digital-brain/content/zettels/mass_spring_damper_systems.md

1.5 KiB

+++ title = "Mass Spring Damper Systems" author = ["Dehaeze Thomas"] draft = false +++

Tags :

Actuated Mass Spring Damper System

Let's consider Figure 1 where:

  • \(m\) is the mass in [kg]
  • \(ḱ\) is the spring stiffness in [N/m]
  • \(c\) is the damping coefficient in [N/(m/s)]
  • \(F\) is the actuator force in [N]
  • \(F_d\) is external force applied to the mass in [N]
  • \(w\) is ground motion
  • \(x\) is the absolute mass motion

{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="<span class="figure-number">Figure 1: Mass Spring Damper System" >}}

Let's write the transfer function from \(F\) to \(x\):

\begin{equation} \frac{x}{F}(s) = \frac{1}{m s^2 + c s + k} \end{equation}

This can be re-written as:

\begin{equation} \frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega_0^2} + 2 \xi \frac{s}{\omega_0} + 1} \end{equation}

with:

  • \(\omega_0\) the natural frequency in [rad/s]
  • \(\xi\) the damping ratio

Transmissibility

\begin{equation} \frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega_0^2} + 2 \xi \frac{s}{\omega_0} + 1} \end{equation}

Compliance

\begin{equation} \frac{x}{F_d}(s) = \frac{1/k}{\frac{s^2}{\omega_0^2} + 2 \xi \frac{s}{\omega_0} + 1} \end{equation}

Bibliography