digital-brain/content/zettels/stewart_platforms.md

88 KiB
Raw Blame History

+++ title = "Stewart Platforms" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++

Tags :

Manufacturers

Manufacturers Country
PI Germany
Newport USA
Symetrie France
CSA Engineering USA
Aerotech USA
SmarAct Germany
Gridbots India
Alio Industries USA
MOOG

Stewart Platforms at ESRF

Beamline Manufacturer Comments
ID11 Symetrie Small, Piezo based
ID31 Symetrie Large Stroke, Encoders, DC motors
ID01 PI
ID16a ESRF Piezo (PI)

Built Stewart PLatforms

Actuators:

  • Short Stroke: PZT, Voice Coil, Magnetostrictive
  • Long Stroke: DC, AC, Servo + Ball Screw, Inchworm

Joints:

  • Flexible: usually for short stroke
  • Conventional

Sensors:

  • Force Sensors
  • Relative Motion Sensors: Encoders, LVDT
  • Strain Gauge
  • Inertial Sensors (Geophone, Accelerometer)
  • External Metrology

Short Stroke

University Figure Configuration Joints Actuators Sensors Application Link to bibliography
JPL Figure 5 Cubic Flexible Voice Coil (0.5 mm) Force (collocated) (Spanos, Rahman, and Blackwood 1995), (Rahman, Spanos, and Laskin 1998) Vibration Isolation (Space)
Washinton, JPL Figure 16 Cubic Elastomers Voice Coil (10 mm) Force, LVDT, Geophones Isolation + Pointing (Space) (Thayer and Vagners 1998), (Thayer et al. 2002), (Hauge and Campbell 2004)
Wyoming Figure 17 Cubic (CoM=CoK) Flexible Voice Coil Force (McInroy 1999), (McInroy, OBrien, and Neat 1999), (McInroy and Hamann 2000), (Li, Hamann, and McInroy 2001), (Jafari and McInroy 2003)
Brussels Figure 21 Cubic Flexible Voice Coil Force Vibration Isolation (Hanieh 2003), (Preumont et al. 2007)
SRDC Figure 2 Not Cubic Ball joints Voice Coil (10 mm) (Taranti, Agrawal, and Cristi 2001)
SRDC Figure 18 Non-Cubic Flexible Voice Coil Accelerometers, External metrology: Eddy Current + optical Pointing (Chen, Bishop, and Agrawal 2003)
Harbin (China) Figure 13 Cubic Flexible Voice Coil Accelerometer in each leg (Chi et al. 2015), (Tang, Cao, and Yu 2018), (Jiao et al. 2018)
Einhoven Figure 9 Almost cubic Flexible Voice Coil Force Sensor + Accelerometer Vibration Isolation (Beijen et al. 2018), (Tjepkema 2012)
JPL Figure 4 Cubic (6-UPU) Flexible Magnetostrictive Force (collocated), Accelerometers Vibration Isolation (Geng and Haynes 1993), (Geng and Haynes 1994), (Geng et al. 1995)
China Figure 10 Non-cubic Flexible Magnetostrictive Inertial (Zhang et al. 2011)
Brussels Figure 20 Cubic Flexible Piezoelectric, Amplified Piezo Force Active Damping (Abu Hanieh, Horodinca, and Preumont 2002)
SRDC Figure 19 Cubic Piezoelectric (50 um) Geophone Vibration (Agrawal and Chen 2004)
Taiwan Figure 14 Cubic Flexible Piezoelectric (120 um) External capacitive (Ting, Jar, and Li 2006), (Ting, Li, and Nguyen 2013)
Taiwan Figure 15 Non-Cubic Flexible Piezoelectric (160 um) External capacitive (LION) (Ting, Jar, and Li 2007)
Harbin (China) Figure 12 6-SPS (Optimized) Flexible Piezoelectric Strain Gauge (Du, Shi, and Dong 2014)
Japan Figure 6 Non-Cubic Flexible Piezoelectric (16 um) Eddy Current Displacement Sensors Cutting machine (Furutani, Suzuki, and Kudoh 2004)
China Figure 11 6-UPS (Cubic?) Flexible Piezoelectric Force, Position (Yang et al. 2019)
Shangai Figure 8 Cubic Flexible Piezoelectric Force Sensor + Accelerometer (Wang et al. 2016)
Matra (France) Figure 3 Cubic Flexible Piezoelectric (25 um) Piezo force sensors Vibration control (Defendini et al. 2000)
Japan Figure 7 Non-Cubic Flexible Inchworm (Torii et al. 2012)
Netherlands Figure 1 Non-Cubic Flexible 3-phase rotary motor Rotary Encoders (Naves 2020; Naves et al. 2020)

{{< figure src="/ox-hugo/stewart_naves.jpg" caption="<span class="figure-number">Figure 1: T-flex <&naves20_desig>" >}}

{{< figure src="/ox-hugo/stewart_naval.jpg" caption="<span class="figure-number">Figure 2: <&taranti01_effic_algor_vibrat_suppr>" >}}

{{< figure src="/ox-hugo/stewart_mais.jpg" caption="<span class="figure-number">Figure 3: <&defendini00_techn>" >}}

{{< figure src="/ox-hugo/stewart_geng.jpg" caption="<span class="figure-number">Figure 4: <&geng94_six_degree_of_freed_activ>" >}}

{{< figure src="/ox-hugo/stewart_jpl.jpg" caption="<span class="figure-number">Figure 5: <&spanos95_soft_activ_vibrat_isolat>" >}}

{{< figure src="/ox-hugo/stewart_furutani.jpg" caption="<span class="figure-number">Figure 6: <&furutani04_nanom_cuttin_machin_using_stewar>" >}}

{{< figure src="/ox-hugo/stewart_torii.jpg" caption="<span class="figure-number">Figure 7: <&torii12_small_size_self_propel_stewar_platf>" >}}

{{< figure src="/ox-hugo/stewart_wang16.jpg" caption="<span class="figure-number">Figure 8: <&wang16_inves_activ_vibrat_isolat_stewar>" >}}

{{< figure src="/ox-hugo/stewart_beijen.jpg" caption="<span class="figure-number">Figure 9: <&beijen18_self_tunin_mimo_distur_feedf>" >}}

{{< figure src="/ox-hugo/stewart_zhang11.jpg" caption="<span class="figure-number">Figure 10: <&zhang11_six_dof>" >}}

{{< figure src="/ox-hugo/stewart_yang19.jpg" caption="<span class="figure-number">Figure 11: <&yang19_dynam_model_decoup_contr_flexib>" >}}

{{< figure src="/ox-hugo/stewart_du14.jpg" caption="<span class="figure-number">Figure 12: <&du14_piezo_actuat_high_precis_flexib>" >}}

{{< figure src="/ox-hugo/stewart_tang18.jpg" caption="<span class="figure-number">Figure 13: <&tang18_decen_vibrat_contr_voice_coil>" >}}

{{< figure src="/ox-hugo/stewart_nanoscale.jpg" caption="<span class="figure-number">Figure 14: <&ting06_desig_stewar_nanos_platf>" >}}

{{< figure src="/ox-hugo/stewart_ting07.jpg" caption="<span class="figure-number">Figure 15: <&ting07_measur_calib_stewar_microm_system>" >}}

{{< figure src="/ox-hugo/stewart_ht_uw.jpg" caption="<span class="figure-number">Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}}

{{< figure src="/ox-hugo/stewart_uw_gsp.jpg" caption="<span class="figure-number">Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}}

{{< figure src="/ox-hugo/stewart_pph.jpg" caption="<span class="figure-number">Figure 18: Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}}

{{< figure src="/ox-hugo/stewart_uqp.jpg" caption="<span class="figure-number">Figure 19: Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}}

{{< figure src="/ox-hugo/stewart_ulb_pz.jpg" caption="<span class="figure-number">Figure 20: ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}}

{{< figure src="/ox-hugo/stewart_ulb_vc.jpg" caption="<span class="figure-number">Figure 21: ULB - Voice Coil <&hanieh03_activ_stewar>" >}}

Long Stroke

University Figure Configuration Joints Actuators Sensors Link to bibliography
Japan Figure 22 6-UPS Conventional DC, gear + rack pinion Encoder, 7um res (Cleary and Arai 1991)
Seoul Figure 23 Non-Cubic Conventional Hydraulic LVDT (Kim, Kang, and Lee 2000)
Xidian (China) Figure 24 Non-Cubic Conventional Servo Motor + Screwball Encoder (Su et al. 2004)
Czech Figure 25 6-UPS Conventional DC, Ball Screw Absolute Linear position (Březina, Andrš, and Březina 2008), (Houška, Březina, and Březina 2010), (Březina and Březina 2010)

{{< figure src="/ox-hugo/stewart_cleary.jpg" caption="<span class="figure-number">Figure 22: <&cleary91_protot_paral_manip>" >}}

{{< figure src="/ox-hugo/stewart_kim00.jpg" caption="<span class="figure-number">Figure 23: <&kim01_six>" >}}

{{< figure src="/ox-hugo/stewart_su04.jpg" caption="<span class="figure-number">Figure 24: <&su04_distur_rejec_high_precis_motion>" >}}

{{< figure src="/ox-hugo/stewart_czech.jpg" caption="<span class="figure-number">Figure 25: Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}}

  • Flexible joints (Section )
  • Specific geometry to have good decoupling properties (Section )
  • Alternative architectures for 6DoF parallel mechanisms (Section )
  • Workspace (Section )
  • Modelling (Section )

Flexures

From (Hauge and Campbell 2004):

Elastomer flexures, rather than steel, reduce lateral stiffness and improve passive performance at payload resonance (damping) and at frequencies greater than 100 Hz.

Main Object Link to bibliography
Effect of flexures (McInroy 2002)

Decoupling

Main Object Link to bibliography
Geometry for decoupling (CoM, CoK) (McInroy and Hamann 2000)
(Afzali-Far 2016)

Alternative Architectures

Figure Link to bibliography
Figure 26 (Dong, Sun, and Du 2008), (Dong, Sun, and Du 2007)
(Kim and Cho 2009)
(Yun and Li 2010)
(NO_ITEM_DATA:gao02_necw_kinem_struc_paral_manip_desig)
(Horin and Shoham 2006)

{{< figure src="/ox-hugo/stewart_dong07.jpg" caption="<span class="figure-number">Figure 26: <&dong07_desig_precis_compl_paral_posit>" >}}

Workspace

Main Object Link to bibliography
Compute orientation (Bonev and Ryu 2001)
Reachable Workspace (Pernkopf and Husty 2006)
Determination of the max. singularity free workspace (Jiang and Gosselin 2009a)
Orientation Workspace (Jiang and Gosselin 2009b)

Modelling

Multi Body

Analytical

Lumped

Control

Different control objectives:

  • Vibration Control (Section )
  • Position Control (Section )

Sometimes, the two objectives are simultaneous, in that case multiple sensors needs to be combined in the control architecture (Section ).

Stewart platform, being 6DoF parallel mechanisms, have a coupled dynamics. In order to ease the control design, decoupling is generally required. Several approaches can be used (Section ).

Vibration Control and Active Damping

From (Hauge and Campbell 2004):

In general, force sensors such as load cells, work well to measure vibration, but have difficulty with cross-axis dynamics. Inertial sensors, on the other hand, do not have this cross-axis limitation, but are usually more sensitive to payload and base dynamics and are more difficult to control due to the non-collocated nature of the sensor and actuator. Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness. This zero pair has confused many researchers because it is very sensitive, occasionally becoming non-minimum phase. The zero pair is the current limitation in performance using load cell sensors.

Integral Force Feedback

University Actuators Sensors Control Main Object Link to bibliography
JPL Magnetostrictive Force (collocated), Accelerometers Two layers: Decentralized IFF, Robust Adaptive Control Two layer control for active damping and vibration isolation (Geng et al. 1995)
JPL Voice Coil Force (collocated) Decentralized IFF Decentralized force feedback to reduce the transmissibility (Spanos, Rahman, and Blackwood 1995), (Rahman, Spanos, and Laskin 1998)
Washinton Voice Coil Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing Centralized control is no better than decentralized. Geophone + Force MISO control is good (Thayer and Vagners 1998), (Thayer et al. 2002)
Wyoming Voice Coil Force Centralized (cartesian) IFF Difficult to decouple in practice (OBrien et al. 1998)
Wyoming Voice Coil Force IFF, centralized (decouple) + decentralized (coupled) Specific geometry: decoupled force plant. Better perf with centralized IFF (McInroy 1999), (McInroy, OBrien, and Neat 1999), (McInroy and Hamann 2000)
Brussels APA Piezo force sensor Decentralized IFF (Abu Hanieh, Horodinca, and Preumont 2002)
Brussels Voice Coil Force Sensor Decentralized IFF Effect of flexible joints (Preumont et al. 2007)
Shangai Piezoelectric Force Sensor + Accelerometer Vibration isolation, HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control (Wang et al. 2016)
China Decentralized IFF Design cubic configuration to have same modal frequencies: optimal damping of all modes (Yang et al. 2017)
Washinton Voice Coil Force Decentralized IFF Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero (Hauge and Campbell 2004)
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space (Yang et al. 2019)

Sky-Hood Damping

University Actuators Sensors Control Main Object Link to bibliography
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Decoupling, both vibration + pointing control (Li, Hamann, and McInroy 2001)
China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control (Pu et al. 2011)
China Voice Coil Accelerometer in each leg Centralized Vibration Control, PI, Skyhook (Abbas and Hai 2014)
Einhoven Voice Coil 6dof Accelerometers on mobile and fixed platforms Self learning feedforward (FIR), Centralized MIMO feedback (sky hood damping) (Beijen et al. 2018)
Harbin (China) Voice Coil Accelerometer in each leg Decentralized vibration control Vibration Control with VCM and Decentralized control (Tang, Cao, and Yu 2018)
Washinton Voice Coil Geophones Decentralized Inertial Feedback Centralized control is no better than decentralized. Geophone + Force MISO control is good (Thayer et al. 2002)
Washinton Voice Coil Geophones Decentralized Sky Hood Damping Comparison of force sensor and inertial sensors (Hauge and Campbell 2004)
Harbin (China) Voice Coil Accelerometers MIMO H-Infinity, active damping Model + active damping with flexible hinges (Jiao et al. 2018)

Vibration Control of Narrowband Disturbances

University Actuators Sensors Control Main Object Link to bibliography
JPL Magnetostrictive Force, Accelerometers Robust Adaptive Filter Hardware implementation (Geng and Haynes 1993), (Geng and Haynes 1994)
SRDC LMS with FIR (feedforward), disturbance rejection, Decentralized (struts) PID Rejection of narrowband periodic disturbances (Chen, Bishop, and Agrawal 2003)
Wyoming Voice Coil Adaptive sinusoidal disturbance (Phase Lock Loop) (Lin and McInroy 2003)
SRDC Piezo Geophone (collocated) "multiple error LMS" (require measured disturbance) vs "clear box" (Agrawal and Chen 2004)
China Magnetostrictive Inertial Sinusoidal vibration, adaptive filters (LMS) Design and Control of flexure joint Hexapods (Zhang et al. 2011)
Shangai Piezoelectric Force Sensor + Accelerometer Vibration isolation, HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control (Wang et al. 2016)

Position Control

Here, the objective is to position the mobile platform with respect to an external metrology or internal metrology.

Control Strategy:

  • Decentralized P, PI or PID
  • LQR, LQG
  • H-Infinity
  • Two Layer
University Actuators Sensors Control Modelling Main Object Link to bibliography
Washinton Voice Coil Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing FEM => State Space Centralized control is no better than decentralized. Geophone + Force MISO control is good (Thayer and Vagners 1998), (Thayer et al. 2002)
Wyoming Voice Coil Force, LVDT IFF, centralized (decouple) + decentralized (coupled) Lumped Specific geometry: decoupled force plant. Better perf with centralized IFF (McInroy 1999), (McInroy, OBrien, and Neat 1999), (McInroy and Hamann 2000)
Seoul Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian) (Kim, Kang, and Lee 2000)
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Analytical equations Decoupling, both vibration + pointing control (Li, Hamann, and McInroy 2001)
Japan APA Eddy current displacement Decentralized (struts) PI + LPF control (Furutani, Suzuki, and Kudoh 2004)
China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control (Pu et al. 2011)
Harbin (China) PZT Piezo Strain Gauge Decentralized position feedback Workspace, Stiffness analyzed (Du, Shi, and Dong 2014)
China Piezoelectric Leg length Tracking control, ADRC, State observer Analytical Use of ADRC for tracking control of cubic hexapod (Min, Huang, and Su 2019)
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Solid/Flexible Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space (Yang et al. 2019)

From: (Yang et al. 2019):

On the other hand, the traditional modal decoupled control strategy cannot deal with the flexible Stewart platform governed by Eq. (34) because it is impossible to achieve simultaneous diagonalization of the mass, damping and stiffness matrices. To make the six-DOF system decoupled into six single-DOF isolators, we design a new controller based on the legs force and position feedback. The idea is to synthesize the control force that can compensate the parasitic bending and torsional torques of the flexible joints and simultaneously achieve diagonalization of the matrices M, C and K.

Multi Sensor Control

Improvement by the use of several sensors:

  • HAC-LAC
  • Two sensor control
  • Sensor Fusion

Comparison between "two sensor control" and "sensor fusion" is given in (Beijen, Tjepkema, and van Dijk 2014).

Two sensor control

University Actuators Sensors Control Main Object Link to bibliography
Washinton Voice Coil Force and Inertial LQG, Decentralized, Sensor Fusion Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero (Hauge and Campbell 2004)
Netherlands Voice Coil Sensor Fusion, Two Sensor Control (Tjepkema 2012)

HAC-LAC

University Actuators Sensors Control Main Object Link to bibliography
JPL Magnetostrictive Force (collocated), Accelerometers Two layers: Decentralized IFF, Robust Adaptive Control Two layer control for active damping and vibration isolation (Geng et al. 1995)
Shangai Piezoelectric Force Sensor + Accelerometer Vibration isolation, HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control (Wang et al. 2016)
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Decoupling, both vibration + pointing control (Li, Hamann, and McInroy 2001)
China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control (Pu et al. 2011)
China Voice Coil Force sensors (strus) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers (Xie, Wang, and Zhang 2017)

Sensor Fusion

University Actuators Sensors Control Main Object Link to bibliography
Netherlands Voice Coil Force (HF) and Inertial (LF) Sensor Fusion, Two Sensor Control (Tjepkema 2012), (Tjepkema, van Dijk, and Soemers 2012)
Washinton Voice Coil Force (HF) and Inertial (LF) LQG, Decentralized, Sensor Fusion Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero (Hauge and Campbell 2004)

Other Strategies

University Actuators Sensors Control Main Object Link to bibliography
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space (Yang et al. 2019)
Washinton Voice Coil Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing Centralized control is no better than decentralized. Geophone + Force MISO control is good (Thayer and Vagners 1998), (Thayer et al. 2002)
Wyoming Voice Coil Force IFF, centralized (decouple) + decentralized (coupled) Specific geometry: decoupled force plant. Better perf with centralized IFF (McInroy 1999), (McInroy, OBrien, and Neat 1999), (McInroy and Hamann 2000)

Decoupling Strategies

Different strategies:

  • Jacobian decoupling: in the cartesian frame or in the frame of the struts
  • Modal decoupling
  • SVD decoupling

Identify Jacobian for better decoupling: (Cheng, Ren, and Dai 2004), (Gexue et al. 2004).

Jacobian - Struts

Japan APA Eddy current displacement Decentralized (struts) PI + LPF control (Furutani, Suzuki, and Kudoh 2004)
Harbin (China) PZT Piezo Strain Gauge Decentralized position feedback (Du, Shi, and Dong 2014)

Jacobian - Cartesian

Wyoming Voice Coil Force Cartesian frame decoupling (OBrien et al. 1998)
Wyoming Voice Coil Force IFF, Cartesian Frame, Jacobians (McInroy 1999), (McInroy, OBrien, and Neat 1999), (McInroy and Hamann 2000)
Seoul Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian) (Kim, Kang, and Lee 2000)
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) (Li, Hamann, and McInroy 2001)
China Voice Coil Accelerometer in each leg Centralized Vibration Control, PI, Skyhook (Abbas and Hai 2014)

Modal Decoupling

China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control (Pu et al. 2011)
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers (Yang et al. 2019)

Multivariable Control

From (Thayer et al. 2002):

Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies.

China PZT Geophone (struts) H-Infinity and mu-synthesis (Lei and Benli 2008)
China Voice Coil Force sensors (strus) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers (Xie, Wang, and Zhang 2017)
Harbin (China) Voice Coil Accelerometers MIMO H-Infinity, active damping (Jiao et al. 2018)

Long Stroke Stewart Platforms

Link to bibliography University Actuators Sensors Control Main Object
(Cleary and Arai 1991) Japan DC, gear + rack pinion Encoder, 7um res Decentralized (struts), PID control Singular configuration analysis, workspace
(Su et al. 2004) Xidian (China)
(Huang and Fu 2005) Taiwan
(Březina, Andrš, and Březina 2008), (Houška, Březina, and Březina 2010) Czech DC Modeling with sim-mechanics
(Molina, Rosario, and Sanchez 2008) Brazil Simulation with Matlab/Simulink
(Yang et al. 2010) China Decentralized PID Simulation with Simulink/SimMechanics
(Kim, Kang, and Lee 2000) Seoul Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian)

Main Bibliography

Books

PhD Thesis

Articles - Reviews

Bibliography

Abbas, Hussain, and Huang Hai. 2014. “Vibration Isolation Concepts for Non-Cubic Stewart Platform Using Modal Control.” In Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014. doi:10.1109/ibcast.2014.6778139.
Abu Hanieh, Ahmed, Mihaita Horodinca, and Andre Preumont. 2002. “Stiff and Soft Stewart Platforms for Active Damping and Active Isolation of Vibrations.” In Actuator 2002, 8th International Conference on New Actuators.
Afzali-Far, Behrouz. 2016. “Vibrations and Dynamic Isotropy in Hexapods-Analytical Studies.” Lund University.
Agrawal, Brij N, and Hong-Jen Chen. 2004. “Algorithms for Active Vibration Isolation on Spacecraft Using a Stewart Platform.” Smart Materials and Structures 13 (4): 87380. doi:10.1088/0964-1726/13/4/025.
Arakelian, V. 2018. Dynamic Decoupling of Robot Manipulators. Mechanisms and Machine Science. Springer International Publishing. doi:10.1007/978-3-319-74363-9.
Beijen, M.A., M.F. Heertjes, J. Van Dijk, and W.B.J. Hakvoort. 2018. “Self-Tuning Mimo Disturbance Feedforward Control for Active Hard-Mounted Vibration Isolators.” Control Engineering Practice 72: 90103. doi:10.1016/j.conengprac.2017.11.008.
Beijen, Michiel A., Dirk Tjepkema, and Johannes van Dijk. 2014. “Two-Sensor Control in Active Vibration Isolation Using Hard Mounts.” Control Engineering Practice 26: 8290. doi:10.1016/j.conengprac.2013.12.015.
Bishop Jr, Ronald M. 2002. “Development of Precision Pointing Controllers with and without Vibration Suppression for the NPS Precision Pointing Hexapod.” Naval Postgraduate School, Monterey, California.
Bonev, Ilian A., and Jeha Ryu. 2001. “A New Approach to Orientation Workspace Analysis of 6-Dof Parallel Manipulators.” Mechanism and Machine Theory 36 (1): 1528. doi:10.1016/s0094-114x(00)00032-x.
Březina, Lukáš, Ondřej Andrš, and Tomáš Březina. 2008. “Ni Labview-Matlab Simmechanics Stewart Platform Design.” Applied and Computational Mechanics. University of West Bohemia.
Březina, T., and L. Březina. 2010. “Controller Design of the Stewart Platform Linear Actuator.” In Recent Advances in Mechatronics, 34146. Recent Advances in Mechatronics. Springer Berlin Heidelberg. doi:10.1007/978-3-642-05022-0_58.
Buzurovic, Ivan. 2012. “Advanced Control Methodologies in Parallel Robotic Systems.” Advances in Robotics & Automation 01 (s6). doi:10.4172/2168-9695.s6-e001.
Cheng, Yuan, Gexue Ren, and ShiLiang Dai. 2004. “The Multi-Body System Modelling of the Gough-Stewart Platform for Vibration Control.” Journal of Sound and Vibration 271 (3-5): 599614. doi:10.1016/s0022-460x(03)00283-9.
Chen, Hong-Jen, Ronald Bishop, and Brij Agrawal. 2003. “Payload Pointing and Active Vibration Isolation Using Hexapod Platforms.” In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi:10.2514/6.2003-1643.
Chi, Weichao, Dengqing Cao, Dongwei Wang, Jie Tang, Yifan Nie, and Wenhu Huang. 2015. “Design and Experimental Study of a Vcm-Based Stewart Parallel Mechanism Used for Active Vibration Isolation.” Energies 8 (8): 800119. doi:10.3390/en8088001.
Cleary, K., and T. Arai. 1991. “A Prototype Parallel Manipulator: Kinematics, Construction, Software, Workspace Results, and Singularity Analysis.” In Proceedings. 1991 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1991.131641.
Dasgupta, Bhaskar, and T.S. Mruthyunjaya. 2000. “The Stewart Platform Manipulator: A Review.” Mechanism and Machine Theory 35 (1): 1540. doi:10.1016/s0094-114x(99)00006-3.
Defendini, A, L Vaillon, F Trouve, Th Rouze, B Sanctorum, G Griseri, P Spanoudakis, and M von Alberti. 2000. “Technology Predevelopment for Active Control of Vibration and Very High Accuracy Pointing Systems.” In Spacecraft Guidance, Navigation and Control Systems, 425:385.
Deng, R. 2017. “Integrated 6-DoF Lorentz Actuator with Gravity Compensation for Vibration Isolation in in-Line Surface Metrology.” TU Delft.
Dong, Wei, Lining Sun, and Zhijiang Du. 2008. “Stiffness Research on a High-Precision, Large-Workspace Parallel Mechanism with Compliant Joints.” Precision Engineering 32 (3): 22231. doi:10.1016/j.precisioneng.2007.08.002.
Dong, W., L.N. Sun, and Z.J. Du. 2007. “Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators.” Sensors and Actuators a: Physical 135 (1): 25056. doi:10.1016/j.sna.2006.07.011.
Du, Zhijiang, Ruochong Shi, and Wei Dong. 2014. “A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments.” IEEE Transactions on Robotics 30 (1): 13137. doi:10.1109/tro.2013.2288800.
Furqan, Mohd, Mohd Suhaib, and Nazeer Ahmad. 2017. “Studies on Stewart Platform Manipulator: A Review.” Journal of Mechanical Science and Technology 31 (9): 445970. doi:10.1007/s12206-017-0846-1.
Furutani, Katsushi, Michio Suzuki, and Ryusei Kudoh. 2004. “Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism.” Measurement Science and Technology 15 (2): 46774. doi:10.1088/0957-0233/15/2/022.
Geng, Zheng, and Leonard S. Haynes. 1993. “Six-Degree-of-Freedom Active Vibration Isolation Using a Stewart Platform Mechanism.” Journal of Robotic Systems 10 (5): 72544. doi:10.1002/rob.4620100510.
Geng, Z.J., and L.S. Haynes. 1994. “Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms.” IEEE Transactions on Control Systems Technology 2 (1): 4553. doi:10.1109/87.273110.
Geng, Z. Jason, George G. Pan, Leonard S. Haynes, Ben K. Wada, and John A. Garba. 1995. “An Intelligent Control System for Multiple Degree-of-Freedom Vibration Isolation.” Journal of Intelligent Material Systems and Structures 6 (6): 787800. doi:10.1177/1045389x9500600607.
Gexue, Ren, Lu Qiuhai, Hu Ning, Nan Rendong, and Peng Bo. 2004. “On Vibration Control with Stewart Parallel Mechanism.” Mechatronics 14 (1): 113. doi:10.1016/s0957-4158(02)00092-2.
Hanieh, Ahmed Abu. 2003. “Active Isolation and Damping of Vibrations via Stewart Platform.” Université Libre de Bruxelles, Brussels, Belgium.
Hauge, G.S., and M.E. Campbell. 2004. “Sensors and Control of a Space-Based Six-Axis Vibration Isolation System.” Journal of Sound and Vibration 269 (3-5): 91331. doi:10.1016/s0022-460x(03)00206-2.
Horin, P. Ben, and M. Shoham. 2006. “Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra.” IEEE Transactions on Robotics 22 (4): 57790. doi:10.1109/tro.2006.878958.
Houška, P., T. Březina, and L. Březina. 2010. “Design and Implementation of the Absolute Linear Position Sensor for the Stewart Platform.” In Recent Advances in Mechatronics, 34752. Recent Advances in Mechatronics. Springer Berlin Heidelberg. doi:10.1007/978-3-642-05022-0_59.
Huang, Chin I, and Li-Chen Fu. 2005. “Smooth Sliding Mode Tracking Control of the Stewart Platform.” In Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005. doi:10.1109/cca.2005.1507098.
Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” IEEE Transactions on Robotics and Automation 19 (4). Institute of Electrical and Electronics Engineers (IEEE): 595603. doi:10.1109/tra.2003.814506.
Jiang, Qimi, and Clément M. Gosselin. 2009a. “Determination of the Maximal Singularity-Free Orientation Workspace for the Gough-Stewart Platform.” Mechanism and Machine Theory 44 (6): 128193. doi:10.1016/j.mechmachtheory.2008.07.005.
———. 2009b. “Evaluation and Representation of the Theoretical Orientation Workspace of the Gough-Stewart Platform.” Journal of Mechanisms and Robotics 1 (2). doi:10.1115/1.3046137.
Jiao, Jian, Ying Wu, Kaiping Yu, and Rui Zhao. 2018. “Dynamic Modeling and Experimental Analyses of Stewart Platform with Flexible Hinges.” Journal of Vibration and Control 25 (1): 15171. doi:10.1177/1077546318772474.
Kim, Dong Hwan, Ji-Yoon Kang, and Kyo-Il Lee. 2000. “Robust Tracking Control Design for a 6 Dof Parallel Manipulator.” Journal of Robotic Systems 17 (10): 52747. doi:10.1002/1097-4563(200010)17:10$<$527:AID-ROB2>3.0.CO;2-A.
Kim, Hwa Soo, and Young Man Cho. 2009. “Design and Modeling of a Novel 3-Dof Precision Micro-Stage.” Mechatronics 19 (5): 598608. doi:10.1016/j.mechatronics.2009.01.004.
Lei, Liu, and Wang Benli. 2008. “Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms via $H_\Infty$ and $\Mu$ Synthesis.” Chinese Journal of Aeronautics 21 (2): 12533. doi:10.1016/s1000-9361(08)60016-3.
Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” IEEE Transactions on Control Systems Technology 11 (2): 26772. doi:10.1109/tcst.2003.809248.
Li, Xiaochun. 2001. “Simultaneous, Fault-Tolerant Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” University of Wyoming.
Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In Smart Structures and Materials 2001: Smart Structures and Integrated Systems. doi:10.1117/12.436521.
McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328). doi:10.1109/cca.1999.806694.
———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” IEEE/ASME Transactions on Mechatronics 7 (1): 9599. doi:10.1109/3516.990892.
McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” IEEE Transactions on Robotics and Automation 16 (4): 37281. doi:10.1109/70.864229.
McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” IEEE/ASME Transactions on Mechatronics 4 (1): 9195. doi:10.1109/3516.752089.
Merlet, Jean-Pierre. 2002. “Still a Long Way to Go on the Road for Parallel Mechanisms.” In Proc. ASME 2002 DETC Conf., Montreal.
Min, Da, Deqing Huang, and Hu Su. 2019. “High-Precision Tracking of Cubic Stewart Platform Using Active Disturbance Rejection Control.” In 2019 Chinese Control Conference (CCC). doi:10.23919/chicc.2019.8866606.
Molina, Fabian Andres Lara, Joao Mauricio Rosario, and Oscar Fernando Aviles Sanchez. 2008. “Simulation Environment Proposal, Analysis and Control of a Stewart Platform Manipulator.” In 7th Brazilian Conference on Dynamics, Control & Applications.
Naves, Mark. 2020. “Design and Optimization of Large Stroke Flexure Mechanisms.” Univeristy of Twente.
Naves, M, WBJ Hakvoort, M Nijenhuis, and DM Brouwer. 2020. “T-Flex: A Large Range of Motion Fully Flexure-Based 6-DOF Hexapod.” In 20th EUSPEN International Conference & Exhibition, EUSPEN 2020, 2058. EUSPEN.
OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots through Experiments on a 6 Legged Platform.” In Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207). doi:10.1109/acc.1998.703532.
Patel, Y. D., and P. M. George. 2012. “Parallel Manipulators Applications-a Survey.” Modern Mechanical Engineering 02 (03). Scientific Research Publishing, Inc,: 5764. doi:10.4236/mme.2012.23008.
Pernkopf, F, and M L Husty. 2006. “Workspace Analysis of Stewart-Gough-Type Parallel Manipulators.” Proceedings of the Institution of Mechanical Engineers, Part c: Journal of Mechanical Engineering Science 220 (7): 101932. doi:10.1243/09544062jmes194.
Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” Journal of Sound and Vibration 300 (3-5): 64461. doi:10.1016/j.jsv.2006.07.050.
Preumont, Andre. 2018. Vibration Control of Active Structures - Fourth Edition. Solid Mechanics and Its Applications. Springer International Publishing. doi:10.1007/978-3-319-72296-2.
Pu, H, X Chen, Z Zhou, and X Luo. 2011. “Six-Degree-of-Freedom Active Vibration Isolation System with Decoupled Collocated Control.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226 (2): 31325. doi:10.1177/0954405411414336.
Rahman, Zahidul H., John T. Spanos, and Robert A. Laskin. 1998. “Multiaxis Vibration Isolation, Suppression, and Steering System for Space Observational Applications.” In Telescope Control Systems III. doi:10.1117/12.308821.
Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In Proceedings of 1995 American Control Conference - ACC95. doi:10.1109/acc.1995.529280.
Su, Y.X., B.Y. Duan, C.H. Zheng, Y.F. Zhang, G.D. Chen, and J.W. Mi. 2004. “Disturbance-Rejection High-Precision Motion Control of a Stewart Platform.” IEEE Transactions on Control Systems Technology 12 (3): 36474. doi:10.1109/tcst.2004.824315.
Taghirad, Hamid. 2013. Parallel Robots : Mechanics and Control. Boca Raton, FL: CRC Press.
Tang, Jie, Dengqing Cao, and Tianhu Yu. 2018. “Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments.” Proceedings of the Institution of Mechanical Engineers, Part c: Journal of Mechanical Engineering Science 233 (1): 13245. doi:10.1177/0954406218756941.
Taranti, Christian, Brij Agrawal, and Roberto Cristi. 2001. “An Efficient Algorithm for Vibration Suppression to Meet Pointing Requirements of Optical Payloads.” In AIAA Guidance, Navigation, and Control Conference and Exhibit, 4094.
Thayer, D., and J. Vagners. 1998. “A Look at the Pole/Zero Structure of a Stewart Platform Using Special Coordinate Basis.” In Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207). doi:10.1109/acc.1998.703595.
Thayer, Doug, Mark Campbell, Juris Vagners, and Andrew von Flotow. 2002. “Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors.” Journal of Spacecraft and Rockets 39 (2): 20612. doi:10.2514/2.3821.
Ting, Yung, H.-C. Jar, and Chun-Chung Li. 2006. “Design of a 6DOF Stewart-Type Nanoscale Platform.” In 2006 Sixth IEEE Conference on Nanotechnology. doi:10.1109/nano.2006.247808.
Ting, Yung, Ho-Chin Jar, and Chun-Chung Li. 2007. “Measurement and Calibration for Stewart Micromanipulation System.” Precision Engineering 31 (3): 22633. doi:10.1016/j.precisioneng.2006.09.004.
Ting, Yung, Chun-Chung Li, and Tho Van Nguyen. 2013. “Composite Controller Design for a 6dof Stewart Nanoscale Platform.” Precision Engineering 37 (3): 67183. doi:10.1016/j.precisioneng.2013.01.012.
Tjepkema, D. 2012. “Active Hard Mount Vibration Isolation for Precision Equipment [Ph. D. Thesis].”
Tjepkema, D., J. van Dijk, and H.M.J.R. Soemers. 2012. “Sensor Fusion for Active Vibration Isolation in Precision Equipment.” Journal of Sound and Vibration 331 (4): 73549. doi:10.1016/j.jsv.2011.09.022.
Torii, Akihiro, Masaaki Banno, Akiteru Ueda, and Kae Doki. 2012. “A Small-Size Self-Propelled Stewart Platform.” Electrical Engineering in Japan 181 (2): 3746. doi:10.1002/eej.21261.
Vivas, Oscar Andrés. 2004. “Contribution À Lidentification et À La Commande Des Robots Parallèles.” Université Montpellier II-Sciences et Techniques du Languedoc.
Wang, Chaoxin, Xiling Xie, Yanhao Chen, and Zhiyi Zhang. 2016. “Investigation on Active Vibration Isolation of a Stewart Platform with Piezoelectric Actuators.” Journal of Sound and Vibration 383 (November). Elsevier BV: 119. doi:10.1016/j.jsv.2016.07.021.
Xie, Xiling, Chaoxin Wang, and Zhiyi Zhang. 2017. “Modeling and Control of a Hybrid Passive/Active Stewart Vibration Isolation Platform.” In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 255:184453. 6. Institute of Noise Control Engineering.
Yang, Chifu, Zhengmao Ye, O. Ogbobe Peter, and Junwei Han. 2010. “Modeling and Simulation of Spatial 6-DOF Parallel Robots Using Simulink and SimMechanics.” In 2010 3rd International Conference on Computer Science and Information Technology. doi:10.1109/iccsit.2010.5563824.
Yang, XiaoLong, HongTao Wu, Bai Chen, ShengZheng Kang, and ShiLi Cheng. 2019. “Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation.” Journal of Sound and Vibration 439 (January). Elsevier BV: 398412. doi:10.1016/j.jsv.2018.10.007.
Yang, XiaoLong, HongTao Wu, Yao Li, and Bai Chen. 2017. “Dynamic Isotropic Design and Decentralized Active Control of a Six-Axis Vibration Isolator via Stewart Platform.” Mechanism and Machine Theory 117: 24452. doi:10.1016/j.mechmachtheory.2017.07.017.
Yun, Yuan, and Yangmin Li. 2010. “Design and Analysis of a Novel 6-Dof Redundant Actuated Parallel Robot with Compliant Hinges for High Precision Positioning.” Nonlinear Dynamics 61 (4): 82945. doi:10.1007/s11071-010-9690-x.
Zhang, Zhen, J Liu, Jq Mao, Yx Guo, and Yh Ma. 2011. “Six DOF Active Vibration Control Using Stewart Platform with Non-Cubic Configuration.” In 2011 6th IEEE Conference on Industrial Electronics and Applications. doi:10.1109/iciea.2011.5975679.
NO_ITEM_DATA:gao02_necw_kinem_struc_paral_manip_desig
NO_ITEM_DATA:merlet06_paral_robot