Update many posts
This commit is contained in:
49
content/article/preumont02_force_feedb_versus_accel_feedb.md
Normal file
49
content/article/preumont02_force_feedb_versus_accel_feedb.md
Normal file
@@ -0,0 +1,49 @@
|
||||
+++
|
||||
title = "Force feedback versus acceleration feedback in active vibration isolation"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="525e1e237b885f81fae3c25a3036ba6f"><a class="reference-link" href="#preumont02_force_feedb_versus_accel_feedb" title="Preumont, Fran\ccois, Bossens, \& Abu-Hanieh, Force Feedback Versus Acceleration Feedback in Active Vibration Isolation, {Journal of Sound and Vibration}, v(4), 605-613 (2002).">(Preumont {\it et al.}, 2002)</a></sup>
|
||||
|
||||
Author(s)
|
||||
: Preumont, A., A. Francois, Bossens, F., & Abu-Hanieh, A.
|
||||
|
||||
Year
|
||||
: 2002
|
||||
|
||||
Summary:
|
||||
|
||||
- Compares the force feedback and acceleration feedback for active damping
|
||||
- The use of a force sensor always give alternating poles and zeros in the open-loop transfer function between for force actuator and the force sensor which **guarantees the stability of the closed loop**
|
||||
- Acceleration feedback produces alternating poles and zeros only when the flexible structure is stiff compared to the isolation system
|
||||
|
||||
The force applied to a **rigid body** is proportional to its acceleration, thus sensing the total interface force gives a measured of the absolute acceleration of the solid body.
|
||||
Thus force feedback and acceleration feedback are equivalent for solid bodies.
|
||||
When there is a flexible payload, the two sensing options are not longer equivalent.
|
||||
|
||||
- For light payload (Figure [1](#org307b349)), the acceleration feedback gives larger damping on the higher mode.
|
||||
- For heavy payload (Figure [2](#orgc0c4ad3)), the acceleration feedback do not give alternating poles and zeros and thus for high control gains, the system becomes unstable
|
||||
|
||||
<a id="org307b349"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont02_force_acc_fb_light.png" caption="Figure 1: Root locus for **light** flexible payload, (a) Force feedback, (b) acceleration feedback" >}}
|
||||
|
||||
<a id="orgc0c4ad3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont02_force_acc_fb_heavy.png" caption="Figure 2: Root locus for **heavy** flexible payload, (a) Force feedback, (b) acceleration feedback" >}}
|
||||
|
||||
Guaranteed stability of the force feedback:
|
||||
|
||||
> If two arbitrary flexible, undamped structures are connected with a single-axis soft isolator with force feedback, the poles and zeros of the open-loop transfer function from the force actuator to the force sensor alternate on the imaginary axis.
|
||||
|
||||
The same is true for the transfer function from the force actuator to the relative displacement of the actuator.
|
||||
|
||||
> According to physical interpretation of the zeros, they represent the resonances of the subsystem constrained by the sensor and the actuator.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="preumont02_force_feedb_versus_accel_feedb">Preumont, A., A. Fran\ccois, Bossens, F., & Abu-Hanieh, A., *Force feedback versus acceleration feedback in active vibration isolation*, Journal of Sound and Vibration, *257(4)*, 605–613 (2002). http://dx.doi.org/10.1006/jsvi.2002.5047</a> [↩](#525e1e237b885f81fae3c25a3036ba6f)
|
Reference in New Issue
Block a user