Update Content - 2021-09-03
This commit is contained in:
parent
3125b74f83
commit
dbe26eb4b3
@ -1,14 +1,14 @@
|
||||
+++
|
||||
title = "Active damping based on decoupled collocated control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
draft = true
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Active Damping]({{< relref "active_damping" >}})
|
||||
: [Active Damping](active_damping.md)
|
||||
|
||||
Reference
|
||||
: ([Holterman and deVries 2005](#orge1d0ea7))
|
||||
: ([Holterman and deVries 2005](#org5d6fef0))
|
||||
|
||||
Author(s)
|
||||
: Holterman, J., & deVries, T.
|
||||
@ -20,4 +20,4 @@ Year
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orge1d0ea7"></a>Holterman, J., and T.J.A. deVries. 2005. “Active Damping Based on Decoupled Collocated Control.” _IEEE/ASME Transactions on Mechatronics_ 10 (2):135–45. <https://doi.org/10.1109/tmech.2005.844702>.
|
||||
<a id="org5d6fef0"></a>Holterman, J., and T.J.A. deVries. 2005. “Active Damping Based on Decoupled Collocated Control.” _IEEE/ASME Transactions on Mechatronics_ 10 (2):135–45. <https://doi.org/10.1109/tmech.2005.844702>.
|
||||
|
@ -5,10 +5,10 @@ draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Motion Control]({{< relref "motion_control" >}})
|
||||
: [Motion Control](motion_control.md)
|
||||
|
||||
Reference
|
||||
: ([Oomen 2018](#org733608c))
|
||||
: ([Oomen 2018](#orge2156f8))
|
||||
|
||||
Author(s)
|
||||
: Oomen, T.
|
||||
@ -16,7 +16,7 @@ Author(s)
|
||||
Year
|
||||
: 2018
|
||||
|
||||
<a id="orgee4800c"></a>
|
||||
<a id="org6d729fe"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/oomen18_next_gen_loop_gain.png" caption="Figure 1: Envisaged developments in motion systems. In traditional motion systems, the control bandwidth takes place in the rigid-body region. In the next generation systemes, flexible dynamics are foreseen to occur within the control bandwidth." >}}
|
||||
|
||||
@ -24,4 +24,4 @@ Year
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org733608c"></a>Oomen, Tom. 2018. “Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems.” _IEEJ Journal of Industry Applications_ 7 (2):127–40. <https://doi.org/10.1541/ieejjia.7.127>.
|
||||
<a id="orge2156f8"></a>Oomen, Tom. 2018. “Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems.” _IEEJ Journal of Industry Applications_ 7 (2):127–40. <https://doi.org/10.1541/ieejjia.7.127>.
|
||||
|
@ -1,24 +0,0 @@
|
||||
+++
|
||||
title = "A survey of spectral factorization methods"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = true
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
Reference
|
||||
: ([Sayed and Kailath 2001](#org6782241))
|
||||
|
||||
Author(s)
|
||||
: Sayed, A. H., & Kailath, T.
|
||||
|
||||
Year
|
||||
: 2001
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6782241"></a>Sayed, A. H., and T. Kailath. 2001. “A Survey of Spectral Factorization Methods.” _Numerical Linear Algebra with Applications_ 8 (6-7):467–96. <https://doi.org/10.1002/nla.250>.
|
23
content/phdthesis/poel10_explor_activ_hard_mount_vibrat.md
Normal file
23
content/phdthesis/poel10_explor_activ_hard_mount_vibrat.md
Normal file
@ -0,0 +1,23 @@
|
||||
+++
|
||||
title = "An exploration of active hard mount vibration isolation for precision equipment"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Vibration Isolation](vibration_isolation.md)
|
||||
|
||||
Reference
|
||||
: ([Poel 2010](#orgf3242e5))
|
||||
|
||||
Author(s)
|
||||
: van der Poel, G. W.
|
||||
|
||||
Year
|
||||
: 2010
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgf3242e5"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. <https://doi.org/10.3990/1.9789036530163>.
|
Loading…
Reference in New Issue
Block a user