Update many posts
This commit is contained in:
377
public/paper/hauge04_sensor_contr_space_based_six/index.html
Normal file
377
public/paper/hauge04_sensor_contr_space_based_six/index.html
Normal file
@@ -0,0 +1,377 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
|
||||
<title>Sensors and control of a space-based six-axis vibration isolation system - My digital brain</title>
|
||||
<meta name="renderer" content="webkit" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
|
||||
|
||||
<meta http-equiv="Cache-Control" content="no-transform" />
|
||||
<meta http-equiv="Cache-Control" content="no-siteapp" />
|
||||
|
||||
<meta name="theme-color" content="#f8f5ec" />
|
||||
<meta name="msapplication-navbutton-color" content="#f8f5ec">
|
||||
<meta name="apple-mobile-web-app-capable" content="yes">
|
||||
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
|
||||
|
||||
|
||||
<meta name="author" content="
|
||||
|
||||
|
||||
—
|
||||
|
||||
Thomas Dehaeze
|
||||
|
||||
|
||||
|
||||
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation, Cubic Architecture Reference (Hauge &amp; Campbell, 2004) Author(s) Hauge, G., &amp; Campbell, M. Year 2004 Discusses:
|
||||
Choice of sensors and control architecture Predictability and limitations of the system dynamics Two-Sensor control architecture Vibration isolation using a Stewart platform Experimental comparison of Force sensor and Inertial Sensor and associated control architecture for vibration isolation
|
||||
Figure 1: Hexapod for active vibration isolation" />
|
||||
<link rel="canonical" href="/paper/hauge04_sensor_contr_space_based_six/" />
|
||||
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
|
||||
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
|
||||
|
||||
|
||||
|
||||
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
|
||||
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<body>
|
||||
<div id="mobile-navbar" class="mobile-navbar">
|
||||
<div class="mobile-header-logo">
|
||||
<a href="/" class="logo">Digital Brain</a>
|
||||
</div>
|
||||
<div class="mobile-navbar-icon">
|
||||
<span></span>
|
||||
<span></span>
|
||||
<span></span>
|
||||
</div>
|
||||
</div>
|
||||
<nav id="mobile-menu" class="mobile-menu slideout-menu">
|
||||
<ul class="mobile-menu-list">
|
||||
<a href="/">
|
||||
<li class="mobile-menu-item">Home</li>
|
||||
</a><a href="/zettels/">
|
||||
<li class="mobile-menu-item">Zettels</li>
|
||||
</a><a href="/book/">
|
||||
<li class="mobile-menu-item">Books</li>
|
||||
</a><a href="/paper/">
|
||||
<li class="mobile-menu-item">Papers</li>
|
||||
</a><a href="/search/">
|
||||
<li class="mobile-menu-item">Search</li>
|
||||
</a>
|
||||
</ul>
|
||||
</nav>
|
||||
<div class="container" id="mobile-panel">
|
||||
<header id="header" class="header">
|
||||
<div class="logo-wrapper">
|
||||
<a href="/" class="logo">Digital Brain</a>
|
||||
</div>
|
||||
|
||||
<nav class="site-navbar">
|
||||
<ul id="menu" class="menu">
|
||||
<li class="menu-item">
|
||||
<a class="menu-item-link" href="/">Home</a>
|
||||
</li><li class="menu-item">
|
||||
<a class="menu-item-link" href="/zettels/">Zettels</a>
|
||||
</li><li class="menu-item">
|
||||
<a class="menu-item-link" href="/book/">Books</a>
|
||||
</li><li class="menu-item">
|
||||
<a class="menu-item-link" href="/paper/">Papers</a>
|
||||
</li><li class="menu-item">
|
||||
<a class="menu-item-link" href="/search/">Search</a>
|
||||
</li>
|
||||
</ul>
|
||||
</nav>
|
||||
|
||||
</header>
|
||||
|
||||
<main id="main" class="main">
|
||||
<div class="content-wrapper">
|
||||
<div id="content" class="content">
|
||||
<article class="post">
|
||||
|
||||
<header class="post-header">
|
||||
<h1 class="post-title">Sensors and control of a space-based six-axis vibration isolation system</h1>
|
||||
</header>
|
||||
|
||||
<div class="post-toc" id="post-toc">
|
||||
<h2 class="post-toc-title">Contents</h2>
|
||||
<div class="post-toc-content">
|
||||
<nav id="TableOfContents"></nav>
|
||||
</div>
|
||||
</div>
|
||||
<div class="post-content">
|
||||
<dl>
|
||||
<dt>Tags</dt>
|
||||
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/cubic_architecture/">Cubic Architecture</a></dd>
|
||||
<dt>Reference</dt>
|
||||
<dd><sup id="f9698a1741fe7492aa9b7b42c7724670"><a href="#hauge04_sensor_contr_space_based_six" title="Hauge \& Campbell, Sensors and Control of a Space-Based Six-Axis Vibration Isolation System, {Journal of Sound and Vibration}, v(3-5), 913-931 (2004).">(Hauge & Campbell, 2004)</a></sup></dd>
|
||||
<dt>Author(s)</dt>
|
||||
<dd>Hauge, G., & Campbell, M.</dd>
|
||||
<dt>Year</dt>
|
||||
<dd>2004</dd>
|
||||
</dl>
|
||||
<p><strong>Discusses</strong>:</p>
|
||||
<ul>
|
||||
<li>Choice of sensors and control architecture</li>
|
||||
<li>Predictability and limitations of the system dynamics</li>
|
||||
<li>Two-Sensor control architecture</li>
|
||||
<li>Vibration isolation using a Stewart platform</li>
|
||||
<li>Experimental comparison of Force sensor and Inertial Sensor and associated control architecture for vibration isolation</li>
|
||||
</ul>
|
||||
<p><a id="org666133a"></a></p>
|
||||
<figure>
|
||||
<img src="/ox-hugo/hauge04_stewart_platform.png"
|
||||
alt="Figure 1: Hexapod for active vibration isolation"/> <figcaption>
|
||||
<p>Figure 1: Hexapod for active vibration isolation</p>
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<p><strong>Stewart platform</strong> (Figure <a href="#org666133a">1</a>):</p>
|
||||
<ul>
|
||||
<li>Low corner frequency</li>
|
||||
<li>Large actuator stroke (\(\pm5mm\))</li>
|
||||
<li>Sensors in each strut (Figure <a href="#org4d96564">2</a>):
|
||||
<ul>
|
||||
<li>three-axis load cell</li>
|
||||
<li>base and payload geophone in parallel with the struts</li>
|
||||
<li>LVDT</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
<p><a id="org4d96564"></a></p>
|
||||
<figure>
|
||||
<img src="/ox-hugo/hauge05_struts.png"
|
||||
alt="Figure 2: Strut"/> <figcaption>
|
||||
<p>Figure 2: Strut</p>
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<blockquote>
|
||||
<p>Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness.</p>
|
||||
</blockquote>
|
||||
<p><strong>Performance Objective</strong> (frequency domain metric):</p>
|
||||
<ul>
|
||||
<li>The transmissibility should be close to 1 between 0-1.5Hz
|
||||
\(-3dB < |T(\omega)| < 3db\)</li>
|
||||
<li>The transmissibility should be below -20dB in the 5-20Hz range
|
||||
\(|T(\omega)| < -20db\)</li>
|
||||
</ul>
|
||||
<p>With \(|T(\omega)|\) is the Frobenius norm of the transmissibility matrix and is used to obtain a scalar performance metric.</p>
|
||||
<p><strong>Challenge</strong>:</p>
|
||||
<ul>
|
||||
<li>small frequency separation between the two requirements</li>
|
||||
</ul>
|
||||
<p><strong>Robustness</strong>:</p>
|
||||
<ul>
|
||||
<li>minimization of the transmissibility amplification (Bode’s “pop”) outside the performance region</li>
|
||||
</ul>
|
||||
<p><strong>Model</strong>:</p>
|
||||
<ul>
|
||||
<li>single strut axis as the cubic Stewart platform can be decomposed into 6 single-axis systems</li>
|
||||
</ul>
|
||||
<p><a id="org74432f8"></a></p>
|
||||
<figure>
|
||||
<img src="/ox-hugo/hauge04_strut_model.png"
|
||||
alt="Figure 3: Strut model"/> <figcaption>
|
||||
<p>Figure 3: Strut model</p>
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<p><strong>Zero Pair when using a Force Sensor</strong>:</p>
|
||||
<ul>
|
||||
<li>The frequency of the zero pair corresponds to the resonance frequency of the payload mass and the “parasitic” stiffness (sum of the cross-axial, suspension, wiring stiffnesses)</li>
|
||||
<li>This zero pair is usually not predictable nor repeatable</li>
|
||||
<li>In this Stewart platform, this zero pair uncertainty is due to the internal wiring of the struts</li>
|
||||
</ul>
|
||||
<p><strong>Control</strong>:</p>
|
||||
<ul>
|
||||
<li>Single-axis controllers => combine them into a full six-axis controller => evaluate the full controller in terms of stability and robustness</li>
|
||||
<li>Sensitivity weighted LQG controller (SWLQG) => address robustness in flexible dynamic systems</li>
|
||||
<li>Three type of controller:
|
||||
<ul>
|
||||
<li>Force feedback (cell-based)</li>
|
||||
<li>Inertial feedback (geophone-based)</li>
|
||||
<li>Combined force/velocity feedback (load cell/geophone based)</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
<blockquote>
|
||||
<p>The use of multivariable and robust control on the full 6x6 hexapod does not improve performance over single-axis designs.</p>
|
||||
</blockquote>
|
||||
<p><a id="table--tab:hauge05-comp-load-cell-geophone"></a></p>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:hauge05-comp-load-cell-geophone">Table 1</a></span>:
|
||||
Typical characteristics of sensors used for isolation in hexapod systems
|
||||
</div>
|
||||
<table>
|
||||
<thead>
|
||||
<tr>
|
||||
<th></th>
|
||||
<th><strong>Load cell</strong></th>
|
||||
<th><strong>Geophone</strong></th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td>Type</td>
|
||||
<td>Relative</td>
|
||||
<td>Inertial</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Relationship with voice coil</td>
|
||||
<td>Collocated and Dual</td>
|
||||
<td>Non-Collocated and non-Dual</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Open loop transfer function</td>
|
||||
<td>(+) Alternating poles/zeros</td>
|
||||
<td>(-) Large phase drop</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Limitation from low-frequency zero pair</td>
|
||||
<td>(-) Yes</td>
|
||||
<td>(+) No</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Sensitive to payload/base dynamics</td>
|
||||
<td>(+) No</td>
|
||||
<td>(-) Yes</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Best frequency range</td>
|
||||
<td>High (low-freq zero limitation)</td>
|
||||
<td>Low (high-freq toll-off limitation)</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
<p><strong>Ability of a sensor-actuator pair to improve performance</strong>:
|
||||
General system with input \(u\), performance \(z\), output \(y\) disturbance \(u\).</p>
|
||||
<p>Given a sensor \(u\) and actuator \(y\) and a controller \(u = -K(s) y\), the closed loop disturbance to performance transfer function can be written as:</p>
|
||||
<p>\[ \left[ \frac{z}{w} \right]_\text{CL} = \frac{G(s)_{zw} + K(G(s)_{zw} G(s)_{yu} - G(s)_{zu} G(s)_{yw})}{1 + K G(s)_{yu}} \]</p>
|
||||
<p>In order to obtain a significant performance improvement is to use a high gain controller, <em>provided</em> the term \(G(s)_{zw} + K(G(s)_{zw} G(s)_{yu} - G(s)_{zu} G(s)_{yw})\) is small.</p>
|
||||
<p>We can compare the transfer function from \(w\) to \(z\) with and without a high gain controller.
|
||||
And we find that for \(u\) and \(y\) to be an acceptable pair for high gain control:
|
||||
\[ \left| \frac{G(j\omega)_{zw} G(j\omega)_{yu} - G(j\omega)_{zu} G(j\omega)_{yw}}{K G(j\omega)_{yu}} \right| \ll |G_{zw}(j\omega)| \]</p>
|
||||
<p><strong>Controllers</strong>:</p>
|
||||
<p><strong>Force feedback</strong>:</p>
|
||||
<ul>
|
||||
<li>Performance limited by the low frequency zero-pair</li>
|
||||
<li>It is desirable to separate the zero-pair and first most are separated by at least a decade in frequency</li>
|
||||
<li>This can be achieve by reducing the cross-axis stiffness</li>
|
||||
<li>If the low frequency zero pair is inverted, robustness is lost</li>
|
||||
<li>Thus, the force feedback controller should be designed to have combined performance and robustness at frequencies at least a decade above the zero pair</li>
|
||||
<li>The presented controller as a high pass filter at to reduce the gain below the zero-pair, a lag at low frequency to improve phase margin, and a low pass filter for roll off</li>
|
||||
</ul>
|
||||
<p><strong>Inertial feedback</strong>:</p>
|
||||
<ul>
|
||||
<li>Non-Collocated => multiple phase drops that limit the bandwidth of the controller</li>
|
||||
<li>Good performance, but the transmissibility “pops” due to low phase margin and thus this indicates robustness problems</li>
|
||||
</ul>
|
||||
<p><strong>Combined force/velocity feedback</strong>:</p>
|
||||
<ul>
|
||||
<li>Use the low frequency performance advantages of geophone sensor with the high robustness advantages of the load cell sensor</li>
|
||||
<li>A Single-Input-Multiple-Outputs (SIMO) controller is found using LQG</li>
|
||||
<li>The performance requirements are met</li>
|
||||
<li>Good robustness</li>
|
||||
</ul>
|
||||
<p><a id="orgca6905f"></a></p>
|
||||
<figure>
|
||||
<img src="/ox-hugo/hauge04_obtained_transmissibility.png"
|
||||
alt="Figure 4: Experimental open loop (solid) and closed loop six-axis transmissibility using the geophone only controller (dotted), and combined geophone/load cell controller (dashed)"/> <figcaption>
|
||||
<p>Figure 4: Experimental open loop (solid) and closed loop six-axis transmissibility using the geophone only controller (dotted), and combined geophone/load cell controller (dashed)</p>
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h1 id="bibliography">Bibliography</h1>
|
||||
<p><a id="hauge04_sensor_contr_space_based_six"></a>Hauge, G., & Campbell, M., <em>Sensors and control of a space-based six-axis vibration isolation system</em>, Journal of Sound and Vibration, <em>269(3-5)</em>, 913–931 (2004). <a href="http://dx.doi.org/10.1016/s0022-460x(03)00206-2">http://dx.doi.org/10.1016/s0022-460x(03)00206-2</a> <a href="#f9698a1741fe7492aa9b7b42c7724670">↩</a></p>
|
||||
|
||||
</div>
|
||||
|
||||
<footer class="post-footer">
|
||||
|
||||
<nav class="post-nav">
|
||||
<a class="prev" href="/paper/collette15_sensor_fusion_method_high_perfor/">
|
||||
<i class="iconfont icon-left"></i>
|
||||
<span class="prev-text nav-default">Sensor fusion methods for high performance active vibration isolation systems</span>
|
||||
<span class="prev-text nav-mobile">Prev</span>
|
||||
</a>
|
||||
<a class="next" href="/paper/li01_simul_vibrat_isolat_point_contr/">
|
||||
<span class="next-text nav-default">Simultaneous vibration isolation and pointing control of flexure jointed hexapods</span>
|
||||
<span class="next-text nav-mobile">Next</span>
|
||||
<i class="iconfont icon-right"></i>
|
||||
</a>
|
||||
</nav>
|
||||
</footer>
|
||||
</article>
|
||||
</div>
|
||||
</div>
|
||||
</main>
|
||||
|
||||
<footer id="footer" class="footer">
|
||||
<div class="social-links">
|
||||
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
|
||||
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
|
||||
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
|
||||
</div>
|
||||
|
||||
<div class="copyright">
|
||||
<span class="power-by">
|
||||
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
|
||||
</span>
|
||||
|
||||
<span class="copyright-year">
|
||||
©
|
||||
2020
|
||||
<span class="heart">
|
||||
<i class="iconfont icon-heart"></i>
|
||||
</span>
|
||||
<span class="author">Thomas Dehaeze</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
</footer>
|
||||
|
||||
<div class="back-to-top" id="back-to-top">
|
||||
<i class="iconfont icon-up"></i>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
|
||||
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
|
||||
|
||||
|
||||
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
|
||||
|
||||
|
||||
<script type="text/javascript">
|
||||
window.MathJax = {
|
||||
loader: {
|
||||
load: ['[tex]/ams']
|
||||
},
|
||||
tex: {
|
||||
inlineMath: [
|
||||
['$','$'], ['\\(','\\)']
|
||||
],
|
||||
tags: 'ams',
|
||||
packages: {'[+]': ['ams']},
|
||||
}
|
||||
};
|
||||
</script>
|
||||
|
||||
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
|
||||
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
|
||||
<script type="text/javascript" src="/lib/search/search.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
Reference in New Issue
Block a user