digital-brain/content/zettels/position_sensors.md

9.8 KiB
Raw Blame History

+++ title = "Position Sensors" author = ["Thomas Dehaeze"] draft = false +++

  • [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
  • [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
  • [Inertial Sensors]({{< relref "inertial_sensors" >}})
  • [Sensors]({{< relref "sensors" >}})
  • [Collocated Control]({{< relref "collocated_control" >}})
Tags
[Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})

Reviews of Relative Position Sensors

  • Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (Fleming 2013) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))

Table 1: Characteristics of relative measurement sensors collette11_review
Technology Frequency Resolution Range T Range
LVDT DC-200 Hz 10 nm rms 1-10 mm -50,100 °C
Eddy current 5 kHz 0.1-100 nm rms 0.5-55 mm -50,100 °C
Capacitive DC-100 kHz 0.05-50 nm rms 50 nm - 1 cm -40,100 °C
Interferometer 300 kHz 0.1 nm rms 10 cm -250,100 °C
Encoder DC-1 MHz 1 nm rms 7-27 mm 0,40 °C
Bragg Fibers DC-150 Hz 0.3 nm rms 3.5 cm -30,80 °C

Table 2: Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\) fleming13_review_nanom_resol_posit_sensor
Sensor Type Range DNR Resolution Max. BW Accuracy
Metal foil \(10-500 \mu m\) 230 ppm 23 nm 1-10 kHz 1% FSR
Piezoresistive \(1-500 \mu m\) 5 ppm 0.5 nm >100 kHz 1% FSR
Capacitive \(10 \mu m\) to \(10 mm\) 24 ppm 2.4 nm 100 kHz 0.1% FSR
Electrothermal \(10 \mu m\) to \(1 mm\) 100 ppm 10 nm 10 kHz 1% FSR
Eddy current \(100 \mu m\) to \(80 mm\) 10 ppm 1 nm 40 kHz 0.1% FSR
LVDT \(0.5-500 mm\) 10 ppm 5 nm 1 kHz 0.25% FSR
Interferometer Meters 0.5 nm >100kHz 1 ppm FSR
Encoder Meters 6 nm >100kHz 5 ppm FSR

Capacitive Sensors and Eddy-Current sensors are compare here.

Capacitive Sensor

Description:

Manufacturers Links Country
Micro Sense link USA
Micro-Epsilon link Germany
PI link Germany
Unipulse link Japan
Lion-Precision link USA
Fogale link USA
Queensgate link UK
Capacitec link USA

Inductive Sensor (Eddy Current)

Manufacturers Links
Micro-Epsilon link Germany
Lion Precision link USA
Cedrat link France
Kaman link USA
Keyence link USA

Inductive Sensor (LVDT)

Manufacturers Links Country
Micro-Epsilon link Germany
Keyence link USA

Interferometers

Manufacturers Links Country
Attocube link Germany
Zygo link USA
Smaract link Germany
Qutools link Germany
Renishaw link UK
Sios link Germany
Keysight link USA
Table 3: Characteristics of Environmental Units
Temperature (\(\pm\ ^oC\)) Pressure (\(\pm\ hPa\)) Humidity \(\pm\% RH\) Wavelength Accuracy (\(\pm\ \text{ppm}\))
Attocube 0.1 1 2 0.5
Renishaw 0.2 1 6 1
Picoscale 0.2 2 2 1

(Jang and Kim 2017)

{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}

Linear Encoders

Manufacturers Links Country
Heidenhain link Germany
MicroE Systems link USA
Renishaw link UK

Bibliography

Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” Sensors and Actuators a: Physical 190 (nil):10626. https://doi.org/10.1016/j.sna.2012.10.016.

Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” International Journal of Precision Engineering and Manufacturing 18 (12):188190. https://doi.org/10.1007/s12541-017-0217-y.