digital-brain/content/zettels/position_sensors.md
2020-04-29 14:40:26 +02:00

10 KiB
Raw Blame History

+++ title = "Position Sensors" author = ["Thomas Dehaeze"] draft = false +++

Tags :

Reviews of position sensors

Relative Position Sensors

Table 1: Characteristics of relative measurement sensors collette11_review
Technology Frequency Resolution Range T Range
LVDT \(\text{DC}-200,[Hz]\) \(10,[nm\ rms]\) \(1-10,[mm]\) \(-50,100,[^o C]\)
Eddy current \(5,[kHz]\) \(0.1-100,[nm\ rms]\) \(0.5-55,[mm]\) \(-50,100,[^o C]\)
Capacitive \(\text{DC}-100,[kHz]\) \(0.05-50,[nm\ rms]\) \(50,[nm] - 1,[cm]\) \(-40,100,[^o C]\)
Interferometer \(300,[kHz]\) \(0.1,[nm\ rms]\) \(10,[cm]\) \(-250,100,[^o C]\)
Encoder \(\text{DC}-1,[MHz]\) \(1,[nm\ rms]\) \(7-27,[mm]\) \(0,40,[^o C]\)
Bragg Fibers \(\text{DC}-150,[Hz]\) \(0.3,[nm\ rms]\) \(3.5,[cm]\) \(-30,80,[^o C]\)

Table 2: Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100\,\mu m\) and a first order bandwidth of \(1\,kHz\) fleming13_review_nanom_resol_posit_sensor (notes)
Sensor Type Range DNR Resolution Max. BW Accuracy
Metal foil \(10-500,\mu m\) 230 ppm 23 nm 1-10 kHz 1% FSR
Piezoresistive \(1-500,\mu m\) 5 ppm 0.5 nm >100 kHz 1% FSR
Capacitive \(10,\mu m\) to \(10,mm\) 24 ppm 2.4 nm 100 kHz 0.1% FSR
Electrothermal \(10,\mu m\) to \(1,mm\) 100 ppm 10 nm 10 kHz 1% FSR
Eddy current \(100,\mu m\) to \(80,mm\) 10 ppm 1 nm 40 kHz 0.1% FSR
LVDT \(0.5-500,mm\) 10 ppm 5 nm 1 kHz 0.25% FSR
Interferometer Meters 0.5 nm >100kHz 1 ppm FSR
Encoder Meters 6 nm >100kHz 5 ppm FSR

Strain Gauge

Capacitive Sensor

Description:

Micro Sense link
Micro-Epsilon link
PI link
Unipulse link
Lion-Precision link

Inductive Sensor (Eddy Current)

Micro-Epsilon link
Lion Precision link

Inductive Sensor (LVDT)

Micro-Epsilon link
Keyence link

Interferometers

Attocube link
Zygo link
Smaract link
Qutools link
Renishaw link
Sios link
Keysight link
Table 3: Characteristics of Environmental Units
Temperature (\(\pm\ ^oC\)) Pressure (\(\pm\ hPa\)) Humidity \(\pm\ % RH\) Wavelength Accuracy (\(\pm\ \text{ppm}\))
Attocube 0.1 1 2 0.5
Renishaw 0.2 1 6 1
Picoscale 0.2 2 2 1

Figure 1 is taken from (Yoon-Soo Jang & Seung-Woo Kim, 2017).

{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}

Fiber Optic Displacement Sensor

Unipulse link

Bibliography

Collette, C., Janssens, S., Mokrani, B., Fueyo-Roza, L., Artoos, K., Esposito, M., Fernandez-Carmona, P., …, Comparison of new absolute displacement sensors, In , International Conference on Noise and Vibration Engineering (ISMA) (pp. ) (2012). : .

Fleming, A. J., A review of nanometer resolution position sensors: operation and performance, Sensors and Actuators A: Physical, 190(nil), 106126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016

Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., Review of sensors for low frequency seismic vibration measurement (2011).

Jang, Y., & Kim, S., Compensation of the refractive index of air in laser interferometer for distance measurement: a review, International Journal of Precision Engineering and Manufacturing, 18(12), 18811890 (2017). http://dx.doi.org/10.1007/s12541-017-0217-y

  • [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
  • [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})