82 lines
5.5 KiB
Markdown
82 lines
5.5 KiB
Markdown
+++
|
||
title = "Position Sensors"
|
||
author = ["Dehaeze Thomas"]
|
||
draft = false
|
||
category = "equipment"
|
||
+++
|
||
|
||
Tags
|
||
: [Inertial Sensors]({{< relref "inertial_sensors.md" >}}), [Force Sensors]({{< relref "force_sensors.md" >}}), [Sensor Fusion]({{< relref "sensor_fusion.md" >}}), [Signal Conditioner]({{< relref "signal_conditioner.md" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})
|
||
|
||
|
||
## Types of Positioning sensors {#types-of-positioning-sensors}
|
||
|
||
High precision positioning sensors include:
|
||
|
||
- [Interferometers]({{< relref "interferometers.md" >}})
|
||
- [Capacitive Sensors]({{< relref "capacitive_sensors.md" >}})
|
||
- [LVDT]({{< relref "linear_variable_differential_transformers.md" >}})
|
||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors.md" >}})
|
||
- [Encoders]({{< relref "encoders.md" >}})
|
||
- [Quadrant Photodiodes]({{< relref "quadrant_photodiodes.md" >}})
|
||
|
||
|
||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||
|
||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (<a href="#citeproc_bib_item_2">Fleming 2013</a>) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor.md" >}}))
|
||
- (<a href="#citeproc_bib_item_3">Gao et al. 2015</a>)
|
||
|
||
[Table 1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>).
|
||
|
||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||
<div class="table-caption">
|
||
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a>:</span>
|
||
Characteristics of relative measurement sensors
|
||
</div>
|
||
|
||
| Technology | Frequency | Resolution | Range | T Range |
|
||
|----------------|------------|----------------|--------------|-------------|
|
||
| LVDT | DC-200 Hz | 10 nm rms | 1-10 mm | -50,100 °C |
|
||
| Eddy current | 5 kHz | 0.1-100 nm rms | 0.5-55 mm | -50,100 °C |
|
||
| Capacitive | DC-100 kHz | 0.05-50 nm rms | 50 nm - 1 cm | -40,100 °C |
|
||
| Interferometer | 300 kHz | 0.1 nm rms | 10 cm | -250,100 °C |
|
||
| Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C |
|
||
| Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
|
||
|
||
[Table 2](#table--tab:summary-position-sensors) it taken from (<a href="#citeproc_bib_item_2">Fleming 2013</a>).
|
||
|
||
<a id="table--tab:summary-position-sensors"></a>
|
||
<div class="table-caption">
|
||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a>:</span>
|
||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\)
|
||
</div>
|
||
|
||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||
|----------------|--------------------------------|---------|------------|-------------|-----------|
|
||
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
|
||
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
|
||
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
|
||
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
|
||
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
|
||
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
|
||
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
|
||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||
|
||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||
|
||
[Figure 1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_4">Thurner et al. 2015</a>).
|
||
|
||
<a id="figure--fig:position-sensors-thurner15"></a>
|
||
|
||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="<span class=\"figure-number\">Figure 1: </span>Overview of range and precision of different position displacement sensors" >}}
|
||
|
||
|
||
## Bibliography {#bibliography}
|
||
|
||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190: 106–26. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” <i>CIRP Annals</i> 64 (2): 773–96. doi:<a href="https://doi.org/10.1016/j.cirp.2015.05.009">10.1016/j.cirp.2015.05.009</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 3051–63.</div>
|
||
</div>
|