Update html file

This commit is contained in:
Thomas Dehaeze 2019-05-17 10:04:35 +02:00
parent a382cc1952
commit 48e3b909d0
2 changed files with 192 additions and 133 deletions

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2019-05-16 jeu. 13:39 -->
<!-- 2019-05-17 ven. 10:04 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Measurements On the Slip-Ring - Electrical Noise</title>
@ -280,49 +280,51 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org705b8cd">1. Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</a>
<li><a href="#orgd65df36">1. Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</a>
<ul>
<li><a href="#org27dcdf9">1.1. Experimental Setup</a></li>
<li><a href="#orgba60edf">1.2. Load data</a></li>
<li><a href="#orgbf72b36">1.3. Analysis - Time Domain</a></li>
<li><a href="#org71bcce4">1.4. Analysis - Frequency Domain</a></li>
<li><a href="#orge2e072d">1.5. Conclusion</a></li>
<li><a href="#org452b75e">1.1. Experimental Setup</a></li>
<li><a href="#org022d10a">1.2. Load data</a></li>
<li><a href="#org0e16286">1.3. Analysis - Time Domain</a></li>
<li><a href="#org56d1423">1.4. Analysis - Frequency Domain</a></li>
<li><a href="#org0148c7b">1.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#org3ccfaf0">2. Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</a>
<li><a href="#orgc83e3c2">2. Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</a>
<ul>
<li><a href="#org6a0af97">2.1. First Measurement without LPF</a>
<li><a href="#org4234d00">2.1. First Measurement without LPF</a>
<ul>
<li><a href="#org8149c88">2.1.1. Measurement Description</a></li>
<li><a href="#orgb24a472">2.1.2. Load data</a></li>
<li><a href="#org1ed7f66">2.1.3. Time Domain</a></li>
<li><a href="#orgfb4b1b3">2.1.4. Frequency Domain</a></li>
<li><a href="#org8df486d">2.1.5. Conclusion</a></li>
<li><a href="#orgb3448f0">2.1.1. Measurement Description</a></li>
<li><a href="#org769f767">2.1.2. Load data</a></li>
<li><a href="#orgab936f6">2.1.3. Time Domain</a></li>
<li><a href="#orga860ebc">2.1.4. Frequency Domain</a></li>
<li><a href="#org2f13e1b">2.1.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#org5a500b8">2.2. Measurement using an oscilloscope</a>
<li><a href="#org09f7fe0">2.2. Measurement using an oscilloscope</a>
<ul>
<li><a href="#orgb213fc5">2.2.1. Measurement Setup</a></li>
<li><a href="#orgc19f828">2.2.2. Observations</a></li>
<li><a href="#org61930e6">2.2.3. Conclusion</a></li>
<li><a href="#org05d3686">2.2.1. Measurement Setup</a></li>
<li><a href="#org31ccfad">2.2.2. Observations</a></li>
<li><a href="#org6b078b2">2.2.3. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgb00f95d">2.3. New measurements with a LPF before the Voltage Amplifiers</a>
<li><a href="#org70c9bc1">2.3. New measurements with a LPF before the Voltage Amplifiers</a>
<ul>
<li><a href="#org9fa4c9c">2.3.1. Setup description</a></li>
<li><a href="#org56ffeb4">2.3.2. Load data</a></li>
<li><a href="#orgcabd836">2.3.3. Time Domain</a></li>
<li><a href="#org50b3d2c">2.3.4. Frequency Domain</a></li>
<li><a href="#org2a4f07d">2.3.5. Conclusion</a></li>
<li><a href="#org64b7d09">2.3.1. Setup description</a></li>
<li><a href="#org5426009">2.3.2. Load data</a></li>
<li><a href="#orgb76acbe">2.3.3. Time Domain</a></li>
<li><a href="#orgbef3f23">2.3.4. Frequency Domain</a></li>
<li><a href="#orgc1fcca7">2.3.5. Conclusion</a></li>
</ul>
</li>
<li><a href="#orgd55b3f8">2.4. Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</a>
<li><a href="#orga70c2df">2.4. Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</a>
<ul>
<li><a href="#org469d03f">2.4.1. Measurement description</a></li>
<li><a href="#org6bf316b">2.4.2. Load data</a></li>
<li><a href="#orga099a0e">2.4.3. Time Domain</a></li>
<li><a href="#org879b6b3">2.4.4. Frequency Domain</a></li>
<li><a href="#orgc1bf114">2.4.5. Conclusion</a></li>
<li><a href="#orgc629012">2.4.1. Measurement description</a></li>
<li><a href="#org04e8d20">2.4.2. Load data</a></li>
<li><a href="#org8394ea8">2.4.3. Pre-processing</a></li>
<li><a href="#orgd37877e">2.4.4. Time Domain</a></li>
<li><a href="#orgc77f23c">2.4.5. Frequency Domain</a></li>
<li><a href="#org92d0230">2.4.6. Difference between the direct signal and the signal going through the slip-ring</a></li>
<li><a href="#orga9ca1a2">2.4.7. Conclusion</a></li>
</ul>
</li>
</ul>
@ -335,12 +337,12 @@ for the JavaScript code in this tag.
The noise induced by the slip-ring is measured when using geophones:
</p>
<ul class="org-ul">
<li>Section <a href="#org6429a42">1</a>:
<li>Section <a href="#org3ad3d26">1</a>:
<ul class="org-ul">
<li>A geophone located at the sample location is measured with its signal going directly to the ADC and going through the slip-ring</li>
<li>The voltage amplifiers where saturating due to high frequency noise</li>
</ul></li>
<li>Section <a href="#org76451eb">2</a>:
<li>Section <a href="#orgd23ef9b">2</a>:
<ul class="org-ul">
<li>A Low Pass Filter is added before the voltage amplifiers</li>
<li>Using a Oscilloscope, high frequency noise at 40kHz generated by the slip-ring has been identified</li>
@ -348,11 +350,11 @@ The noise induced by the slip-ring is measured when using geophones:
</ul></li>
</ul>
<div id="outline-container-org705b8cd" class="outline-2">
<h2 id="org705b8cd"><span class="section-number-2">1</span> Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</h2>
<div id="outline-container-orgd65df36" class="outline-2">
<h2 id="orgd65df36"><span class="section-number-2">1</span> Effect of the Slip-Ring on the signal when turned ON - Geophone measurement</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org6429a42"></a>
<a id="org3ad3d26"></a>
</p>
<div class="note">
<p>
@ -362,8 +364,8 @@ All the files (data and Matlab scripts) are accessible <a href="data/meas_slip_r
</div>
</div>
<div id="outline-container-org27dcdf9" class="outline-3">
<h3 id="org27dcdf9"><span class="section-number-3">1.1</span> Experimental Setup</h3>
<div id="outline-container-org452b75e" class="outline-3">
<h3 id="org452b75e"><span class="section-number-3">1.1</span> Experimental Setup</h3>
<div class="outline-text-3" id="text-1-1">
<p>
<b>Goal</b>:
@ -377,7 +379,7 @@ Two measurements are made with the control systems of all the stages turned OFF.
</p>
<p>
One geophone is located on the marble while the other is located at the sample location (figure <a href="#org8bb3417">1</a>).
One geophone is located on the marble while the other is located at the sample location (figure <a href="#org37037f9">1</a>).
</p>
<p>
@ -390,7 +392,7 @@ The two signals from the geophones are amplified with voltage amplifiers with th
</ul>
<div id="org8bb3417" class="figure">
<div id="org37037f9" class="figure">
<p><img src="./img/IMG_20190430_112615.jpg" alt="IMG_20190430_112615.jpg" width="500px" />
</p>
<p><span class="figure-number">Figure 1: </span>Experimental Setup</p>
@ -465,8 +467,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div>
</div>
<div id="outline-container-orgba60edf" class="outline-3">
<h3 id="orgba60edf"><span class="section-number-3">1.2</span> Load data</h3>
<div id="outline-container-org022d10a" class="outline-3">
<h3 id="org022d10a"><span class="section-number-3">1.2</span> Load data</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We load the data of the z axis of two geophones.
@ -480,11 +482,11 @@ meas_di = load<span class="org-rainbow-delimiters-depth-1">(</span>'mat<span cla
</div>
</div>
<div id="outline-container-orgbf72b36" class="outline-3">
<h3 id="orgbf72b36"><span class="section-number-3">1.3</span> Analysis - Time Domain</h3>
<div id="outline-container-org0e16286" class="outline-3">
<h3 id="org0e16286"><span class="section-number-3">1.3</span> Analysis - Time Domain</h3>
<div class="outline-text-3" id="text-1-3">
<p>
First, we compare the time domain signals for the two experiments (figure <a href="#org3f972d3">2</a>).
First, we compare the time domain signals for the two experiments (figure <a href="#org5c6d734">2</a>).
</p>
<div class="org-src-container">
@ -500,7 +502,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
<div id="org3f972d3" class="figure">
<div id="org5c6d734" class="figure">
<p><img src="figs/slipring_time.png" alt="slipring_time.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Effect of the Slip-Ring on the measured signal of the geophone at the sample location - Time domain</p>
@ -508,11 +510,11 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
</div>
<div id="outline-container-org71bcce4" class="outline-3">
<h3 id="org71bcce4"><span class="section-number-3">1.4</span> Analysis - Frequency Domain</h3>
<div id="outline-container-org56d1423" class="outline-3">
<h3 id="org56d1423"><span class="section-number-3">1.4</span> Analysis - Frequency Domain</h3>
<div class="outline-text-3" id="text-1-4">
<p>
We then compute the Power Spectral Density of the two signals and we compare them (figure <a href="#orgf7500fb">3</a>).
We then compute the Power Spectral Density of the two signals and we compare them (figure <a href="#org50a7973">3</a>).
</p>
<div class="org-src-container">
@ -544,7 +546,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
<div id="orgf7500fb" class="figure">
<div id="org50a7973" class="figure">
<p><img src="figs/slipring_asd.png" alt="slipring_asd.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Effect of the Slip-Ring on the measured signal of the geophone at the sample location - Frequency domain</p>
@ -552,12 +554,12 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
</div>
<div id="outline-container-orge2e072d" class="outline-3">
<h3 id="orge2e072d"><span class="section-number-3">1.5</span> Conclusion</h3>
<div id="outline-container-org0148c7b" class="outline-3">
<h3 id="org0148c7b"><span class="section-number-3">1.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-5">
<div class="important">
<ul class="org-ul">
<li>The voltage amplifiers are saturating during the measurements (as shown by the LED on figure <a href="#org8bb3417">1</a>)</li>
<li>The voltage amplifiers are saturating during the measurements (as shown by the LED on figure <a href="#org37037f9">1</a>)</li>
<li>This saturation is mainly due to high frequency noise =&gt; a LPF will be added at the input of the voltage amplifiers in the further measurements</li>
<li>The measurements will be redone</li>
</ul>
@ -567,11 +569,11 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
</div>
<div id="outline-container-org3ccfaf0" class="outline-2">
<h2 id="org3ccfaf0"><span class="section-number-2">2</span> Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</h2>
<div id="outline-container-orgc83e3c2" class="outline-2">
<h2 id="orgc83e3c2"><span class="section-number-2">2</span> Measure of the noise induced by the Slip-Ring using voltage amplifiers - Geophone</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org76451eb"></a>
<a id="orgd23ef9b"></a>
</p>
<div class="note">
<p>
@ -581,12 +583,12 @@ All the files (data and Matlab scripts) are accessible <a href="data/meas_sr_geo
</div>
</div>
<div id="outline-container-org6a0af97" class="outline-3">
<h3 id="org6a0af97"><span class="section-number-3">2.1</span> First Measurement without LPF</h3>
<div id="outline-container-org4234d00" class="outline-3">
<h3 id="org4234d00"><span class="section-number-3">2.1</span> First Measurement without LPF</h3>
<div class="outline-text-3" id="text-2-1">
</div>
<div id="outline-container-org8149c88" class="outline-4">
<h4 id="org8149c88"><span class="section-number-4">2.1.1</span> Measurement Description</h4>
<div id="outline-container-orgb3448f0" class="outline-4">
<h4 id="orgb3448f0"><span class="section-number-4">2.1.1</span> Measurement Description</h4>
<div class="outline-text-4" id="text-2-1-1">
<p>
<b>Goal</b>:
@ -679,8 +681,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div>
</div>
<div id="outline-container-orgb24a472" class="outline-4">
<h4 id="orgb24a472"><span class="section-number-4">2.1.2</span> Load data</h4>
<div id="outline-container-org769f767" class="outline-4">
<h4 id="org769f767"><span class="section-number-4">2.1.2</span> Load data</h4>
<div class="outline-text-4" id="text-2-1-2">
<p>
We load the data of the z axis of two geophones.
@ -693,22 +695,22 @@ sr_on = load<span class="org-rainbow-delimiters-depth-1">(</span><span class="o
</div>
</div>
<div id="outline-container-org1ed7f66" class="outline-4">
<h4 id="org1ed7f66"><span class="section-number-4">2.1.3</span> Time Domain</h4>
<div id="outline-container-orgab936f6" class="outline-4">
<h4 id="orgab936f6"><span class="section-number-4">2.1.3</span> Time Domain</h4>
<div class="outline-text-4" id="text-2-1-3">
<p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#org441e74d">4</a>) and when it is ON (figure <a href="#org3a186ee">5</a>).
We compare the signal when the Slip-Ring is OFF (figure <a href="#org85ec7c3">4</a>) and when it is ON (figure <a href="#orgbd68395">5</a>).
</p>
<div id="org441e74d" class="figure">
<div id="org85ec7c3" class="figure">
<p><img src="figs/sr_geophone_time_off.png" alt="sr_geophone_time_off.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Comparison of the time domain signals when the slip-ring is OFF</p>
</div>
<div id="org3a186ee" class="figure">
<div id="orgbd68395" class="figure">
<p><img src="figs/sr_geophone_time_on.png" alt="sr_geophone_time_on.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Comparison of the time domain signals when the slip-ring is ON</p>
@ -716,8 +718,8 @@ We compare the signal when the Slip-Ring is OFF (figure <a href="#org441e74d">4<
</div>
</div>
<div id="outline-container-orgfb4b1b3" class="outline-4">
<h4 id="orgfb4b1b3"><span class="section-number-4">2.1.4</span> Frequency Domain</h4>
<div id="outline-container-orga860ebc" class="outline-4">
<h4 id="orga860ebc"><span class="section-number-4">2.1.4</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-1-4">
<p>
We first compute some parameters that will be used for the PSD computation.
@ -746,7 +748,7 @@ Then we compute the Power Spectral Density using <code>pwelch</code> function.
</div>
<p>
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org95029b1">6</a>);
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org5744581">6</a>);
</p>
<div class="org-src-container">
@ -766,14 +768,14 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="org95029b1" class="figure">
<div id="org5744581" class="figure">
<p><img src="figs/sr_geophone_asd.png" alt="sr_geophone_asd.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Comparison of the Amplitude Spectral Sensity</p>
</div>
<div id="org1cbbe97" class="figure">
<div id="org61603cc" class="figure">
<p><img src="figs/sr_geophone_asd_zoom.png" alt="sr_geophone_asd_zoom.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Comparison of the Amplitude Spectral Sensity - Zoom</p>
@ -781,8 +783,8 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
</div>
<div id="outline-container-org8df486d" class="outline-4">
<h4 id="org8df486d"><span class="section-number-4">2.1.5</span> Conclusion</h4>
<div id="outline-container-org2f13e1b" class="outline-4">
<h4 id="org2f13e1b"><span class="section-number-4">2.1.5</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-1-5">
<div class="important">
<ul class="org-ul">
@ -795,7 +797,7 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
<b>Questions</b>:
</p>
<ul class="org-ul">
<li>Can the sharp peak on figure <a href="#org1cbbe97">7</a> be due to the Aliasing?</li>
<li>Can the sharp peak on figure <a href="#org61603cc">7</a> be due to the Aliasing?</li>
</ul>
</div>
@ -803,12 +805,12 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
</div>
<div id="outline-container-org5a500b8" class="outline-3">
<h3 id="org5a500b8"><span class="section-number-3">2.2</span> Measurement using an oscilloscope</h3>
<div id="outline-container-org09f7fe0" class="outline-3">
<h3 id="org09f7fe0"><span class="section-number-3">2.2</span> Measurement using an oscilloscope</h3>
<div class="outline-text-3" id="text-2-2">
</div>
<div id="outline-container-orgb213fc5" class="outline-4">
<h4 id="orgb213fc5"><span class="section-number-4">2.2.1</span> Measurement Setup</h4>
<div id="outline-container-org05d3686" class="outline-4">
<h4 id="org05d3686"><span class="section-number-4">2.2.1</span> Measurement Setup</h4>
<div class="outline-text-4" id="text-2-2-1">
<p>
We are now measuring the same signals than in the previous section, but with an oscilloscope instead of with the Speedgoat ADC.
@ -816,26 +818,26 @@ We are now measuring the same signals than in the previous section, but with an
</div>
</div>
<div id="outline-container-orgc19f828" class="outline-4">
<h4 id="orgc19f828"><span class="section-number-4">2.2.2</span> Observations</h4>
<div id="outline-container-org31ccfad" class="outline-4">
<h4 id="org31ccfad"><span class="section-number-4">2.2.2</span> Observations</h4>
<div class="outline-text-4" id="text-2-2-2">
<p>
Then the Slip-Ring is ON (figure <a href="#org6d55390">8</a>), we observe a signal at 40kHz with a peak-to-peak amplitude of 200mV for the direct measure and 100mV for the signal going through the Slip-Ring.
Then the Slip-Ring is ON (figure <a href="#org233fc3b">8</a>), we observe a signal at 40kHz with a peak-to-peak amplitude of 200mV for the direct measure and 100mV for the signal going through the Slip-Ring.
</p>
<p>
Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure <a href="#org4e31dbe">9</a>).
Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure <a href="#org69c8279">9</a>).
</p>
<div id="org6d55390" class="figure">
<div id="org233fc3b" class="figure">
<p><img src="./img/IMG_20190506_160420.jpg" alt="IMG_20190506_160420.jpg" width="500px" />
</p>
<p><span class="figure-number">Figure 8: </span>Signals measured by the oscilloscope - Slip-Ring ON - Yellow: Direct measure - Blue: Through Slip-Ring</p>
</div>
<div id="org4e31dbe" class="figure">
<div id="org69c8279" class="figure">
<p><img src="./img/IMG_20190506_160438.jpg" alt="IMG_20190506_160438.jpg" width="500px" />
</p>
<p><span class="figure-number">Figure 9: </span>Signals measured by the oscilloscope - Slip-Ring OFF - Yellow: Direct measure - Blue: Through Slip-Ring</p>
@ -843,8 +845,8 @@ Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure
</div>
</div>
<div id="outline-container-org61930e6" class="outline-4">
<h4 id="org61930e6"><span class="section-number-4">2.2.3</span> Conclusion</h4>
<div id="outline-container-org6b078b2" class="outline-4">
<h4 id="org6b078b2"><span class="section-number-4">2.2.3</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-2-3">
<div class="important">
<ul class="org-ul">
@ -858,12 +860,12 @@ Then the Slip-Ring is OFF, we don't observe this noise at 40kHz anymore (figure
</div>
</div>
<div id="outline-container-orgb00f95d" class="outline-3">
<h3 id="orgb00f95d"><span class="section-number-3">2.3</span> New measurements with a LPF before the Voltage Amplifiers</h3>
<div id="outline-container-org70c9bc1" class="outline-3">
<h3 id="org70c9bc1"><span class="section-number-3">2.3</span> New measurements with a LPF before the Voltage Amplifiers</h3>
<div class="outline-text-3" id="text-2-3">
</div>
<div id="outline-container-org9fa4c9c" class="outline-4">
<h4 id="org9fa4c9c"><span class="section-number-4">2.3.1</span> Setup description</h4>
<div id="outline-container-org64b7d09" class="outline-4">
<h4 id="org64b7d09"><span class="section-number-4">2.3.1</span> Setup description</h4>
<div class="outline-text-4" id="text-2-3-1">
<p>
<b>Goal</b>:
@ -963,8 +965,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div>
</div>
<div id="outline-container-org56ffeb4" class="outline-4">
<h4 id="org56ffeb4"><span class="section-number-4">2.3.2</span> Load data</h4>
<div id="outline-container-org5426009" class="outline-4">
<h4 id="org5426009"><span class="section-number-4">2.3.2</span> Load data</h4>
<div class="outline-text-4" id="text-2-3-2">
<p>
We load the data of the z axis of two geophones.
@ -977,22 +979,22 @@ sr_lpf_on = load<span class="org-rainbow-delimiters-depth-1">(</span><span clas
</div>
</div>
<div id="outline-container-orgcabd836" class="outline-4">
<h4 id="orgcabd836"><span class="section-number-4">2.3.3</span> Time Domain</h4>
<div id="outline-container-orgb76acbe" class="outline-4">
<h4 id="orgb76acbe"><span class="section-number-4">2.3.3</span> Time Domain</h4>
<div class="outline-text-4" id="text-2-3-3">
<p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#org81b0ec6">10</a>) and when it is ON (figure <a href="#org677a685">11</a>).
We compare the signal when the Slip-Ring is OFF (figure <a href="#orge5ff08d">10</a>) and when it is ON (figure <a href="#org1ea0e78">11</a>).
</p>
<div id="org81b0ec6" class="figure">
<div id="orge5ff08d" class="figure">
<p><img src="figs/sr_lpf_geophone_time_off.png" alt="sr_lpf_geophone_time_off.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Comparison of the time domain signals when the slip-ring is OFF</p>
</div>
<div id="org677a685" class="figure">
<div id="org1ea0e78" class="figure">
<p><img src="figs/sr_lpf_geophone_time_on.png" alt="sr_lpf_geophone_time_on.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Comparison of the time domain signals when the slip-ring is ON</p>
@ -1000,8 +1002,8 @@ We compare the signal when the Slip-Ring is OFF (figure <a href="#org81b0ec6">10
</div>
</div>
<div id="outline-container-org50b3d2c" class="outline-4">
<h4 id="org50b3d2c"><span class="section-number-4">2.3.4</span> Frequency Domain</h4>
<div id="outline-container-orgbef3f23" class="outline-4">
<h4 id="orgbef3f23"><span class="section-number-4">2.3.4</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-3-4">
<p>
We first compute some parameters that will be used for the PSD computation.
@ -1030,7 +1032,7 @@ Then we compute the Power Spectral Density using <code>pwelch</code> function.
</div>
<p>
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org3d43bfc">12</a>);
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org90a80c6">12</a>);
</p>
<div class="org-src-container">
@ -1049,14 +1051,14 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
<div id="org3d43bfc" class="figure">
<div id="org90a80c6" class="figure">
<p><img src="figs/sr_lpf_geophone_asd.png" alt="sr_lpf_geophone_asd.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Comparison of the Amplitude Spectral Sensity</p>
</div>
<div id="org10ad34a" class="figure">
<div id="org98cd9ed" class="figure">
<p><img src="figs/sr_lpf_geophone_asd_zoom.png" alt="sr_lpf_geophone_asd_zoom.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Comparison of the Amplitude Spectral Sensity - Zoom</p>
@ -1064,8 +1066,8 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
</div>
<div id="outline-container-org2a4f07d" class="outline-4">
<h4 id="org2a4f07d"><span class="section-number-4">2.3.5</span> Conclusion</h4>
<div id="outline-container-orgc1fcca7" class="outline-4">
<h4 id="orgc1fcca7"><span class="section-number-4">2.3.5</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-3-5">
<div class="important">
<ul class="org-ul">
@ -1079,12 +1081,12 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
</div>
<div id="outline-container-orgd55b3f8" class="outline-3">
<h3 id="orgd55b3f8"><span class="section-number-3">2.4</span> Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</h3>
<div id="outline-container-orga70c2df" class="outline-3">
<h3 id="orga70c2df"><span class="section-number-3">2.4</span> Measurement of the noise induced by the slip-ring with additional LPF at 1kHz</h3>
<div class="outline-text-3" id="text-2-4">
</div>
<div id="outline-container-org469d03f" class="outline-4">
<h4 id="org469d03f"><span class="section-number-4">2.4.1</span> Measurement description</h4>
<div id="outline-container-orgc629012" class="outline-4">
<h4 id="orgc629012"><span class="section-number-4">2.4.1</span> Measurement description</h4>
<div class="outline-text-4" id="text-2-4-1">
<p>
<b>Setup</b>:
@ -1186,8 +1188,8 @@ Each of the measurement <code>mat</code> file contains one <code>data</code> arr
</div>
</div>
<div id="outline-container-org6bf316b" class="outline-4">
<h4 id="org6bf316b"><span class="section-number-4">2.4.2</span> Load data</h4>
<div id="outline-container-org04e8d20" class="outline-4">
<h4 id="org04e8d20"><span class="section-number-4">2.4.2</span> Load data</h4>
<div class="outline-text-4" id="text-2-4-2">
<p>
We load the data of the z axis of two geophones.
@ -1200,22 +1202,44 @@ sr_lpf_1khz_on = load<span class="org-rainbow-delimiters-depth-1">(</span><span
</div>
</div>
<div id="outline-container-orga099a0e" class="outline-4">
<h4 id="orga099a0e"><span class="section-number-4">2.4.3</span> Time Domain</h4>
<div id="outline-container-org8394ea8" class="outline-4">
<h4 id="org8394ea8"><span class="section-number-4">2.4.3</span> Pre-processing</h4>
<div class="outline-text-4" id="text-2-4-3">
<p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#orga7f22df">14</a>) and when it is ON (figure <a href="#org33a10ec">15</a>).
There is a sign difference between the signal going directly to the ADC and the signal going through the slip-ring. We add a minus sign on the signal going through the slip-ring.
</p>
<p>
We also subtract the mean value as the voltage amplifiers were on the DC option.
</p>
<div class="org-src-container">
<pre class="src src-matlab">sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-type">-</span><span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-2">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-type">-</span><span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>mean<span class="org-rainbow-delimiters-depth-2">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-orgd37877e" class="outline-4">
<h4 id="orgd37877e"><span class="section-number-4">2.4.4</span> Time Domain</h4>
<div class="outline-text-4" id="text-2-4-4">
<p>
We compare the signal when the Slip-Ring is OFF (figure <a href="#orga139aa7">14</a>) and when it is ON (figure <a href="#orgd1e1d23">15</a>).
</p>
<div id="orga7f22df" class="figure">
<div id="orga139aa7" class="figure">
<p><img src="figs/sr_lpf_1khz_geophone_time_off.png" alt="sr_lpf_1khz_geophone_time_off.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Comparison of the time domain signals when the slip-ring is OFF</p>
</div>
<div id="org33a10ec" class="figure">
<div id="orgd1e1d23" class="figure">
<p><img src="figs/sr_lpf_1khz_geophone_time_on.png" alt="sr_lpf_1khz_geophone_time_on.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Comparison of the time domain signals when the slip-ring is ON</p>
@ -1223,9 +1247,9 @@ We compare the signal when the Slip-Ring is OFF (figure <a href="#orga7f22df">14
</div>
</div>
<div id="outline-container-org879b6b3" class="outline-4">
<h4 id="org879b6b3"><span class="section-number-4">2.4.4</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-4-4">
<div id="outline-container-orgc77f23c" class="outline-4">
<h4 id="orgc77f23c"><span class="section-number-4">2.4.5</span> Frequency Domain</h4>
<div class="outline-text-4" id="text-2-4-5">
<p>
We first compute some parameters that will be used for the PSD computation.
</p>
@ -1253,7 +1277,7 @@ Then we compute the Power Spectral Density using <code>pwelch</code> function.
</div>
<p>
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#orgb2f9278">16</a>);
Finally, we compare the Amplitude Spectral Density of the signals (figure <a href="#org5c47e51">16</a>);
</p>
<div class="org-src-container">
@ -1264,7 +1288,7 @@ plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxdi_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', 'Direct - ON'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxsr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', 'Slip-Ring - ON'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
hold off;
xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">500</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">500</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-type">set</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">gca</span>, <span class="org-string">'xscale', 'log'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; set</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">gca, 'yscale', 'log'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
xlabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Frequency </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">Hz</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; ylabel</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">'</span>ASD of the measured Voltage $<span class="org-type">\</span>left<span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">\</span>frac<span class="org-rainbow-delimiters-depth-3">{</span>V<span class="org-rainbow-delimiters-depth-3">}{</span><span class="org-type">\</span>sqrt<span class="org-rainbow-delimiters-depth-4">{</span>Hz<span class="org-rainbow-delimiters-depth-4">}</span><span class="org-rainbow-delimiters-depth-3">}</span><span class="org-type">\</span>right<span class="org-rainbow-delimiters-depth-2">]</span>$'<span class="org-rainbow-delimiters-depth-1">)</span>
legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Location', 'southwest'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
@ -1272,7 +1296,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
<div id="orgb2f9278" class="figure">
<div id="org5c47e51" class="figure">
<p><img src="figs/sr_lpf_1khz_geophone_asd.png" alt="sr_lpf_1khz_geophone_asd.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Comparison of the Amplitude Spectral Sensity</p>
@ -1280,13 +1304,46 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
</div>
<div id="outline-container-orgc1bf114" class="outline-4">
<h4 id="orgc1bf114"><span class="section-number-4">2.4.5</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-4-5">
<div id="outline-container-org92d0230" class="outline-4">
<h4 id="org92d0230"><span class="section-number-4">2.4.6</span> Difference between the direct signal and the signal going through the slip-ring</h4>
<div class="outline-text-4" id="text-2-4-6">
<p>
We subtract the signal coming from the direct wire to the signal going through the slip-ring when the slip-ring is ON and when it is OFF (figure <a href="#org5cffaa8">17</a>).
</p>
<div id="org5cffaa8" class="figure">
<p><img src="figs/diff_sr_direct.png" alt="diff_sr_direct.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Difference between the signal going directly to the ADC and the signal going through the slip-ring before the ADC</p>
</div>
<p>
Then we compute the Power Spectral Density using <code>pwelch</code> function (figure <a href="#orgc534526">18</a>).
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-comment">% Direct measure</span>
<span class="org-rainbow-delimiters-depth-1">[</span>px_diff_lpf_1khz_of, f<span class="org-rainbow-delimiters-depth-1">]</span> = pwelch<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>sr_lpf_1khz_of<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, win, <span class="org-rainbow-delimiters-depth-2">[]</span>, <span class="org-rainbow-delimiters-depth-2">[]</span>, Fs<span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-rainbow-delimiters-depth-1">[</span>px_diff_lpf_1khz_on, <span class="org-type">~</span><span class="org-rainbow-delimiters-depth-1">]</span> = pwelch<span class="org-rainbow-delimiters-depth-1">(</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">-</span>sr_lpf_1khz_on<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, win, <span class="org-rainbow-delimiters-depth-2">[]</span>, <span class="org-rainbow-delimiters-depth-2">[]</span>, Fs<span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<div id="orgc534526" class="figure">
<p><img src="figs/diff_sr_direct_psd.png" alt="diff_sr_direct_psd.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Amplitude Spectral Density of the difference between the signal going directly to the ADC and the signal going through the slip-ring before the ADC</p>
</div>
</div>
</div>
<div id="outline-container-orga9ca1a2" class="outline-4">
<h4 id="orga9ca1a2"><span class="section-number-4">2.4.7</span> Conclusion</h4>
<div class="outline-text-4" id="text-2-4-7">
<div class="important">
<ul class="org-ul">
<li>Using the LPF, we don't see any additional noise coming from the slip-ring when it is turned ON</li>
<li>We here observe a signal at \(50Hz\) and its harmonics</li>
<li>The signal going through the slip-ring only differs from the direct signal by some 50Hz and its harmonics</li>
</ul>
</div>
@ -1297,7 +1354,7 @@ legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-stri
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2019-05-16 jeu. 13:39</p>
<p class="date">Created: 2019-05-17 ven. 10:04</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>

View File

@ -29,20 +29,22 @@
#+PROPERTY: header-args:shell :eval no-export
:END:
The goal here is to analyze the static measurement on the station (guiding error of each stage) and convert them to dynamic disturbances that can be use in the model of the micro-station.
* Measurement description
** Setup :ignore:
*Setup*:
Each stage is statically moved of all its stroke on after the other.
A metrology element is located at the sample position and its motion is measured in translations and rotations.
For each small displacement, the stage is stopped and the motion of the sample is recorded and averaged.
The report by H-P van der Kleij on the static measurement of the ID31 station is available [[file:data/ID31_report_static_meas.pdf][here]].
| *Date* | 2019-01-09 |
| *Sensors* | Interferometer |
| *Location* | Experimental Hutch |
Each stage is statically moved of all its stroke on after the other.
A metrology element is located at the sample position and its motion is measured in translations and rotations.
For each small displacement, the stage is stopped and the motion of the sample is recorded and averaged.
The goal is to estimate the guiding errors of each stage.
** Goal :ignore:
*Goal*:
The goal here is to analyze the static measurement on the station (guiding error of each stage) and convert them to dynamic disturbances that can be use in the model of the micro-station.
* Static measurement of the translation stage
:PROPERTIES: