Update Content - 2022-04-19
This commit is contained in:
parent
c6837d4e1f
commit
e4c613f438
@ -12,9 +12,99 @@ Review: (<a href="#citeproc_bib_item_1">Elias and Matsagar 2017</a>)
|
|||||||
|
|
||||||
## Working Principle {#working-principle}
|
## Working Principle {#working-principle}
|
||||||
|
|
||||||
|
The basic idea is to damp the resonance of a structure (called the primary system) by attaching a resonant system to it, the Tuned Mass Damper (TMD).
|
||||||
|
Usually, the resonance frequency of the TMD should match the resonance of the primary system that is to be damped.
|
||||||
|
The TMD then has large internal damping such that the energy is dissipated (i.e. the resonance of the primary system is well damped).
|
||||||
|
|
||||||
{{< youtube qDzGCgLu59A >}}
|
{{< youtube qDzGCgLu59A >}}
|
||||||
|
|
||||||
|
|
||||||
|
## Tuned Mass Damper Optimization {#tuned-mass-damper-optimization}
|
||||||
|
|
||||||
|
The optimal parameters of the tuned mass damper can be roughly estimated as follows:
|
||||||
|
|
||||||
|
- Choose the maximum mass of the TMD \\(m\\) and note:
|
||||||
|
\\[ \mu = m/M \\]
|
||||||
|
where \\(M\\) is the mass of the system to damp
|
||||||
|
- The resonance frequency of the tuned mass damper should be chosen to be
|
||||||
|
\\[ \nu = \frac{1}{1 + \mu} \approx 1 \\]
|
||||||
|
As usually we have \\(\mu \ll 1\\) (i.e. TMD mass small compared to the structure mass, for instance few percent)
|
||||||
|
- This allows to compute the stiffness of the TMD:
|
||||||
|
\\[ k = \nu^2 K \mu = K \frac{\mu}{(1 + \mu)^2} \\]
|
||||||
|
- Finally, the optimal damping of the TMD is:
|
||||||
|
\\[ \xi = \sqrt{\frac{3\mu}{8 (1 + \mu)}} \Longrightarrow c = 2 \xi \sqrt{k m} \\]
|
||||||
|
|
||||||
|
|
||||||
|
## Simple TMD model {#simple-tmd-model}
|
||||||
|
|
||||||
|
Let's consider a primary system that is represented by a mass-spring-damper system with the following parameters: \\(m\_1\\), \\(k\_1\\), \\(c\_1\\).
|
||||||
|
The TMD is also represented by a mass-spring-damper system with parameters \\(m\_2\\), \\(k\_2\\), \\(c\_2\\).
|
||||||
|
The system is schematically represented in Figure [1](#figure--fig:tuned-mass-damper-schematic).
|
||||||
|
|
||||||
|
The goal is to limit the peak amplitude of \\(x\_1\\) due to \\(x\_0\\) (or a force affecting \\(m\_1\\) for instance).
|
||||||
|
|
||||||
|
<a id="figure--fig:tuned-mass-damper-schematic"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/tuned_mass_damper_schematic.png" caption="<span class=\"figure-number\">Figure 1: </span>Mass Spring Damper representation of the Primary System and the Tuned Mass Damper" >}}
|
||||||
|
|
||||||
|
The parameter of the primary system are defined as follow:
|
||||||
|
|
||||||
|
```matlab
|
||||||
|
%% Primary system parameters
|
||||||
|
m1 = 100; % Mass [kg]
|
||||||
|
k1 = 1e7; % Stiffness [N/m]
|
||||||
|
c1 = 300; % Damping [N/(m/s)]
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, the mass of the TMD is fixed and its optical parameters are computed:
|
||||||
|
|
||||||
|
```matlab
|
||||||
|
%% Tuned Mass Damper Parameters
|
||||||
|
mu = 0.02; % Mass ratio
|
||||||
|
|
||||||
|
m2 = mu*m1;
|
||||||
|
k2 = k1*mu/(1 + mu)^2;
|
||||||
|
xi = sqrt(3*mu/(8*(1 + mu)));
|
||||||
|
c2 = 2*xi*sqrt(k2*m2);
|
||||||
|
```
|
||||||
|
|
||||||
|
<div class="table-caption">
|
||||||
|
<span class="table-number">Table 1</span>:
|
||||||
|
Obtained parameters of the TMD
|
||||||
|
</div>
|
||||||
|
|
||||||
|
| | Mass `m2` [kg] | Stiffness `k2` [N/m] | Damping `c2` [N/(m/s)] |
|
||||||
|
|-------|----------------|----------------------|------------------------|
|
||||||
|
| Value | 2 | 192234 | 106.338 |
|
||||||
|
|
||||||
|
The transfer function from \\(x\_0\\) to \\(x\_1\\) with and without the TMD are computed and shown in Figure
|
||||||
|
|
||||||
|
```matlab
|
||||||
|
%% Transfer function from X0 to X1 without TMD
|
||||||
|
G1 = (c1*s + k1)/(m1*s^2 + c1*s + k1);
|
||||||
|
|
||||||
|
%% Transfer function from X0 to X1 with TMD
|
||||||
|
G2 = (m2*s^2 + c2*s + k2)*(c1*s + k1)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
|
||||||
|
```
|
||||||
|
|
||||||
|
<a id="figure--fig:tuned-mass-damper-effect-tmd"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/tuned_mass_damper_effect_tmd.png" caption="<span class=\"figure-number\">Figure 2: </span>Comparison of the transmissibility with and without the TMD" >}}
|
||||||
|
|
||||||
|
Let's now see how the mass of the TMD can affect its efficiency.
|
||||||
|
|
||||||
|
The following mass ratios are tested:
|
||||||
|
|
||||||
|
```matlab
|
||||||
|
%% Mass ratios
|
||||||
|
mus = [0.01, 0.02, 0.05, 0.1];
|
||||||
|
```
|
||||||
|
|
||||||
|
<a id="figure--fig:tuned-mass-damper-mass-effect"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="<span class=\"figure-number\">Figure 3: </span>Effect of the TMD mass on its efficiency" >}}
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
<https://vibratec.se/en/product/high-frequency-tuned-mass-damper/>
|
<https://vibratec.se/en/product/high-frequency-tuned-mass-damper/>
|
||||||
|
BIN
static/ox-hugo/tuned_mass_damper_effect_tmd.png
Normal file
BIN
static/ox-hugo/tuned_mass_damper_effect_tmd.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 44 KiB |
BIN
static/ox-hugo/tuned_mass_damper_mass_effect.png
Normal file
BIN
static/ox-hugo/tuned_mass_damper_mass_effect.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 48 KiB |
BIN
static/ox-hugo/tuned_mass_damper_schematic.png
Normal file
BIN
static/ox-hugo/tuned_mass_damper_schematic.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Loading…
Reference in New Issue
Block a user