43 lines
1.7 KiB
Markdown
43 lines
1.7 KiB
Markdown
+++
|
|
title = "Multivariable Control"
|
|
author = ["Dehaeze Thomas"]
|
|
draft = false
|
|
+++
|
|
|
|
Tags
|
|
: [Norms]({{< relref "norms.md" >}})
|
|
|
|
A very nice book about Multivariable Control is (<a href="#citeproc_bib_item_1">Skogestad and Postlethwaite 2007</a>)
|
|
|
|
|
|
## Transfer functions for Multi-Input Multi-Output systems {#transfer-functions-for-multi-input-multi-output-systems}
|
|
|
|
{{< figure src="/ox-hugo/mimo_tf.png" >}}
|
|
|
|
\\[ T\_i = -\frac{u}{d\_i} = (I + KG)^{-1} KG \\]
|
|
\\[ T\_o = -\frac{p\_o}{d\_o} = (I + GK)^{-1} GK \\]
|
|
\\[ S\_i = \frac{p\_i}{d\_i} = (I + KG)^{-1} \\]
|
|
\\[ S\_o = \frac{y}{d\_o} = (I + GK)^{-1} \\]
|
|
|
|
|
|
## Measures of interaction {#measures-of-interaction}
|
|
|
|
- Interaction index (for \\(2 \times 2\\) plant):
|
|
\\[ \phi = \frac{g\_{12}g\_{21}}{g\_{11}g\_{22}} \\]
|
|
When \\(\phi\\) is close to zero, this means there is no interaction.
|
|
- The **relative gain array** of a square matrix:
|
|
\\[ \text{RGA}(G) \triangleq G \times ( G^{-1})^T \\]
|
|
|
|
|
|
## Stability {#stability}
|
|
|
|
- **Characteristic Loci**: Eigenvalues of \\(G(j\omega)\\) plotted in the complex plane
|
|
- **Generalized Nyquist Criterion**: If \\(G(s)\\) has \\(p\_0\\) unstable poles, then the closed-loop system with return ratio \\(kG(s)\\) is stable if and only if the characteristic loci of \\(kG(s)\\), taken together, encircle the point \\(-1\\), \\(p\_0\\) times anti-clockwise, assuming there are no hidden modes
|
|
|
|
|
|
## Bibliography {#bibliography}
|
|
|
|
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
|
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. <i>Multivariable Feedback Control: Analysis and Design - Second Edition</i>. John Wiley.</div>
|
|
</div>
|