120 lines
5.5 KiB
Markdown
120 lines
5.5 KiB
Markdown
+++
|
||
title = "Sensor Noise Estimation"
|
||
author = ["Dehaeze Thomas"]
|
||
draft = false
|
||
+++
|
||
|
||
Tags
|
||
:
|
||
|
||
|
||
## Estimation of the Noise of Inertial Sensors {#estimation-of-the-noise-of-inertial-sensors}
|
||
|
||
Measuring the noise level of inertial sensors is not easy as the seismic motion is usually much larger than the sensor's noise level.
|
||
|
||
A technique to estimate the sensor noise in such case is proposed in (<a href="#citeproc_bib_item_1">Barzilai, VanZandt, and Kenny 1998</a>) and well explained in (<a href="#citeproc_bib_item_2">Van der Poel 2010</a>) (Section 6.1.3).
|
||
|
||
The idea is to mount two inertial sensors closely together such that they should measure the same quantity.
|
||
|
||
This is represented in Figure [1](#figure--fig:huddle-test-setup) where two identical sensors are measuring the same motion \\(x(t)\\).
|
||
|
||
<a id="figure--fig:huddle-test-setup"></a>
|
||
|
||
{{< figure src="/ox-hugo/huddle_test_setup.png" caption="<span class=\"figure-number\">Figure 1: </span>Schematic representation of the setup for measuring the noise of inertial sensors." >}}
|
||
|
||
<div class="definition">
|
||
|
||
Few quantities that will be used to estimate the sensor noise are now defined.
|
||
This include the **Coherence**, the **Power Spectral Density** (PSD) and the **Cross Spectral Density** (CSD).
|
||
|
||
The coherence between signals \\(x\\) and \\(y\\) is defined as follow
|
||
\\[ \gamma^2\_{xy}(\omega) = \frac{|C\_{xy}(\omega)|^2}{|P\_{x}(\omega)| |P\_{y}(\omega)|} \\]
|
||
where \\(|P\_{x}(\omega)|\\) is the output PSD of signal \\(x(t)\\) and \\(|C\_{xy}(\omega)|\\) is the CSD of signals \\(x(t)\\) and \\(y(t)\\).
|
||
|
||
The PSD and CSD are defined as follow:
|
||
|
||
\begin{align}
|
||
|P\_x(\omega)| &= \frac{2}{n\_d T} \sum^{n\_d}\_{n=1} \left| x\_k(\omega, T) \right|^2 \\\\
|
||
|C\_{xy}(\omega)| &= \frac{2}{n\_d T} \sum^{n\_d}\_{n=1} [ x\_k^\*(\omega, T) ] [ y\_k(\omega, T) ]
|
||
\end{align}
|
||
|
||
where:
|
||
|
||
- \\(n\_d\\) is the number for records averaged
|
||
- \\(T\\) is the length of each record
|
||
- \\(x\_k(\omega, T)\\) is the finite Fourier transform of the kth record
|
||
- \\(x\_k^\*(\omega, T)\\) is its complex conjugate
|
||
|
||
The Matlab function `mscohere` can be used to compute the coherence:
|
||
|
||
```matlab
|
||
%% Parameters
|
||
Fs = 1e4; % Sampling Frequency [Hz]
|
||
win = hanning(ceil(10*Fs)); % 10 seconds Hanning Windows
|
||
|
||
%% Coherence between x and y
|
||
[pxy, f] = mscohere(x, y, win, [], [], Fs); % Coherence, frequency vector in [Hz]
|
||
```
|
||
|
||
Alternatively, it can be manually computed using the `cpsd` and `pwelch` commands:
|
||
|
||
```matlab
|
||
%% Manual Computation of the Coherence
|
||
[pxy, f] = cpsd(x, y, win, [], [], Fs); % Cross Spectral Density between x and y
|
||
[pxx, ~] = pwelch(x, win, [], [], Fs); % Power Spectral Density of x
|
||
[pyy, ~] = pwelch(y, win, [], [], Fs); % Power Spectral Density of y
|
||
|
||
pxy_manual = abs(pxy).^2./abs(pxx)./abs(pyy);
|
||
```
|
||
|
||
</div>
|
||
|
||
Now suppose that:
|
||
|
||
- both sensors are modelled as LTI systems \\(H\_1(s)\\) and \\(H\_2(s)\\)
|
||
- sensor noises are modelled as input noises \\(n\_1(t)\\) and \\(n\_2(s)\\)
|
||
- sensor noises are uncorrelated and each are uncorrelated with \\(x(t)\\)
|
||
|
||
Then, the system can be represented by the block diagram in Figure [2](#figure--fig:huddle-test-block-diagram), and we can write:
|
||
|
||
\begin{align}
|
||
P\_{y\_1y\_1}(\omega) &= |H\_1(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_1}(\omega) ) \\\\
|
||
P\_{y\_2y\_2}(\omega) &= |H\_2(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_2}(\omega) ) \\\\
|
||
C\_{y\_1y\_2}(j\omega) &= H\_2^H(j\omega) H\_1(j\omega) P\_{x}(\omega)
|
||
\end{align}
|
||
|
||
And the CSD between \\(y\_1(t)\\) and \\(y\_2(t)\\) is:
|
||
|
||
\begin{equation}
|
||
\gamma^2\_{y\_1y\_2}(\omega) = \frac{|C\_{y\_1y\_2}(j\omega)|^2}{P\_{y\_1}(\omega) P\_{y\_2}(\omega)}
|
||
\end{equation}
|
||
|
||
<a id="figure--fig:huddle-test-block-diagram"></a>
|
||
|
||
{{< figure src="/ox-hugo/huddle_test_block_diagram.png" caption="<span class=\"figure-number\">Figure 2: </span>Huddle test block diagram" >}}
|
||
|
||
Rearranging the equations, we obtain the PSD of \\(n\_1(t)\\) and \\(n\_2(t)\\):
|
||
|
||
\begin{align}
|
||
P\_{n1}(\omega) = \frac{P\_{y\_1}(\omega)}{|H\_1(j\omega)|^2} \left( 1 - \gamma\_{y\_1y\_2}(\omega) \frac{|H\_1(j\omega)|}{|H\_2(j\omega)|} \sqrt{\frac{P\_{y\_2}(\omega)}{P\_{y\_1}(\omega)}} \right) \\\\
|
||
P\_{n2}(\omega) = \frac{P\_{y\_2}(\omega)}{|H\_2(j\omega)|^2} \left( 1 - \gamma\_{y\_1y\_2}(\omega) \frac{|H\_2(j\omega)|}{|H\_1(j\omega)|} \sqrt{\frac{P\_{y\_1}(\omega)}{P\_{y\_2}(\omega)}} \right)
|
||
\end{align}
|
||
|
||
If we assume the two sensor dynamics to be the same \\(H\_1(s) \approx H\_2(s)\\) and the PSD of \\(n\_1(t)\\) and \\(n\_2(t)\\) to be the same (\\(P\_{n\_1}(\omega) \approx P\_{n\_2}(\omega)\\)) which is most of the time the case when using two identical sensors, we obtain this approximate equation:
|
||
|
||
<div class="important">
|
||
|
||
\begin{equation}
|
||
|P\_{n\_1}(\omega)| \approx \frac{P\_{y\_1}}{|H\_1(j\omega)|^2} \big( 1 - \gamma\_{y\_1y\_2}(\omega) \big)
|
||
\end{equation}
|
||
|
||
</div>
|
||
|
||
|
||
## Bibliography {#bibliography}
|
||
|
||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” <i>Review of Scientific Instruments</i> 69 (7): 2767–72. doi:<a href="https://doi.org/10.1063/1.1149013">10.1063/1.1149013</a>.</div>
|
||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. doi:<a href="https://doi.org/10.3990/1.9789036530163">10.3990/1.9789036530163</a>.</div>
|
||
</div>
|