digital-brain/content/zettels/multivariable_control.md

41 lines
1.4 KiB
Markdown

+++
title = "Multivariable Control"
author = ["Dehaeze Thomas"]
draft = false
+++
Tags
: [Norms]({{< relref "norms.md" >}})
A very nice book about Multivariable Control is <skogestad07_multiv_feedb_contr>
## Transfer functions for Multi-Input Multi-Output systems {#transfer-functions-for-multi-input-multi-output-systems}
{{< figure src="/ox-hugo/mimo_tf.png" >}}
\\[ T\_i = -\frac{u}{d\_i} = (I + KG)^{-1} KG \\]
\\[ T\_o = -\frac{p\_o}{d\_o} = (I + GK)^{-1} GK \\]
\\[ S\_i = \frac{p\_i}{d\_i} = (I + KG)^{-1} \\]
\\[ S\_o = \frac{y}{d\_o} = (I + GK)^{-1} \\]
## Measures of interaction {#measures-of-interaction}
- Interaction index (for \\(2 \times 2\\) plant):
\\[ \phi = \frac{g\_{12}g\_{21}}{g\_{11}g\_{22}} \\]
When \\(\phi\\) is close to zero, this means there is no interaction.
- The **relative gain array** of a square matrix:
\\[ \text{RGA}(G) \triangleq G \times ( G^{-1})^T \\]
## Stability {#stability}
- **Characteristic Loci**: Eigenvalues of \\(G(j\omega)\\) plotted in the complex plane
- **Generalized Nyquist Criterion**: If \\(G(s)\\) has \\(p\_0\\) unstable poles, then the closed-loop system with return ratio \\(kG(s)\\) is stable if and only if the characteristic loci of \\(kG(s)\\), taken together, encircle the point \\(-1\\), \\(p\_0\\) times anti-clockwise, assuming there are no hidden modes
## Bibliography {#bibliography}
<./biblio/references.bib>