51 lines
1.5 KiB
Markdown
51 lines
1.5 KiB
Markdown
+++
|
|
title = "Systems and Signals Norms"
|
|
author = ["Thomas Dehaeze"]
|
|
draft = false
|
|
+++
|
|
|
|
Backlinks:
|
|
|
|
- [Multivariable Control]({{< relref "multivariable_control" >}})
|
|
|
|
Tags
|
|
:
|
|
|
|
Resources:
|
|
|
|
- ([Skogestad and Postlethwaite 2007](#org140f9cc))
|
|
- ([Toivonen 2002](#orgc1385a9))
|
|
- ([Zhang 2011](#org8471dd8))
|
|
|
|
|
|
## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
|
|
|
|
SISO Systems => absolute value => bode plot
|
|
MIMO Systems => singular value
|
|
Signal
|
|
|
|
|
|
## \\(\mathcal{H}\_2\\) Norm {#mathcal-h-2--norm}
|
|
|
|
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
|
|
|
As explained in ([Monkhorst 2004](#orgafef987)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
|
|
|
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
|
|
|
Minimizing the \\(\mathcal{H}\_2\\) norm can be equivalent as minimizing the RMS value of some signals in the system.
|
|
|
|
|
|
## Link between signal and system norms {#link-between-signal-and-system-norms}
|
|
|
|
|
|
## Bibliography {#bibliography}
|
|
|
|
<a id="orgafef987"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
|
|
|
<a id="org140f9cc"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
|
|
|
<a id="orgc1385a9"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
|
|
|
<a id="org8471dd8"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|