digital-brain/content/zettels/position_sensors.md

5.5 KiB
Raw Blame History

+++ title = "Position Sensors" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++

Tags
[Inertial Sensors]({{< relref "inertial_sensors.md" >}}), [Force Sensors]({{< relref "force_sensors.md" >}}), [Sensor Fusion]({{< relref "sensor_fusion.md" >}}), [Signal Conditioner]({{< relref "signal_conditioner.md" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio.md" >}})

Types of Positioning sensors

High precision positioning sensors include:

  • [Interferometers]({{< relref "interferometers.md" >}})
  • [Capacitive Sensors]({{< relref "capacitive_sensors.md" >}})
  • [LVDT]({{< relref "linear_variable_differential_transformers.md" >}})
  • [Eddy Current Sensors]({{< relref "eddy_current_sensors.md" >}})
  • [Encoders]({{< relref "encoders.md" >}})
  • [Quadrant Photodiodes]({{< relref "quadrant_photodiodes.md" >}})

Reviews of Relative Position Sensors

  • Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (Fleming 2013) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor.md" >}}))
  • (Gao et al. 2015)

Table 1 is taken from (Collette et al. 2011).

Table 1: Characteristics of relative measurement sensors
Technology Frequency Resolution Range T Range
LVDT DC-200 Hz 10 nm rms 1-10 mm -50,100 °C
Eddy current 5 kHz 0.1-100 nm rms 0.5-55 mm -50,100 °C
Capacitive DC-100 kHz 0.05-50 nm rms 50 nm - 1 cm -40,100 °C
Interferometer 300 kHz 0.1 nm rms 10 cm -250,100 °C
Encoder DC-1 MHz 1 nm rms 7-27 mm 0,40 °C
Bragg Fibers DC-150 Hz 0.3 nm rms 3.5 cm -30,80 °C

Table 2 it taken from (Fleming 2013).

Table 2: Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\)
Sensor Type Range DNR Resolution Max. BW Accuracy
Metal foil \(10-500 \mu m\) 230 ppm 23 nm 1-10 kHz 1% FSR
Piezoresistive \(1-500 \mu m\) 5 ppm 0.5 nm >100 kHz 1% FSR
Capacitive \(10 \mu m\) to \(10 mm\) 24 ppm 2.4 nm 100 kHz 0.1% FSR
Electrothermal \(10 \mu m\) to \(1 mm\) 100 ppm 10 nm 10 kHz 1% FSR
Eddy current \(100 \mu m\) to \(80 mm\) 10 ppm 1 nm 40 kHz 0.1% FSR
LVDT \(0.5-500 mm\) 10 ppm 5 nm 1 kHz 0.25% FSR
Interferometer Meters 0.5 nm >100kHz 1 ppm FSR
Encoder Meters 6 nm >100kHz 5 ppm FSR

Capacitive Sensors and Eddy-Current sensors are compare here.

Figure 1 is taken from (Thurner et al. 2015).

{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="<span class="figure-number">Figure 1: Overview of range and precision of different position displacement sensors" >}}

Bibliography

Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.
Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” Sensors and Actuators a: Physical 190 (nil): 10626. doi:10.1016/j.sna.2012.10.016.
Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” Cirp Annals 64 (2): 77396. doi:10.1016/j.cirp.2015.05.009.
Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” Applied Optics 54 (10). Optical Society of America: 305163.