63 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
+++
 | 
						|
title = "Mass Spring Damper Systems"
 | 
						|
author = ["Dehaeze Thomas"]
 | 
						|
draft = false
 | 
						|
+++
 | 
						|
 | 
						|
Tags
 | 
						|
:
 | 
						|
 | 
						|
 | 
						|
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
 | 
						|
 | 
						|
Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where:
 | 
						|
 | 
						|
-   \\(m\\) is the mass in [kg]
 | 
						|
-   \\(ḱ\\) is the spring stiffness in [N/m]
 | 
						|
-   \\(c\\) is the damping coefficient in [N/(m/s)]
 | 
						|
-   \\(F\\) is the actuator force in [N]
 | 
						|
-   \\(F\_d\\) is external force applied to the mass in [N]
 | 
						|
-   \\(w\\) is ground motion
 | 
						|
-   \\(x\\) is the absolute mass motion
 | 
						|
 | 
						|
<a id="figure--fig:mass-spring-damper-system"></a>
 | 
						|
 | 
						|
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="<span class=\"figure-number\">Figure 1: </span>Mass Spring Damper System" >}}
 | 
						|
 | 
						|
Let's write the transfer function from \\(F\\) to \\(x\\):
 | 
						|
 | 
						|
\begin{equation}
 | 
						|
  \frac{x}{F}(s) = \frac{1}{m s^2 + c s + k}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
This can be re-written as:
 | 
						|
 | 
						|
\begin{equation}
 | 
						|
  \frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
with:
 | 
						|
 | 
						|
-   \\(\omega\_0\\) the natural frequency in [rad/s]
 | 
						|
-   \\(\xi\\) the damping ratio
 | 
						|
 | 
						|
 | 
						|
## Transmissibility {#transmissibility}
 | 
						|
 | 
						|
\begin{equation}
 | 
						|
  \frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
 | 
						|
## Compliance {#compliance}
 | 
						|
 | 
						|
\begin{equation}
 | 
						|
  \frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
 | 
						|
## Bibliography {#bibliography}
 | 
						|
 | 
						|
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
 | 
						|
</div>
 |