66 lines
2.3 KiB
Markdown
66 lines
2.3 KiB
Markdown
+++
|
||
title = "A soft 6-axis active vibration isolator"
|
||
author = ["Thomas Dehaeze"]
|
||
draft = false
|
||
+++
|
||
|
||
Tags
|
||
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Vibration Isolation]({{< relref "vibration_isolation" >}})
|
||
|
||
Reference
|
||
: ([Spanos, Rahman, and Blackwood 1995](#org2800cc5))
|
||
|
||
Author(s)
|
||
: Spanos, J., Rahman, Z., & Blackwood, G.
|
||
|
||
Year
|
||
: 1995
|
||
|
||
**Stewart Platform** (Figure [1](#orgcac471d)):
|
||
|
||
- Voice Coil
|
||
- Flexible joints (cross-blades)
|
||
- Force Sensors
|
||
- Cubic Configuration
|
||
|
||
<a id="orgcac471d"></a>
|
||
|
||
{{< figure src="/ox-hugo/spanos95_stewart_platform.png" caption="Figure 1: Stewart Platform" >}}
|
||
|
||
Total mass of the paylaod: 30kg
|
||
Center of gravity is 9cm above the geometry center of the mount (cube's center?).
|
||
|
||
Limitation of the **Decentralized Force Feedback**:
|
||
|
||
- high frequency pole due to internal resonances of the struts
|
||
- low frequency zero due to the rotational stiffness of the flexible joints
|
||
|
||
After redesign of the struts:
|
||
|
||
- high frequency pole at 4.7kHz
|
||
- low frequency zero at 2.6Hz but non-minimum phase (not explained).
|
||
Small viscous damping material in the cross blade flexures made the zero minimum phase again.
|
||
|
||
<a id="org5cb89c4"></a>
|
||
|
||
{{< figure src="/ox-hugo/spanos95_iff_plant.png" caption="Figure 2: Experimentally measured transfer function from voice coil drive voltage to collocated load cell output voltage" >}}
|
||
|
||
The controller used consisted of:
|
||
|
||
- second order low pass filter to gain stabilize the plant at high frequencies and provide steep roll-off
|
||
- first order lead filter to provide adequate phase margin at the high frequency crossover
|
||
- first order lag filter to provide adequate phase margin at the low frequency crossover
|
||
- a first order high pass filter to attenuate the excess gain resulting from the low frequency zero
|
||
|
||
The results in terms of transmissibility are shown in Figure [3](#orgd8726b9).
|
||
|
||
<a id="orgd8726b9"></a>
|
||
|
||
{{< figure src="/ox-hugo/spanos95_results.png" caption="Figure 3: Experimentally measured Frobenius norm of the 6-axis transmissibility" >}}
|
||
|
||
|
||
|
||
## Bibliography {#bibliography}
|
||
|
||
<a id="org2800cc5"></a>Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In _Proceedings of 1995 American Control Conference - ACC’95_, nil. <https://doi.org/10.1109/acc.1995.529280>.
|