</span> = pwelch<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, win, <span class="org-rainbow-delimiters-depth-2">[]</span>, <span class="org-rainbow-delimiters-depth-2">[]</span>, Fs<span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<div id="orgc534526" class="figure">
<p><img src="figs/diff_sr_direct_psd.png" alt="diff_sr_direct_psd.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Amplitude Spectral Density of the difference between the signal going directly to the ADC and the signal going through the slip-ring before the ADC</p>
</div>
</div>
</div>
<div id="outline-container-orga9ca1a2" class="outline-4">
<h4 id="orga9ca1a2"><span class="section-number-4">2.4.7</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-4-7">
<div class="important"> <div class="important">
<ul class="org-ul"> <ul class="org-ul">
<li>Using the LPF, we don't see any additional noise coming from the slip-ring when it is turned ON</li> <li>Using the LPF, we don't see any additional noise coming from the slip-ring when it is turned ON</li>
<li>We here observe a signal at \(50Hz\) and its harmonics</li> <li>The signal going through the slip-ring only differs from the direct signal by some 50Hz and its harmonics</li>
</ul> </ul>
</div> </div>
@ -1297,7 +1354,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p> <p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2019-05-16 jeu. 13:39</p> <p class="date">Created: 2019-05-17 ven. 10:04</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p> <p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div> </div>
</body> </body>

View File

@ -29,20 +29,22 @@
#+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:shell :eval no-export
:END: :END:
The goal here is to analyze the static measurement on the station (guiding error of each stage) and convert them to dynamic disturbances that can be use in the model of the micro-station. * Measurement description
** Setup :ignore:
*Setup*:
Each stage is statically moved of all its stroke on after the other.
A metrology element is located at the sample position and its motion is measured in translations and rotations.
For each small displacement, the stage is stopped and the motion of the sample is recorded and averaged.
The report by H-P van der Kleij on the static measurement of the ID31 station is available [[file:data/ID31_report_static_meas.pdf][here]]. The report by H-P van der Kleij on the static measurement of the ID31 station is available [[file:data/ID31_report_static_meas.pdf][here]].
| *Date* | 2019-01-09 | | *Date* | 2019-01-09 |
| *Sensors* | Interferometer | | *Sensors* | Interferometer |
| *Location* | Experimental Hutch | | *Location* | Experimental Hutch |
Each stage is statically moved of all its stroke on after the other. ** Goal :ignore:
A metrology element is located at the sample position and its motion is measured in translations and rotations. *Goal*:
For each small displacement, the stage is stopped and the motion of the sample is recorded and averaged. The goal here is to analyze the static measurement on the station (guiding error of each stage) and convert them to dynamic disturbances that can be use in the model of the micro-station.
The goal is to estimate the guiding errors of each stage.
* Static measurement of the translation stage * Static measurement of the translation stage
:PROPERTIES: :PROPERTIES: