Update Content - 2020-10-15
This commit is contained in:
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [A concept of active mount for space applications]({{< relref "souleille18_concep_activ_mount_space_applic" >}})
|
||||
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
|
||||
|
@@ -4,20 +4,20 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
|
||||
Tags
|
||||
: [Complementary Filters]({{< relref "complementary_filters" >}})
|
||||
|
||||
([Beijen et al. 2019](#orgb647b35))
|
||||
([Beijen et al. 2019](#orgaff80f9))
|
||||
|
||||
([Beijen 2018](#orgb43eced)) (section 6.3.1)
|
||||
([Beijen 2018](#org35f402d)) (section 6.3.1)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgb43eced"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
|
||||
<a id="org35f402d"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
|
||||
|
||||
<a id="orgb647b35"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:106–16. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
|
||||
<a id="orgaff80f9"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:106–16. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
|
||||
|
@@ -4,11 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
|
||||
Tags
|
||||
@@ -24,18 +24,18 @@ Links to specific actuators:
|
||||
|
||||
For vibration isolation:
|
||||
|
||||
- In ([Ito and Schitter 2016](#org04f932d)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
- In ([Ito and Schitter 2016](#org7d0bcd5)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
|
||||
|
||||
## Brush-less DC Motor {#brush-less-dc-motor}
|
||||
|
||||
- ([Yedamale 2003](#orge9272fd))
|
||||
- ([Yedamale 2003](#org87858d4))
|
||||
|
||||
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org04f932d"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
<a id="org7d0bcd5"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
|
||||
<a id="orge9272fd"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
<a id="org87858d4"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
|
@@ -23,9 +23,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
|
||||
Interestingly, the noise amplitude is uniformly distributed.
|
||||
|
||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgf06d261)).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org5848c2b)).
|
||||
|
||||
<a id="orgf06d261"></a>
|
||||
<a id="org5848c2b"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||
|
||||
@@ -48,7 +48,7 @@ Thus, the two-sided PSD (from \\(\frac{-f\_s}{2}\\) to \\(\frac{f\_s}{2}\\)), we
|
||||
\int\_{-f\_s/2}^{f\_s/2} \Gamma(f) d f = f\_s \Gamma = \frac{q^2}{12}
|
||||
\end{equation}
|
||||
|
||||
<div class="important">
|
||||
<div class="bred">
|
||||
<div></div>
|
||||
|
||||
Finally, the Power Spectral Density of the quantization noise of an ADC is equal to:
|
||||
@@ -62,7 +62,7 @@ Finally, the Power Spectral Density of the quantization noise of an ADC is equal
|
||||
|
||||
</div>
|
||||
|
||||
<div class="examp">
|
||||
<div class="bgreen">
|
||||
<div></div>
|
||||
|
||||
Let's take a 18bits ADC with a range of +/-10V and a sample frequency of 10kHz.
|
||||
|
@@ -4,10 +4,15 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Description:
|
||||
|
||||
## Description of Capacitive Sensors {#description-of-capacitive-sensors}
|
||||
|
||||
- <http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html>
|
||||
- <https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors>
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
|
||||
|
||||
According to ([Preumont 2018](#org97812d4)):
|
||||
According to ([Preumont 2018](#org5d050e8)):
|
||||
|
||||
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
|
||||
>
|
||||
@@ -19,9 +19,9 @@ According to ([Preumont 2018](#org97812d4)):
|
||||
|
||||
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
|
||||
|
||||
From Figure [1](#org9754446), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
From Figure [1](#org0d605b2), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
|
||||
<a id="org9754446"></a>
|
||||
<a id="org0d605b2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
|
||||
|
||||
@@ -40,4 +40,4 @@ Of course, this will reduce the sensibility.
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org97812d4"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="org5d050e8"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
||||
- [Actuator Fusion]({{< relref "actuator_fusion" >}})
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
@@ -19,7 +19,7 @@ Tags
|
||||
|
||||
## Special Properties {#special-properties}
|
||||
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org916c010)))
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org4014064)))
|
||||
|
||||
> 1. The payload mass-inertia matrix is diagonal
|
||||
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
|
||||
@@ -27,4 +27,4 @@ Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org916c010"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org4014064"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Dynamic error budgeting, a design approach]({{< relref "monkhorst04_dynam_error_budget" >}})
|
||||
- [Systems and Signals Norms]({{< relref "norms" >}})
|
||||
@@ -15,12 +15,12 @@ draft = false
|
||||
Tags
|
||||
:
|
||||
|
||||
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#org9c3cf08)).
|
||||
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#orgce880aa)).
|
||||
|
||||
|
||||
## Step by Step process {#step-by-step-process}
|
||||
|
||||
Taken from ([Monkhorst 2004](#org9c3cf08)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
Taken from ([Monkhorst 2004](#orgce880aa)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
|
||||
> Step by step, the process is as follows:
|
||||
>
|
||||
@@ -36,4 +36,4 @@ Taken from ([Monkhorst 2004](#org9c3cf08)): ([Notes]({{< relref "monkhorst04_dyn
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9c3cf08"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="orgce880aa"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
@@ -4,9 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Analog to Digital Converters]({{< relref "analog_to_digital_converters" >}})
|
||||
- [Digital to Analog Converters]({{< relref "digital_to_analog_converters" >}})
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [Current Amplifier]({{< relref "current_amplifier" >}})
|
||||
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Vibration Simulation using Matlab and ANSYS]({{< relref "hatch00_vibrat_matlab_ansys" >}})
|
||||
|
||||
@@ -16,17 +16,17 @@ Tags
|
||||
|
||||
Some resources:
|
||||
|
||||
- ([Hatch 2000](#org7219756)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- ([Khot and Yelve 2011](#org9158163))
|
||||
- ([Kovarac et al. 2015](#orga16f226))
|
||||
- ([Hatch 2000](#org4303bb7)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- ([Khot and Yelve 2011](#org31239e2))
|
||||
- ([Kovarac et al. 2015](#org304a9dd))
|
||||
|
||||
The idea is to extract reduced state space model from Ansys into Matlab.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org7219756"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
|
||||
<a id="org4303bb7"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
|
||||
|
||||
<a id="org9158163"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:953–58.
|
||||
<a id="org31239e2"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:953–58.
|
||||
|
||||
<a id="orga16f226"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 37–41.
|
||||
<a id="org304a9dd"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 37–41.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
|
||||
- [Dynamic modeling and experimental analyses of stewart platform with flexible hinges]({{< relref "jiao18_dynam_model_exper_analy_stewar" >}})
|
||||
@@ -14,6 +14,7 @@ draft = false
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Dynamic modeling of flexure jointed hexapods for control purposes]({{< relref "mcinroy99_dynam" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
- [Flexures]({{< relref "flexures" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
@@ -23,16 +24,16 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Lobontiu 2002](#orgf8c62f3))
|
||||
- ([Henein 2003](#org4dba0af))
|
||||
- ([Smith 2005](#orgeb2cb93))
|
||||
- ([Soemers 2011](#org7d2ccfb))
|
||||
- ([Cosandier 2017](#org4a2f5bd))
|
||||
- ([Lobontiu 2002](#org74b9989))
|
||||
- ([Henein 2003](#org1491e2e))
|
||||
- ([Smith 2005](#orgcdbef5f))
|
||||
- ([Soemers 2011](#org9626592))
|
||||
- ([Cosandier 2017](#org9b28dc9))
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From ([Chen and McInroy 2000](#orga69dc7b)):
|
||||
From ([Chen and McInroy 2000](#org4bbdddf)):
|
||||
|
||||
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
@@ -41,14 +42,14 @@ From ([Chen and McInroy 2000](#orga69dc7b)):
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga69dc7b"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org4bbdddf"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org4a2f5bd"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
<a id="org9b28dc9"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org4dba0af"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
<a id="org1491e2e"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="orgf8c62f3"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
<a id="org74b9989"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="orgeb2cb93"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
<a id="orgcdbef5f"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
|
||||
<a id="org7d2ccfb"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
<a id="org9626592"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
|
@@ -13,18 +13,18 @@ Tags
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
- ([Smith 2000](#org0c6025e))
|
||||
- ([Lobontiu 2002](#org42ce68f))
|
||||
- ([Henein 2003](#org59d412b))
|
||||
- ([Cosandier 2017](#org637114f))
|
||||
- ([Smith 2000](#org48aca5d))
|
||||
- ([Lobontiu 2002](#org45b1d4f))
|
||||
- ([Henein 2003](#org516fc89))
|
||||
- ([Cosandier 2017](#orgb511c9e))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org637114f"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
<a id="orgb511c9e"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org59d412b"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
<a id="org516fc89"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="org42ce68f"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
<a id="org45b1d4f"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="org0c6025e"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
||||
<a id="org48aca5d"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
||||
|
@@ -8,9 +8,10 @@ Backlinks:
|
||||
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
@@ -21,7 +22,7 @@ Tags
|
||||
|
||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#orga926d58)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org9ffb699)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
@@ -54,4 +55,4 @@ However, if a charge conditioner is used, the signal will be doubled.
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga926d58"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org9ffb699"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Guidelines for the selection of weighting functions for h-infinity control]({{< relref "bibel92_guidel_h" >}})
|
||||
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Control of spacecraft and aircraft]({{< relref "bryson93_contr_spacec_aircr" >}})
|
||||
@@ -14,28 +14,28 @@ Tags
|
||||
|
||||
High-Authority Control/Low-Authority Control
|
||||
|
||||
From ([Preumont 2018](#org8496b17)):
|
||||
From ([Preumont 2018](#org2917245)):
|
||||
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#orgf651b12). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org9ce3153). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
>
|
||||
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
|
||||
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
|
||||
> - The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)
|
||||
|
||||
<a id="orgf651b12"></a>
|
||||
<a id="org9ce3153"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="Figure 1: HAC-LAC Control Architecture" >}}
|
||||
|
||||
Nice papers:
|
||||
|
||||
- ([Williams and Antsaklis 1989](#org457e1df))
|
||||
- ([Aubrun 1980](#org0d91759))
|
||||
- ([Williams and Antsaklis 1989](#orge6af6e6))
|
||||
- ([Aubrun 1980](#org05dd00f))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org0d91759"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):444–51. <https://doi.org/10.2514/3.56019>.
|
||||
<a id="org05dd00f"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):444–51. <https://doi.org/10.2514/3.56019>.
|
||||
|
||||
<a id="org8496b17"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="org2917245"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org457e1df"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.
|
||||
<a id="orge6af6e6"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.
|
||||
|
@@ -17,10 +17,10 @@ Tags
|
||||
|
||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgc31d4ec))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org79555eb))
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgb478ab9))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org83cb971))
|
||||
|
||||
<a id="orgf5b5084"></a>
|
||||
<a id="org57bff9f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||
|
||||
@@ -41,7 +41,7 @@ Wireless Accelerometers
|
||||
|
||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||
|
||||
<a id="orgaedbdbc"></a>
|
||||
<a id="orgcf3bc21"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||
|
||||
@@ -58,13 +58,13 @@ Wireless Accelerometers
|
||||
| Guralp | [link](https://www.guralp.com/products/surface) | UK |
|
||||
| Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada |
|
||||
|
||||
<a id="orgcf4f484"></a>
|
||||
<a id="orgde66251"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgc31d4ec"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
<a id="orgb478ab9"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
|
||||
<a id="org79555eb"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
<a id="org83cb971"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
@@ -38,16 +42,16 @@ Tags
|
||||
|
||||
## Interferometer Precision {#interferometer-precision}
|
||||
|
||||
([Jang and Kim 2017](#org95c0093))
|
||||
([Jang and Kim 2017](#orgc0eaaa4))
|
||||
|
||||
<a id="org69d5980"></a>
|
||||
<a id="orge2a3743"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Sources of uncertainty {#sources-of-uncertainty}
|
||||
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgd56bef1)).
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org2c23555)).
|
||||
|
||||
It includes:
|
||||
|
||||
@@ -57,16 +61,16 @@ It includes:
|
||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||
- These errors can partially be compensated using an environmental unit.
|
||||
- Air turbulence (Figure [2](#org0f5db6f))
|
||||
- Air turbulence (Figure [2](#org92b4926))
|
||||
- Non linearity
|
||||
|
||||
<a id="org0f5db6f"></a>
|
||||
<a id="org92b4926"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgd56bef1"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
<a id="org2c23555"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
|
||||
<a id="org95c0093"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
<a id="orgc0eaaa4"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
@@ -32,7 +32,7 @@ Tags
|
||||
>
|
||||
> The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.
|
||||
|
||||
From ([Shaw and Srinivasan 1990](#org99d8f66))
|
||||
From ([Shaw and Srinivasan 1990](#org5be9a82))
|
||||
|
||||
> The FIR are capable of realizing filters with linear phase shift characteristics and furthermore are less susceptible to signal input and filter coefficient quantization effects.
|
||||
> However, their computational demands are excessively large because of the large number of multiplications and additions to be performed at each sampling interval.
|
||||
@@ -51,4 +51,4 @@ From <https://dsp.stackexchange.com/a/30999>
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org99d8f66"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
<a id="org5be9a82"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Simulink]({{< relref "simulink" >}})
|
||||
|
||||
Tags
|
||||
: [Simulink]({{< relref "simulink" >}})
|
||||
|
||||
@@ -12,11 +16,11 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Higham 2017](#org706fce9))
|
||||
- ([Attaway 2018](#org83f2c16))
|
||||
- ([OverFlow 2018](#orgc00fab5))
|
||||
- ([Johnson 2010](#org6262ff7))
|
||||
- ([Hahn and Valentine 2016](#org0601633))
|
||||
- ([Higham 2017](#org11a6efd))
|
||||
- ([Attaway 2018](#org88197da))
|
||||
- ([OverFlow 2018](#org403ccdc))
|
||||
- ([Johnson 2010](#org2c4f5cd))
|
||||
- ([Hahn and Valentine 2016](#org45a0e18))
|
||||
|
||||
|
||||
## Useful Commands {#useful-commands}
|
||||
@@ -101,12 +105,12 @@ Nice functions:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org83f2c16"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
<a id="org88197da"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
|
||||
<a id="org0601633"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
<a id="org45a0e18"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
|
||||
<a id="org706fce9"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
<a id="org11a6efd"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
|
||||
<a id="org6262ff7"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
<a id="org2c4f5cd"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
|
||||
<a id="orgc00fab5"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
<a id="org403ccdc"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Fundamental principles of engineering nanometrology]({{< relref "leach14_fundam_princ_engin_nanom" >}})
|
||||
|
||||
|
@@ -4,10 +4,12 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
- [Force Sensors]({{< relref "force_sensors" >}})
|
||||
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
|
||||
- [System Identification]({{< relref "system_identification" >}})
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Shaker]({{< relref "shaker" >}})
|
||||
|
10
content/zettels/model_predictive_control.md
Normal file
10
content/zettels/model_predictive_control.md
Normal file
@@ -0,0 +1,10 @@
|
||||
+++
|
||||
title = "Model Predictive Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Advanced motion control for precision mechatronics: control, identification, and learning of complex systems]({{< relref "oomen18_advan_motion_contr_precis_mechat" >}})
|
||||
|
||||
|
@@ -15,9 +15,9 @@ Backlinks:
|
||||
Tags
|
||||
: [Norms]({{< relref "norms" >}})
|
||||
|
||||
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org12cc089))
|
||||
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#orgd6dd02e))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org12cc089"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="orgd6dd02e"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution]({{< relref "wang12_autom_marker_full_field_hard" >}})
|
||||
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
|
||||
|
@@ -13,9 +13,9 @@ Tags
|
||||
|
||||
Resources:
|
||||
|
||||
- ([Skogestad and Postlethwaite 2007](#org352385f))
|
||||
- ([Toivonen 2002](#orga84ee63))
|
||||
- ([Zhang 2011](#org74fd92c))
|
||||
- ([Skogestad and Postlethwaite 2007](#org44811fa))
|
||||
- ([Toivonen 2002](#orgfbd38d8))
|
||||
- ([Zhang 2011](#orgc3b14cc))
|
||||
|
||||
|
||||
## Definition {#definition}
|
||||
@@ -178,17 +178,17 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
|
||||
As explained in ([Monkhorst 2004](#org50a92a2)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in ([Monkhorst 2004](#orgc4a9d92)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org50a92a2"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
<a id="orgc4a9d92"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="org352385f"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="org44811fa"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="orga84ee63"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
<a id="orgfbd38d8"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
<a id="org74fd92c"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
<a id="orgc3b14cc"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
|
@@ -36,7 +36,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org43d4aea)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org340217c)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@@ -60,14 +60,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org9dfeb24)):
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orge216fed)):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6e94433)).
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org58c76c8)).
|
||||
|
||||
<a id="org7dbc771"></a>
|
||||
<a id="org149ff7f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||
|
||||
@@ -159,51 +159,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgb5bc7ee)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3fa87dc)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="orgb5bc7ee"></a>
|
||||
<a id="org3fa87dc"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgc323a64)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8acd580)).
|
||||
|
||||
<a id="orgc323a64"></a>
|
||||
<a id="org8acd580"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org1b3fdc7)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org2781d4a)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="org1b3fdc7"></a>
|
||||
<a id="org2781d4a"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org9677b03)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org79cc909)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="org9677b03"></a>
|
||||
<a id="org79cc909"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9dfeb24"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
<a id="orge216fed"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="org43d4aea"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org340217c"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org6e94433"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
<a id="org58c76c8"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
@@ -11,11 +11,11 @@ Backlinks:
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors" >}})
|
||||
- [Encoders]({{< relref "encoders" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors" >}})
|
||||
- [Linear variable differential transformers]({{< relref "linear_variable_differential_transformers" >}})
|
||||
- [Interferometers]({{< relref "interferometers" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
@@ -33,7 +33,7 @@ High precision positioning sensors include:
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orga8fba50)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orge209c43)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@@ -72,4 +72,4 @@ Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionp
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga8fba50"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<a id="orge209c43"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
@@ -9,9 +9,9 @@ Tags
|
||||
|
||||
Tutorial about Power Spectral Density is accessible [here](https://tdehaeze.github.io/spectral-analysis/).
|
||||
|
||||
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org28534e1)).
|
||||
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org5137183)).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org28534e1"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
|
||||
<a id="org5137183"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Basics of precision engineering - 1st edition]({{< relref "leach18_basic_precis_engin_edition" >}})
|
||||
- [Design for precision: current status and trends]({{< relref "schellekens98_desig_precis" >}})
|
||||
|
@@ -19,36 +19,36 @@ Tags
|
||||
|
||||
## Here are my favorite books {#here-are-my-favorite-books}
|
||||
|
||||
([Steinbuch and Oomen 2016](#org9c65473))
|
||||
([Taghirad 2013](#orgcd6d01b))
|
||||
([Lurie 2012](#org6d15976))
|
||||
([Skogestad and Postlethwaite 2007](#org19459a0))
|
||||
([Schmidt, Schitter, and Rankers 2014](#org44678d0))
|
||||
([Preumont 2018](#org0fc3a2c))
|
||||
([Leach 2014](#orge863e61))
|
||||
([Ewins 2000](#org5455809))
|
||||
([Leach and Smith 2018](#org3c0b64d))
|
||||
([Horowitz 2015](#org6083f7f))
|
||||
([Steinbuch and Oomen 2016](#org662d0f5))
|
||||
([Taghirad 2013](#orgcce6317))
|
||||
([Lurie 2012](#org52a8951))
|
||||
([Skogestad and Postlethwaite 2007](#orgaf2a97d))
|
||||
([Schmidt, Schitter, and Rankers 2014](#org8465a79))
|
||||
([Preumont 2018](#org43a3abb))
|
||||
([Leach 2014](#org974f416))
|
||||
([Ewins 2000](#org89be7f5))
|
||||
([Leach and Smith 2018](#org7904c40))
|
||||
([Horowitz 2015](#orga618168))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org5455809"></a>Ewins, DJ. 2000. _Modal Testing: Theory, Practice and Application_. _Research Studies Pre, 2nd Ed., ISBN-13_. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.
|
||||
<a id="org89be7f5"></a>Ewins, DJ. 2000. _Modal Testing: Theory, Practice and Application_. _Research Studies Pre, 2nd Ed., ISBN-13_. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.
|
||||
|
||||
<a id="org6083f7f"></a>Horowitz, Paul. 2015. _The Art of Electronics - Third Edition_. New York, NY, USA: Cambridge University Press.
|
||||
<a id="orga618168"></a>Horowitz, Paul. 2015. _The Art of Electronics - Third Edition_. New York, NY, USA: Cambridge University Press.
|
||||
|
||||
<a id="orge863e61"></a>Leach, Richard. 2014. _Fundamental Principles of Engineering Nanometrology_. Elsevier. <https://doi.org/10.1016/c2012-0-06010-3>.
|
||||
<a id="org974f416"></a>Leach, Richard. 2014. _Fundamental Principles of Engineering Nanometrology_. Elsevier. <https://doi.org/10.1016/c2012-0-06010-3>.
|
||||
|
||||
<a id="org3c0b64d"></a>Leach, Richard, and Stuart T. Smith. 2018. _Basics of Precision Engineering - 1st Edition_. CRC Press.
|
||||
<a id="org7904c40"></a>Leach, Richard, and Stuart T. Smith. 2018. _Basics of Precision Engineering - 1st Edition_. CRC Press.
|
||||
|
||||
<a id="org6d15976"></a>Lurie, B. J. 2012. _Classical Feedback Control : with MATLAB and Simulink_. Boca Raton, FL: CRC Press.
|
||||
<a id="org52a8951"></a>Lurie, B. J. 2012. _Classical Feedback Control : with MATLAB and Simulink_. Boca Raton, FL: CRC Press.
|
||||
|
||||
<a id="org0fc3a2c"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="org43a3abb"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org44678d0"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="org8465a79"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
||||
<a id="org19459a0"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="orgaf2a97d"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="org9c65473"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.
|
||||
<a id="org662d0f5"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.
|
||||
|
||||
<a id="orgcd6d01b"></a>Taghirad, Hamid. 2013. _Parallel Robots : Mechanics and Control_. Boca Raton, FL: CRC Press.
|
||||
<a id="orgcce6317"></a>Taghirad, Hamid. 2013. _Parallel Robots : Mechanics and Control_. Boca Raton, FL: CRC Press.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Slip Rings]({{< relref "slip_rings" >}})
|
||||
|
||||
Tags
|
||||
: [Slip Rings]({{< relref "slip_rings" >}})
|
||||
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Nanopositioning with multiple sensors: a case study in data storage]({{< relref "sebastian12_nanop_with_multip_sensor" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
|
@@ -4,8 +4,9 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
|
||||
Tags
|
||||
|
@@ -6,8 +6,8 @@ draft = false
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Force Sensors]({{< relref "force_sensors" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
|
@@ -17,7 +17,7 @@ Tags
|
||||
|
||||
## SNR to Noise PSD {#snr-to-noise-psd}
|
||||
|
||||
From ([Jabben 2007](#org87840a5)) (Section 3.3.2):
|
||||
From ([Jabben 2007](#orgae2d3e0)) (Section 3.3.2):
|
||||
|
||||
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
|
||||
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
|
||||
@@ -84,7 +84,7 @@ Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V
|
||||
|
||||
## Noise Density to RMS noise {#noise-density-to-rms-noise}
|
||||
|
||||
From ([Fleming 2010](#orgc255675)):
|
||||
From ([Fleming 2010](#org1022284)):
|
||||
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
|
||||
|
||||
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
|
||||
@@ -104,6 +104,6 @@ The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgc255675"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org1022284"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org87840a5"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
<a id="orgae2d3e0"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## SVD of a MIMO system {#svd-of-a-mimo-system}
|
||||
|
||||
This is taken from ([Skogestad and Postlethwaite 2007](#org4953f60)).
|
||||
This is taken from ([Skogestad and Postlethwaite 2007](#orga80f5ed)).
|
||||
|
||||
We are interested by the physical interpretation of the SVD when applied to the frequency response of a MIMO system \\(G(s)\\) with \\(m\\) inputs and \\(l\\) outputs.
|
||||
|
||||
@@ -43,7 +43,7 @@ Then is follows that:
|
||||
|
||||
## SVD to pseudo inverse rectangular matrices {#svd-to-pseudo-inverse-rectangular-matrices}
|
||||
|
||||
This is taken from ([Preumont 2018](#org6558f35)).
|
||||
This is taken from ([Preumont 2018](#orgb521567)).
|
||||
|
||||
The **Singular Value Decomposition** (SVD) is a generalization of the eigenvalue decomposition of a rectangular matrix:
|
||||
\\[ J = U \Sigma V^T = \sum\_{i=1}^r \sigma\_i u\_i v\_i^T \\]
|
||||
@@ -65,6 +65,6 @@ This will have usually little impact of the fitting error while reducing conside
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6558f35"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
<a id="orgb521567"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org4953f60"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
<a id="orga80f5ed"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
@@ -59,36 +59,36 @@ Tags
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#orgb1b8013))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#org06dafcc))
|
||||
- ([McInroy 1999](#orga04f28d))
|
||||
- ([McInroy and Hamann 2000](#org61fde10))
|
||||
- ([Chen and McInroy 2000](#org4b76086))
|
||||
- ([McInroy 2002](#orgc3f19a5))
|
||||
- ([Li, Hamann, and McInroy 2001](#org469fdd4))
|
||||
- ([Lin and McInroy 2003](#org52d73bd))
|
||||
- ([Jafari and McInroy 2003](#orga8e7146))
|
||||
- ([Chen and McInroy 2004](#org97f0e30))
|
||||
- ([O’Brien et al. 1998](#org604163d))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgeab0f36))
|
||||
- ([McInroy 1999](#orga8f456c))
|
||||
- ([McInroy and Hamann 2000](#orga3c9d81))
|
||||
- ([Chen and McInroy 2000](#orgf8f0bf1))
|
||||
- ([McInroy 2002](#org5e8fb03))
|
||||
- ([Li, Hamann, and McInroy 2001](#org2ed87b9))
|
||||
- ([Lin and McInroy 2003](#orgdd8e380))
|
||||
- ([Jafari and McInroy 2003](#org777ce71))
|
||||
- ([Chen and McInroy 2004](#orgcc43b30))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org97f0e30"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
<a id="orgcc43b30"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="org4b76086"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="orgf8f0bf1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="orga8e7146"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
<a id="org777ce71"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="org52d73bd"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
<a id="orgdd8e380"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="org469fdd4"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
<a id="org2ed87b9"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="orga04f28d"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
<a id="orga8f456c"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="orgc3f19a5"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
<a id="org5e8fb03"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="org61fde10"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
<a id="orga3c9d81"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="org06dafcc"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
<a id="orgeab0f36"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="orgb1b8013"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
<a id="org604163d"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
|
@@ -1,6 +1,6 @@
|
||||
+++
|
||||
title = "Trainings"
|
||||
author = ["Dehaeze Thomas"]
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
|
@@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
||||
|
||||
|
@@ -38,9 +38,9 @@ Tags
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org81a4c8c)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgbf6bfad)).
|
||||
|
||||
<a id="org81a4c8c"></a>
|
||||
<a id="orgbf6bfad"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
@@ -60,7 +60,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#orgc5c0812).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org29f059d).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@@ -74,7 +74,7 @@ C = 1e-6; % [F]
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="orgc5c0812"></a>
|
||||
<a id="org29f059d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
@@ -110,7 +110,7 @@ This can pose several problems:
|
||||
|
||||
### Noise {#noise}
|
||||
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org48e03fb)).
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#orge9a57bd)).
|
||||
|
||||
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
||||
|
||||
@@ -122,13 +122,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
|
||||
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
||||
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
||||
|
||||
This is discussed in ([Spengen 2017](#org9c0a539)).
|
||||
This is discussed in ([Spengen 2017](#orge194af0)).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orge4d11f6"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
<a id="org892a333"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
||||
<a id="org9c0a539"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
<a id="orge194af0"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
|
||||
<a id="org48e03fb"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
<a id="orge9a57bd"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
|
Reference in New Issue
Block a user