Update many posts

This commit is contained in:
2020-06-03 22:43:54 +02:00
parent 7ad9601cbf
commit e5e6f1aa7a
589 changed files with 41329 additions and 897 deletions

View File

@@ -0,0 +1,309 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Nanopositioning system with force feedback for high-performance tracking and vibration control - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Sensor Fusion, Force Sensors Reference (Fleming, 2010) Author(s) Fleming, A. Year 2010 Summary:
The noise generated by a piezoelectric force sensor is much less than a capacitive sensor Dynamical model of a piezoelectric stack actuator and piezoelectric force sensor Noise of a piezoelectric force sensor IFF with a piezoelectric stack actuator and piezoelectric force sensor A force sensor is used as a displacement sensor below the frequency of the first zero Sensor fusion architecture with a capacitive sensor and a force sensor and using complementary filters Virtual sensor fusion architecture (called low-frequency bypass) Analog implementation of the control strategies to avoid quantization noise, finite resolution and sampling delay Model of a multi-layer monolithic piezoelectric stack actuator" />
<link rel="canonical" href="/paper/fleming10_nanop_system_with_force_feedb/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Nanopositioning system with force feedback for high-performance tracking and vibration control</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#model-of-a-multi-layer-monolithic-piezoelectric-stack-actuator">Model of a multi-layer monolithic piezoelectric stack actuator</a></li>
<li><a href="#dynamics-of-a-piezoelectric-force-sensor">Dynamics of a piezoelectric force sensor</a></li>
<li><a href="#noise-of-a-piezoelectric-force-sensor">Noise of a piezoelectric force sensor</a></li>
</ul>
<ul>
<li><a href="#backlinks">Backlinks</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/sensor_fusion/">Sensor Fusion</a>, <a href="/zettels/force_sensors/">Force Sensors</a></dd>
<dt>Reference</dt>
<dd><sup id="c823f68dd2a72b9667a61b3c046b4731"><a href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Fleming, A.</dd>
<dt>Year</dt>
<dd>2010</dd>
</dl>
<p>Summary:</p>
<ul>
<li>The noise generated by a piezoelectric force sensor is much less than a capacitive sensor</li>
<li>Dynamical model of a piezoelectric stack actuator and piezoelectric force sensor</li>
<li>Noise of a piezoelectric force sensor</li>
<li>IFF with a piezoelectric stack actuator and piezoelectric force sensor</li>
<li>A force sensor is used as a displacement sensor below the frequency of the first zero</li>
<li>Sensor fusion architecture with a capacitive sensor and a force sensor and using complementary filters</li>
<li>Virtual sensor fusion architecture (called low-frequency bypass)</li>
<li>Analog implementation of the control strategies to avoid quantization noise, finite resolution and sampling delay</li>
</ul>
<h2 id="model-of-a-multi-layer-monolithic-piezoelectric-stack-actuator">Model of a multi-layer monolithic piezoelectric stack actuator</h2>
<p><a id="orgf7e4ab9"></a></p>
<figure>
<img src="/ox-hugo/fleming10_piezo_model.png"
alt="Figure 1: Schematic of a multi-layer monolithic piezoelectric stack actuator model"/> <figcaption>
<p>Figure 1: Schematic of a multi-layer monolithic piezoelectric stack actuator model</p>
</figcaption>
</figure>
<p>The actuator experiences an internal stress in response to an applied voltage.
This stress is represented by the voltage dependent force \(F_a\) and is related to free displacement by
\[ \Delta L = \frac{F_a}{k_a} \]</p>
<ul>
<li>\(\Delta L\) is the change in actuator length in [m]</li>
<li>\(k_a\) is the actuator stiffness in [N/m]</li>
</ul>
<p>The developed force \(F_a\) is related to the applied voltage by:
\[ \Delta L = d_{33} n V_a \]</p>
<ul>
<li>\(d_{33}\) is the piezoelectric strain constant in [m/V]</li>
<li>\(n\) is the number of layers</li>
<li>\(V_a\) is the applied voltage in [V]</li>
</ul>
<p>Combining the two equations, we obtain:
\[ F_a = d_{33} n k_a V_a \]</p>
<p>The ratio of the developed force to applied voltage is \(d_{33} n k_a\) in [N/V].
We denote this constant by \(g_a\) and:
\[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \]</p>
<h2 id="dynamics-of-a-piezoelectric-force-sensor">Dynamics of a piezoelectric force sensor</h2>
<p>Piezoelectric force sensors provide a high sensitivity and bandwidth with low noise at high frequencies.</p>
<p>If a <strong>single wafer</strong> of piezoelectric material is sandwiched between the actuator and platform:
\[ D = d_{33} T \]</p>
<ul>
<li>\(D\) is the amount of generated charge per unit area in \([C/m^2]\)</li>
<li>\(T\) is the stress in \([N/m^2]\)</li>
<li>\(d_{33}\) is the piezoelectric strain constant in \([m/V] = [C/N]\)</li>
</ul>
<p>The generated charge is then
\[ q = d_{33} F_s \]</p>
<p>If an <strong>n-layer</strong> piezoelectric transducer is used as a force sensor, the generated charge is then:
\[ q = n d_{33} F_s \]</p>
<hr>
<p>We can use a <strong>charge amplifier</strong> to measure the force \(F_s\).</p>
<figure>
<img src="/ox-hugo/fleming10_charge_ampl_piezo.png"
alt="Figure 2: Electrical model of a piezoelectric force sensor is shown in gray. Developed charge \(q\) is proportional to the strain and hence the force experienced by the sensor. Op-amp charge amplifier produces an output voltage \(V_s\) equal to \(-q/C_s\)"/> <figcaption>
<p>Figure 2: Electrical model of a piezoelectric force sensor is shown in gray. Developed charge \(q\) is proportional to the strain and hence the force experienced by the sensor. Op-amp charge amplifier produces an output voltage \(V_s\) equal to \(-q/C_s\)</p>
</figcaption>
</figure>
<p>The output voltage \(V_s\) is equal to
\[ V_s = -\frac{q}{C_s} = -\frac{n d_{33}F_s}{C_s} \]
that is, the scaling between the force and voltage is \(-\frac{n d_{33}F_s}{C_s}\ [V/N]\) .</p>
<hr>
<p>We can also use a voltage amplifier.
In that case, the generated charge is deposited on the transducer&rsquo;s internal capacitance.</p>
<p>The open-circuit voltage of a piezoelectric force sensor is:
\[ V_s = \frac{n d_{33} F_s}{C} \]</p>
<ul>
<li>\(C\) is the transducer capacitance defined by \(C = n \epsilon_T A / h\) in [F]
<ul>
<li>\(A\) is the area in \([m^2]\)</li>
<li>\(h\) is the layer thickness in [m]</li>
<li>\(\epsilon_T\) is the dielectric permittivity under a constant stress in \([F/m]\)</li>
</ul>
</li>
</ul>
<p>We obtain
\[ V_s = g_s F_s, \quad g_s = \frac{n d_{33}}{C} \]</p>
<h2 id="noise-of-a-piezoelectric-force-sensor">Noise of a piezoelectric force sensor</h2>
<p>As piezoelectric sensors have a capacitive source impedance, the sensor noise density \(N_{V_s}(\omega)\) is primarily due to current noise \(i_n\) reacting the capacitive source impedance:
\[ N_{V_s}(\omega) = i_n \frac{1}{C \omega} \]</p>
<ul>
<li>\(N_{V_s}\) is the measured noise in \(V/\sqrt{\text{Hz}}\)</li>
<li>\(i_n\) is the current noise in \(A/\sqrt{\text{Hz}}\)</li>
<li>\(C\) is the capacitance of the piezoelectric in \(F\)</li>
</ul>
<p>The current noise density of a general purpose LM833 FET-input op-amp is \(0.5\ pA/\sqrt{\text{Hz}}\).
The capacitance of a piezoelectric stack is typically between \(1 \mu F\) and \(100 \mu F\).</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="fleming10_nanop_system_with_force_feedb"></a>Fleming, A., <em>Nanopositioning system with force feedback for high-performance tracking and vibration control</em>, IEEE/ASME Transactions on Mechatronics, <em>15(3)</em>, 433447 (2010). <a href="http://dx.doi.org/10.1109/tmech.2009.2028422">http://dx.doi.org/10.1109/tmech.2009.2028422</a> <a href="#c823f68dd2a72b9667a61b3c046b4731"></a></p>
<h2 id="backlinks">Backlinks</h2>
<ul>
<li><a href="/zettels/actuators/">Actuators</a></li>
<li><a href="/zettels/force_sensors/">Force Sensors</a></li>
</ul>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/furutani04_nanom_cuttin_machin_using_stewar/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Nanometre-cutting machine using a stewart-platform parallel mechanism</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/sebastian12_nanop_with_multip_sensor/">
<span class="next-text nav-default">Nanopositioning with multiple sensors: a case study in data storage</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>