digital-brain/content/zettels/signal_to_noise_ratio.md

101 lines
4.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

+++
title = "Signal to Noise Ratio"
author = ["Dehaeze Thomas"]
draft = false
+++
Tags
: [Electronics]({{< relref "electronics.md" >}}), [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting.md" >}})
## SNR to Noise PSD {#snr-to-noise-psd}
From (<a href="#citeproc_bib_item_2">Jabben 2007</a>) (Section 3.3.2):
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
> The noise performance of components like sensors, amplifiers, converters, etc., is often specified in terms of a **Signal to Noise Ratio** (SNR).
> The SNR gives the **ratio of the RMS value of a sine that covers the full range** of the channel through which the signal is propagating **over the RMS value of the electrical noise**.
>
> Usually, the SNR is specified up to a certain cut-off frequency.
> If no information on the colouring of the noise is available, then the corresponding **PSD can be assumed to be white up to the cut-off frequency** \\(f\_c\\):
> \\[ S\_{snr} = \frac{x\_{fr}^2}{8 f\_c C\_{snr}^2} \\]
> with \\(x\_{fr}\\) the full range of \\(x\\), and \\(C\_{snr}\\) the SNR.
<div class="exampl">
Let's take an example.
- \\(x\_{fr} = 170 V\\)
- \\(C\_{snr} = 85 dB\\)
- \\(f\_c = 200 Hz\\)
The Power Spectral Density of the output voltage is:
\\[ S\_{snr} = \frac{170^2}{8 \cdot 200 \cdot {10^{\frac{2 \cdot 85}{20}}}} = 5.7 \cdot 10^{-8}\ V^2/Hz \\]
And the RMS of that noise up to \\(f\_c\\) is:
\\[ S\_{rms} = \sqrt{S\_{snr} \cdot f\_c} \approx 3.4\ mV \\]
</div>
## Convert SNR to Noise RMS value {#convert-snr-to-noise-rms-value}
The RMS value of the noise can be computed from:
\\[ N\_\text{rms} = 10^{-\frac{S\_{snr}}{20}} S\_\text{rms} \\]
where \\(S\_{snr}\\) is the SNR in dB and \\(S\_\text{rms}\\) is the RMS value of a sinus taking the full range.
If the full range is \\(\Delta V\\), then:
\\[ S\_\text{rms} = \frac{\Delta V/2}{\sqrt{2}} \\]
<div class="exampl">
As an example, let's take a voltage amplifier with a full range of \\(\Delta V = 20V\\) and a SNR of 85dB.
The RMS value of the noise is then:
\\[ n\_\text{rms} = 10^{-\frac{S\_{nrs}}{20}} s\_\text{rms} \\]
\\[ n\_\text{rms} = 10^{-\frac{85}{20}} \frac{10}{\sqrt{2}} \approx 0.4 mV\_\text{rms} \\]
</div>
## Convert wanted Noise RMS value to required SNR {#convert-wanted-noise-rms-value-to-required-snr}
If the wanted full range and RMS value of the noise are defined, the required SNR can be computed from:
\\[ S\_{snr} = 20 \log \frac{\text{Signal, rms}}{\text{Noise, rms}} \\]
<div class="exampl">
Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V\\), the corresponding SNR is:
\\[ S\_{snr} = 20 \log \frac{\frac{20/2}{\sqrt{2}}}{10^{-3}} \approx 77dB \\]
</div>
## Noise Density to RMS noise {#noise-density-to-rms-noise}
From (<a href="#citeproc_bib_item_1">Fleming 2010</a>):
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
The peak to peak amplitude is then approximately \\(6 \sigma\\).
<div class="exampl">
- noise density = \\(20 pm/\sqrt{Hz}\\)
- bandwidth = 100Hz
\\[ \sigma = \sqrt{2 \times 100} \times 20 = 0.28nm RMS \\]
The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
</div>
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>IEEE/ASME Transactions on Mechatronics</i> 15 (3): 43347. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.</div>
</div>