digital-brain/content/zettels/interferometers.md

7.8 KiB
Raw Blame History

+++ title = "Interferometers" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++

Tags
[Position Sensors]({{< relref "position_sensors.md" >}}), [Optics]({{< relref "optics.md" >}})

Manufacturers

Manufacturers Country
Attocube Germany
Zygo USA
Smaract Germany
Qutools Germany
Renishaw UK
Sios Germany
Keysight USA
Optics11 Netherlands
Prodrive Netherlands
Agito

Reviews

(Ducourtieux 2018, 2018; Bobroff 1993, 1993; Thurner et al. 2015, 2015; Loughridge and Abramovitch 2013)

Effect of Refractive Index - Environmental Units

The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table 1 (Taken from (Thurner et al. 2015)).

Table 1: Dependence of Refractive Index \(n\) of Air from Temperature \(T\), pressure \(p\), Humidity \(h\), and CO2 content \(x_c\). Taken around \(T = 20^oC\), \(p=101kPa\), \(h = 50\%\), \(x_c = 400 ppm\) and \(\lambda = 1530nm\)
Physical Value Refractive Index Sensitivity Value
Temperature \(T\) \(dn/dT\ (K^{-1})\) \(-9.32\cdot 10^{-7}\)
Pressure \(p\) \(dn/dp\ (mbar^{-1})\) \(2.70\cdot 10^{-7}\)
Humidity \(h\) \(dn/dh\ (\text{%}^{-1})\) \(-8.72\cdot 10^{-9}\)
\(\text{CO}_2\) content \(x_c\) \(dn/dx_c\ (ppm^{-1})\) \(1.42\cdot 10^{-10}\)
Wavelength \(\lambda\) \(dn/d\lambda\ (nm^{-1})\) \(-8.59\cdot 10^{-10}\)

In order to limit the measurement uncertainty due to variation of air parameters, an Environmental Unit can be used that typically measures the temperature, pressure and humidity and compensation for the variation of refractive index in real time.

Typical characteristics of commercial environmental units are shown in Table 2.

Table 2: Characteristics of Environmental Units
Temperature (\(\pm\ ^oC\)) Pressure (\(\pm\ hPa\)) Humidity \(\pm\% RH\) Wavelength Accuracy (\(\pm\ \text{ppm}\))
Attocube 0.1 1 2 0.5
Renishaw 0.2 1 6 1
Picoscale 0.2 2 2 1

Interferometer Precision

Figure 1 shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from (Jang and Kim 2017)).

{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="<span class="figure-number">Figure 1: Expected precision of interferometer as a function of measured distance" >}}

Sources of uncertainty

Sources of error in laser interferometry are well described in (Ducourtieux 2018).

It includes:

  • Laser Source Stability
  • Variation of refractive index of air, which is dependent of:
    • Temperature: \(K_T \approx 1 ppmK^{-1}\)
    • Pressure: \(K_P \approx 0.27 ppm hPa^{-1}\)
    • Humidity: \(K_{HR} \approx 0.01 ppm \% RH^{-1}\)
    • These errors can partially be compensated using an environmental unit.
  • Air turbulence (Figure 2)
  • Non linearity

{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="<span class="figure-number">Figure 2: Effect of air turbulences on measurement stability" >}}

Bibliography

Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” Measurement Science and Technology 4 (9): 90726. doi:10.1088/0957-0233/4/9/001.
Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” doi:10.13140/rg.2.2.21044.35205.
Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” International Journal of Precision Engineering and Manufacturing 18 (12): 188190. doi:10.1007/s12541-017-0217-y.
Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In 2013 American Control Conference. doi:10.1109/acc.2013.6580402.
Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” Applied Optics 54 (10). Optical Society of America: 305163.