Update Content - 2020-10-15

This commit is contained in:
2020-10-15 21:36:53 +02:00
parent f1cad23157
commit f1c89b14f6
113 changed files with 834 additions and 786 deletions

View File

@@ -8,7 +8,7 @@ Tags
: [H Infinity Control]({{< relref "h_infinity_control" >}})
Reference
: ([Bibel and Malyevac 1992](#org47391fd))
: ([Bibel and Malyevac 1992](#org50b9640))
Author(s)
: Bibel, J. E., & Malyevac, D. S.
@@ -19,11 +19,11 @@ Year
## Properties of feedback control {#properties-of-feedback-control}
<a id="org55b0783"></a>
<a id="org1554fcc"></a>
{{< figure src="/ox-hugo/bibel92_control_diag.png" caption="Figure 1: Control System Diagram" >}}
From the figure [1](#org55b0783), we have:
From the figure [1](#org1554fcc), we have:
\begin{align\*}
y(s) &= T(s) r(s) + S(s) d(s) - T(s) n(s)\\\\\\
@@ -77,11 +77,11 @@ Usually, reference signals and disturbances occur at low frequencies, while nois
</div>
<a id="orgbbca2ea"></a>
<a id="orgce70b5f"></a>
{{< figure src="/ox-hugo/bibel92_general_plant.png" caption="Figure 2: \\(\mathcal{H}\_\infty\\) control framework" >}}
New design framework (figure [2](#orgbbca2ea)): \\(P(s)\\) is the **generalized plant** transfer function matrix:
New design framework (figure [2](#orgce70b5f)): \\(P(s)\\) is the **generalized plant** transfer function matrix:
- \\(w\\): exogenous inputs
- \\(z\\): regulated performance output
@@ -108,9 +108,9 @@ The \\(H\_\infty\\) control problem is to find a controller that minimizes \\(\\
## Weights for inputs/outputs signals {#weights-for-inputs-outputs-signals}
Since \\(S\\) and \\(T\\) cannot be minimized together at all frequency, **weights are introduced to shape the solutions**. Not only can \\(S\\) and \\(T\\) be weighted, but other regulated performance variables and inputs (figure [3](#org75a0ac3)).
Since \\(S\\) and \\(T\\) cannot be minimized together at all frequency, **weights are introduced to shape the solutions**. Not only can \\(S\\) and \\(T\\) be weighted, but other regulated performance variables and inputs (figure [3](#orgca469d2)).
<a id="org75a0ac3"></a>
<a id="orgca469d2"></a>
{{< figure src="/ox-hugo/bibel92_hinf_weights.png" caption="Figure 3: Input and Output weights in \\(\mathcal{H}\_\infty\\) framework" >}}
@@ -154,15 +154,15 @@ When using both \\(W\_S\\) and \\(W\_T\\), it is important to make sure that the
## Unmodeled dynamics weighting function {#unmodeled-dynamics-weighting-function}
Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an **unmodeled dynamics uncertainty block** that may be added from the plant input to the plant output (figure [4](#orgd3e0294)).
Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an **unmodeled dynamics uncertainty block** that may be added from the plant input to the plant output (figure [4](#org96cc166)).
<a id="orgd3e0294"></a>
<a id="org96cc166"></a>
{{< figure src="/ox-hugo/bibel92_unmodeled_dynamics.png" caption="Figure 4: Unmodeled dynamics model" >}}
The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown figure [5](#org6d5884c).
The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown figure [5](#orgab966f3).
<a id="org6d5884c"></a>
<a id="orgab966f3"></a>
{{< figure src="/ox-hugo/bibel92_weight_dynamics.png" caption="Figure 5: Example of unmodeled dynamics weight" >}}
@@ -184,4 +184,4 @@ Typically actuator input weights are constant over frequency and set at the inve
## Bibliography {#bibliography}
<a id="org47391fd"></a>Bibel, John E, and D Stephen Malyevac. 1992. “Guidelines for the Selection of Weighting Functions for H-Infinity Control.” NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA.
<a id="org50b9640"></a>Bibel, John E, and D Stephen Malyevac. 1992. “Guidelines for the Selection of Weighting Functions for H-Infinity Control.” NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA.