171 lines
8.2 KiB
Markdown
171 lines
8.2 KiB
Markdown
+++
|
||
title = "Quadrant Photodiodes"
|
||
author = ["Dehaeze Thomas"]
|
||
draft = false
|
||
category = "equipment"
|
||
+++
|
||
|
||
Tags
|
||
: [Position Sensors]({{< relref "position_sensors.md" >}}), [Optics]({{< relref "optics.md" >}})
|
||
|
||
|
||
## Working principle {#working-principle}
|
||
|
||
<a id="figure--fig:quadrant-photodiode-schematic"></a>
|
||
|
||
{{< figure src="/ox-hugo/quadrant_photodiode_schematic.png" caption="<span class=\"figure-number\">Figure 1: </span>Schematic of the Quadrant Photodiode" >}}
|
||
|
||
The \\([x,y]\\) position of the beam on the quadrant photodiode can be estimated using the following equations:
|
||
|
||
\begin{align}
|
||
\sigma\_x &= \frac{(I\_B + I\_D) - (I\_A + I\_C)}{I\_A + I\_B + I\_C + I\_D} = \frac{I\_B + I\_D}{I\_A + I\_B + I\_C + I\_D} - 1 \\\\
|
||
\sigma\_y &= \frac{(I\_A + I\_B) - (I\_C + I\_D)}{I\_A + I\_B + I\_C + I\_D} = \frac{I\_A + I\_B}{I\_A + I\_B + I\_C + I\_D} - 1
|
||
\end{align}
|
||
|
||
<a id="figure--fig:quadrant-photodiode-spot-size"></a>
|
||
|
||
{{< figure src="/ox-hugo/quadrant_photodiode_relation_meas.png" caption="<span class=\"figure-number\">Figure 2: </span>Relation between the X position of the spot and the estimated measurement \\(\sigma\_x\\)" >}}
|
||
|
||
This is true when the spot is near the center of the four quadrants (linear region).
|
||
|
||
<a id="figure--fig:quadrant-photodiode-spot-size"></a>
|
||
|
||
{{< figure src="/ox-hugo/quadrant_photodiode_spot_size.jpg" caption="<span class=\"figure-number\">Figure 3: </span>Effect of the spot size on the sensitibility and measurement range" >}}
|
||
|
||
Basic requirements (taken from [here](https://www.aptechnologies.co.uk/home/support/photodiodes)):
|
||
|
||
- detector gap < spot size < detector size
|
||
- positional range < spot size
|
||
- positional range is proportional to the spot size
|
||
- positional resolution is inversely proportional to the spot size
|
||
|
||
Estimation of the linear region.
|
||
|
||
The relation between the spot size and the quadrant photodiode sensitivity is well explained in (<a href="#citeproc_bib_item_2">Lee et al. 2010</a>).
|
||
|
||
Usually, single mode laser are used such that the beam profile can well be approximated by a Gaussian distribution.
|
||
The irradiance distribution is then:
|
||
|
||
\begin{equation}
|
||
I( r) = \frac{P}{\pi w^2} e^{-\frac{r^2}{w^2}}
|
||
\end{equation}
|
||
|
||
with:
|
||
|
||
- \\(r\\) the radius
|
||
- \\(P\\) the overall light source optical power
|
||
- \\(w\\) the light spot radius for which the irradiance drops to the \\(1/e\\) value of its central value
|
||
|
||
|
||
## Estimation of photodiode gain {#estimation-of-photodiode-gain}
|
||
|
||
It is function of:
|
||
|
||
- the spot size
|
||
- the gain size
|
||
|
||
Spot size of collimated bean at focal plane of a lens ([link](https://www.gentec-eo.com/blog/spot-size-of-laser-beam)).
|
||
|
||
See:
|
||
|
||
- (<a href="#citeproc_bib_item_5">Ng, Tan, and Foo 2007</a>)
|
||
- (<a href="#citeproc_bib_item_4">Manojlović 2011</a>)
|
||
- (<a href="#citeproc_bib_item_6">Wu et al. 2015</a>)
|
||
- (<a href="#citeproc_bib_item_1">Azaryan et al. 2019</a>)
|
||
- (<a href="#citeproc_bib_item_3">Li et al. 2019</a>)
|
||
|
||
|
||
## Electrical Readout {#electrical-readout}
|
||
|
||
[Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers.md" >}}) amplifiers are required (schematic shown in Figure [4](#figure--fig:quadrant-transresistance-amplifier)).
|
||
|
||
- Trade-off between gain / noise / bandwidth (see [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition.md" >}}), chapter 8.11.4).
|
||
|
||
The amplifier in Figure [4](#figure--fig:quadrant-transresistance-amplifier) produces a voltage:
|
||
|
||
\begin{equation}
|
||
V\_{\text{out}} = -I\_{\text{sig}} R\_f
|
||
\end{equation}
|
||
|
||
So the gain of the amplifier is simply \\(-R\_f\\) in [V/A].
|
||
|
||
The feedback resistor creates a Johnson noise that corresponds to a current noise:
|
||
|
||
\begin{equation}
|
||
i\_{n} = \sqrt{4kT/R\_f} \quad [A/\sqrt{Hz}]
|
||
\end{equation}
|
||
|
||
This is usually larger than the amplifier input current noise.
|
||
|
||
<a id="figure--fig:quadrant-transresistance-amplifier"></a>
|
||
|
||
{{< figure src="/ox-hugo/quadrant_transresistance_amplifier.png" caption="<span class=\"figure-number\">Figure 4: </span>Transimpedance Amplifier; Current in, Voltage out" >}}
|
||
|
||
|
||
## Angle Measurement {#angle-measurement}
|
||
|
||
|
||
### Working Principle {#working-principle}
|
||
|
||
Combined with a lens, a quadrant photodiode can become an angular sensor is well located at the focal plane of the lens (see Figure [5](#figure--fig:quandrant-diode-angle-schematic)).
|
||
|
||
The relation between the position \\([y,z]\\) of the quadrant photodiode and the angle of the incident light \\([R\_y, R\_z]\\) is:
|
||
|
||
\begin{align}
|
||
y &= f \cdot R\_z\\\\
|
||
z &= -f \cdot R\_y
|
||
\end{align}
|
||
|
||
<a id="figure--fig:quandrant-diode-angle-schematic"></a>
|
||
|
||
{{< figure src="/ox-hugo/quandrant_diode_angle_schematic.png" caption="<span class=\"figure-number\">Figure 5: </span>Optical schematic of combination of a quandrant photodiode with a lens" >}}
|
||
|
||
|
||
### Sensitivity of beam translation {#sensitivity-of-beam-translation}
|
||
|
||
The sensitivity to translation of the beam depends on how well the quadrant photodiode is located at the focal plane of the lens.
|
||
If we note \\(\Delta x\\) the distance between the focal plane and the quadrant plane, the sensitivity to a \\(\Delta z\\) motion of the beam is:
|
||
|
||
\begin{equation}
|
||
z = \Delta x \cdot \Delta z
|
||
\end{equation}
|
||
|
||
Therefore, the ratio \\(f/\Delta x\\) gives the ratio of the sensitivity to beam angle to the sensitivity of beam translation.
|
||
|
||
<div class="exampl">
|
||
|
||
Take a lens with focal of \\(f = 500\\,mm\\) and say the quadrant photodiode is positioned at the focal plane with an accuracy of \\(\Delta x = 1\\,mm\\):
|
||
|
||
\begin{equation}
|
||
\frac{f}{\Delta x} = 500
|
||
\end{equation}
|
||
|
||
This means that \\(1\\,mm\\) of vertical motion of the beam will give the same output than \\(500\\,mrad\\) of rotation of the beam.
|
||
|
||
</div>
|
||
|
||
<div class="exampl">
|
||
|
||
Say be want to determine with which precision the quadrant photodiode should be positioned.
|
||
We now that the maximum translation of the beam is \\(\Delta z = 1\\,mm\\) and this should have less effect than a beam rotation of \\(R\_y = 10\\,\mu rad\\), then the quadrant photodiode should be position with an accuracy \\(\Delta x\\) of:
|
||
|
||
\begin{equation}
|
||
\Delta x = f \frac{R\_y}{\Delta z} = 1\\,mm, \quad \text{with } f = 0.1\\,m
|
||
\end{equation}
|
||
|
||
</div>
|
||
|
||
|
||
## Bibliography {#bibliography}
|
||
|
||
## References
|
||
|
||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Azaryan, N. S., J. A. Budagov, M. V. Lyablin, A. A. Pluzhnikov, B. Di Girolamo, J.-Ch. Gayde, and D. Mergelkuhl. 2019. “Position-Sensitive Photoreceivers: Sensitivity and Detectable Range of Displacements of a Focused Single-Mode Laser Beam.” <i>Physics of Particles and Nuclei Letters</i> 16 (4): 354–76. doi:<a href="https://doi.org/10.1134/s1547477119040058">10.1134/s1547477119040058</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Lee, Eun Joong, Youngok Park, Chul Sung Kim, and Taejoon Kouh. 2010. “Detection Sensitivity of the Optical Beam Deflection Method Characterized with the Optical Spot Size on the Detector.” <i>Current Applied Physics</i> 10 (3): 834–37. doi:<a href="https://doi.org/10.1016/j.cap.2009.10.003">10.1016/j.cap.2009.10.003</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Li, Qing, Shaoxiong Xu, Jiawei Yu, Lingjie Yan, and Yongmei Huang. 2019. “An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication.” <i>Sensors</i> 19 (1): 175. doi:<a href="https://doi.org/10.3390/s19010175">10.3390/s19010175</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Manojlović, Lazo M. 2011. “Quadrant Photodetector Sensitivity.” <i>Applied Optics</i> 50 (20). Optical Society of America: 3461–69.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Ng, T.W., H.Y. Tan, and S.L. Foo. 2007. “Small Gaussian Laser Beam Diameter Measurement Using a Quadrant Photodiode.” <i>Optics &Amp; Laser Technology</i> 39 (5): 1098–1100. doi:<a href="https://doi.org/10.1016/j.optlastec.2006.06.001">10.1016/j.optlastec.2006.06.001</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Wu, Jiabin, Yunshan Chen, Shijie Gao, Yimang Li, and Zhiyong Wu. 2015. “Improved Measurement Accuracy of Spot Position on an Ingaas Quadrant Detector.” <i>Applied Optics</i> 54 (27). Optical Society of America: 8049–54.</div>
|
||
</div>
|