Update Content - 2023-10-24
This commit is contained in:
parent
d29d8c2fe8
commit
c6d1627939
@ -44,13 +44,19 @@ Typical materials used for flexible joints are:
|
||||
- Titanium
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
<https://www.flexpivots.com/>
|
||||
Prototyping kits: <https://www.motusmechanical.com/>
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)</i>. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Cosandier, Florent. 2017. <i>Flexure Mechanism Design</i>. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Henein, Simon. 2003. <i>Conception Des Guidages Flexibles</i>. Lausanne, Suisse: Presses polytechniques et universitaires romandes.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>———. 2010. “Flexures: Simply Subtle.” In <i>Diamond Light Source Proceedings, Medsi 2010</i>. Cambridge University Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>———. 2010. “Flexures: Simply Subtle.” In <i>Diamond Light Source Proceedings, MEDSI 2010</i>. Cambridge University Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lobontiu, Nicolae. 2002. <i>Compliant Mechanisms: Design of Flexure Hinges</i>. CRC press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Smith, Stuart T. 2000. <i>Flexures: Elements of Elastic Mechanisms</i>. Crc Press.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>———. 2005. <i>Foundations of Ultra-Precision Mechanism Design</i>. Vol. 2. CRC Press.</div>
|
||||
|
@ -120,39 +120,40 @@ The following mass ratios are tested:
|
||||
mus = [0.01, 0.02, 0.05, 0.1];
|
||||
```
|
||||
|
||||
The obtained transfer functions are shown in Figure [1](#figure--fig:tuned-mass-damper-mass-effect).
|
||||
The obtained transfer functions are shown in Figure [3](#figure--fig:tuned-mass-damper-mass-effect).
|
||||
|
||||
<a id="figure--fig:tuned-mass-damper-mass-effect"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="<span class=\"figure-number\">Figure 1: </span>Effect of the TMD mass on its efficiency" >}}
|
||||
{{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="<span class=\"figure-number\">Figure 3: </span>Effect of the TMD mass on its efficiency" >}}
|
||||
|
||||
The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [1](#figure--fig:tuned-mass-damper-effect-mass-ratio).
|
||||
The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [4](#figure--fig:tuned-mass-damper-effect-mass-ratio).
|
||||
This relation can help to determine the minimum mass of the TMD that will give acceptable results.
|
||||
|
||||
<a id="figure--fig:tuned-mass-damper-effect-mass-ratio"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png" caption="<span class=\"figure-number\">Figure 1: </span>Maximum amplification due to resonance as a function of the mass ratio" >}}
|
||||
{{< figure src="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png" caption="<span class=\"figure-number\">Figure 4: </span>Maximum amplification due to resonance as a function of the mass ratio" >}}
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
<https://vibratec.se/en/product/high-frequency-tuned-mass-damper/>
|
||||
<https://micromega-dynamics.com/products/vibration-control/passive-damping-devices/>
|
||||
<https://www.csaengineering.com/products-services/tuned-dampers-absorbers.html>
|
||||
- <https://vibratec.se/en/product/high-frequency-tuned-mass-damper/>
|
||||
- <https://micromega-dynamics.com/products/vibration-control/passive-damping-devices/>
|
||||
- <https://www.csaengineering.com/products-services/tuned-dampers-absorbers.html>
|
||||
|
||||
|
||||
## Ways to add damping {#ways-to-add-damping}
|
||||
|
||||
Possible damping sources:
|
||||
|
||||
- Magnetic (eddy current)
|
||||
- Magnetic ([Eddy Current Damping]({{< relref "eddy_current_damping.md" >}}))
|
||||
- Viscous fluid
|
||||
- Elastomer ([example](https://www.dspe.nl/knowledge/dppm-cases/tuned-mass-damper-with-damped-mass-far-away-from-point-of-interest/))
|
||||
|
||||
| Fuild | Reference |
|
||||
|----------------------|---------------------------------------------------|
|
||||
| Rocol Kilopoise 0868 | (<a href="#citeproc_bib_item_2">Verbaan 2015</a>) |
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” <i>Annual Reviews in Control</i> 44 (nil): 129–56. doi:<a href="https://doi.org/10.1016/j.arcontrol.2017.09.015">10.1016/j.arcontrol.2017.09.015</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” <i>Annual Reviews in Control</i> 44: 129–56. doi:<a href="https://doi.org/10.1016/j.arcontrol.2017.09.015">10.1016/j.arcontrol.2017.09.015</a>.</div>
|
||||
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Verbaan, C.A.M. 2015. “Robust mass damper design for bandwidth increase of motion stages.” Mechanical Engineering; Technische Universiteit Eindhoven.</div>
|
||||
</div>
|
||||
|
Loading…
Reference in New Issue
Block a user