37 lines
1.0 KiB
Markdown
37 lines
1.0 KiB
Markdown
+++
|
|
title = "Fractional Order Transfer Functions"
|
|
author = ["Thomas Dehaeze"]
|
|
draft = false
|
|
+++
|
|
|
|
Tags
|
|
:
|
|
|
|
|
|
## Example Using the FOMCON toolbox {#example-using-the-fomcon-toolbox}
|
|
|
|
The documentation for the toolbox is accessible [here](https://fomcon.net/fomcon-toolbox/overview/).
|
|
|
|
Here are the parameters that are used to define the wanted properties of the fractional model:
|
|
|
|
```matlab
|
|
wb = 2*pi*0.1; % Lowest frequency bound
|
|
wh = 2*pi*1e3; % Highest frequency bound
|
|
n = 8; % Approximation order
|
|
r = 0.5; % Wanted slope, The corresponding phase will be pi*r
|
|
```
|
|
|
|
Then, to create an approximation of a fractional-order operator \\(s^r\\) of order \\(n\\) which is valid in the frequency range \\([\omega\_b\, \omega\_h]\\), the `oustafod` function can be used:
|
|
|
|
```matlab
|
|
G = oustafod(r,n,wb,wh);
|
|
```
|
|
|
|
Few examples of different slopes are shown in Figure [1](#orgb7e7209).
|
|
|
|
<a id="orgb7e7209"></a>
|
|
|
|
{{< figure src="/ox-hugo/approximate_deriv_int.png" caption="Figure 1: Example of fractional approximations" >}}
|
|
|
|
<./biblio/references.bib>
|