Update Content - 2020-10-15
This commit is contained in:
@@ -13,9 +13,9 @@ Tags
|
||||
|
||||
Resources:
|
||||
|
||||
- ([Skogestad and Postlethwaite 2007](#org352385f))
|
||||
- ([Toivonen 2002](#orga84ee63))
|
||||
- ([Zhang 2011](#org74fd92c))
|
||||
- ([Skogestad and Postlethwaite 2007](#org44811fa))
|
||||
- ([Toivonen 2002](#orgfbd38d8))
|
||||
- ([Zhang 2011](#orgc3b14cc))
|
||||
|
||||
|
||||
## Definition {#definition}
|
||||
@@ -178,17 +178,17 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
|
||||
As explained in ([Monkhorst 2004](#org50a92a2)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in ([Monkhorst 2004](#orgc4a9d92)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org50a92a2"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="orgc4a9d92"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="org352385f"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="org44811fa"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="orga84ee63"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
<a id="orgfbd38d8"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
<a id="org74fd92c"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
<a id="orgc3b14cc"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
|
Reference in New Issue
Block a user